Supplemental Figures and Captions for Supplemental Tables

Size: px
Start display at page:

Download "Supplemental Figures and Captions for Supplemental Tables"

Transcription

1 Kuehn, S.C. and Negrini, R. M., 2010, A 250 k.y. record of Cascade arc pyroclastic volcanism from late Pleistocene lacustrine sediments near Summer Lake, Oregon, USA. Geosphere, Vol. 6, No. 4 (August), Pages DOI: /GES Supplemental Figures and Captions for Supplemental Tables Site F sandy bed J3 sandy bed K bed L sandy major unconformity bed K Site E unconformity sand bed L bed L sand major unconformity major unconformity bed O bed Q bed P bed N bed M Figure S1. Major unconformity at sites C, E, and F. White card in photos is 15 cm high. Yellow and black scale bar is marked in 10 cm intervals. Only beds visible in the photographs are labeled. 1

2 Site F bed R bed S bed T bed T1 sand sand minor unconformity? bed W bed R bed S Site E bed T bed T1 sandy minor unconformity? bed V minor unconformity? bed V bed W bed W bed Z Figure S2. Unconformity between beds T1 and U at sites C, E, and F. White card is 15 cm high. Yellow and black scale bar is marked in 10 cm intervals. Only beds visible in the photographs are labeled. 2

3 Site E bed J3 sand and granules bed K bed L possible unconformity sandy sand over carbonate unconformity major unconformity sand Site F bed J3 sand and granules possible unconformity sand over carbonate = unconformity at site E Figure S3. Unconformity that cuts deformed beds K and L at site E and probable unconformity below bed J3 at sites E and F. White card is marked in 1 cm intervals. 3

4 bed NN Figure S4. Tephra bed NN at site C. Scale is marked in 10 cm intervals. bed LL3? bed MM bed MM1 Figure S5. Tephra beds MM, MM1, and possible bed LL3 at site C. Scale is marked in 10 cm intervals. 4

5 bed LL2 Figure S6. Tephra bed LL2 at site C. Scale is labeled in 1 cm intervals. bed LL bed LL1 Figure S7. Tephra beds LL and LL1 at site C. White card in photos is 15 cm high. 5

6 laminated, redeposited tephra bed KK) (primary graded bed) bed KK1 Figure S8. Tephra beds KK and KK1 at site C. White card in photo is 15 cm high. Beds KK and KK1 are present at all three sites and are the lowermost two tephras in the site E exposure. KK, KK1, and the fine, laminated sediments above KK together form a distinctive and easily recognized set. SPG core A bed JJ1 bed JJ1 bed JJ1 Figure S9. Tephra bed JJ1 at site C and in the SPG-A core. Scales are labeled in 1 cm intervals. White card is 15 cm high. 6

7 bed II1 bed JJ bed JJ bed JJ bed JJ 0.2 bed JJ 0.4 Figure S10. Tephra beds JJ0.4 through II1 at site C. Scale is labeled in 1 cm intervals. 7

8 bed II Figure S11. Tephra bed II at site C. Scale is labeled in 1 cm intervals. bed HH Figure S12. Tephra bed HH at site C. Scale is labeled in 1 cm intervals. 8

9 bed EE1 bed EE2 bed GG bed FF bed EE2 bed FF bed GG Figure S13. Tephra beds EE1 through GG at site C. Scale is labeled in 1 cm intervals. 9

10 bed DD1 bed EE Figure S14. Tephra beds DD1 and EE at site C. Scale is labeled in 1 cm intervals. bed DD Figure S15. Tephra bed DD at site C. Scale is labeled in 1 cm intervals. 10

11 bed CC Figure S16. Tephra bed CC at site C. Scale is labeled in 1 cm intervals. Site E bed BB bed BB1 bed BB Figure S17. Tephra beds BB and BB1 at site C and BB at site E. Scale is labeled in 1 cm intervals. 11

12 Site E bed AA Figure S18. Tephra bed AA at site E. Scale is labeled in 1 cm intervals. carbonate bed Y bed X bed Z Figure S19. Tephra beds X, Y, and Z at site C. Scale is marked in 10 cm intervals. 12

13 sand sand bed W Figure S20. Tephra bed W at site C. Scale is marked in 10 cm intervals. carbonate bed U bed V Figure S21. Tephra beds U and V at site C. White card is 15 cm high and is labeled in 1 cm intervals. 13

14 Site F bed S bed T bed T0.5 bed T1 Figure S22. Tephra beds S through T1 at site F. S, T, and T1 form a recognizable set at all three sites. White card is 15 cm high and is labeled in 1 cm intervals. 14

15 Site F bed R bed R filled burrows bed R1 bed R1 bed R2 Site E bed R1 bed R1 bed R3 bed R2 bed R3 bed R2 ostracode sand ostracode sand Figure S23. Tephra beds R through R3 at sites C, E, and F. White card is 15 cm high and is labeled in 1 cm intervals. 15

16 Site F bed O bed P bed Q Figure S24. Tephra beds O, P, and Q at site F. Scale is labeled in 1 cm intervals. bed N2 bed N2 bed O Figure S25. Tephra bed N2 at site C. Scale is labeled in 1 cm intervals. 16

17 bed L1 ostracode sands over major unconformity Figure S26. Tephra bed L1 and unconformity at site C. Scale is labeled in 1 cm intervals. bed K bed L Figure S27. Tephra beds K and L at site C. Scale is marked in 10 cm intervals. 17

18 Site E bed J1 bed J1 bed J2 bed J2 bed J3 Figure S28. Tephra beds J1 through J3 at site E. White card in photo is 15 cm high. 18

19 bed I bed J Site E bed I1 bed I1 bed J bed J Figure S29. Tephra beds I, I1, and J at sites C and E. Yellow and black scale bar is marked in 10 cm intervals. White card is 15 cm high and is labeled in 1 cm intervals. 19

20 Site F bed 2 Figure S30. Tephra bed 2 at site F. Scale is labeled in 1 cm intervals. 20

21 bed 8 bed 4 bed 6 Site E bed 8 bed 6 bed 4 Site F Figure S31. Tephra beds 8, 6, 4, and H0.4. bed 8 White card in photo is 15 cm high and bed 4 bed 6 is labeled in 1 cm intervals. Beds 8, 6, 4, and 2 are among those found in both outcrop and the Wetland Levee core (Negrini et al., 2000). bed H0.4 21

22 additional eruption or redeposited tephra bed H0.2 Figure S32. Tephra bed H0.2 at site C. Scale is labeled in 1 cm intervals. 22

23 Site F bed 12 bed 12 bed H bed H bed H Figure S33. Tephra beds 12 and H. White card in upper photo is 15 cm high. Scale in lower photo is labeled in 1 cm intervals. 23

24 Site F bed 12 bed 12 bed 12 Figure S34. Tephra bed 12 at sites C and F. Scale in upper photo is labeled in 1 cm intervals. Scale in lower photos is marked in 10 cm and 1 cm intervals. 24

25 erosion sandy bed F sandy bed F sandy Site E bed F silt bed G Site F Figure S35. Tephra beds F, F1, and G. Scale in top and bottom photos is labeled in 1 cm intervals. Scale bed F silt bed F1 in middle photo is marked in 10 cm and 1 cm intervals. bed G 25

26 Site E bed D reworked tephra bed 18 bed E bed E1 bed E Figure S36. Tephra beds D, 18, E, and E1 at site E. Scale is labeled in 1 cm intervals. Note the cross-bedding in the reworked tephra at the top of bed

27 Site E bed B bed C bed C bed C1 bed C1 bed C2 bed C2 bed D Figure S37. Tephra beds B, C, C1, C2, and D at site E. Scale is marked in 10 cm and 1 cm intervals. 27

28 Site E bed B bed A bed C bed B bed B1 bed B2 bed B1 bed C Figure S38. Tephra beds A, B, B1, B2, and C at the top of the section at site E. Scale is marked in 10 cm and 1 cm intervals. 28

29 Table S1 Tephrostratigraphy for site C Table S2 Tephrostratigraphy for site E Table S3 Tephrostratigraphy for site F Table S4. Complete microprobe data organized by bed and sample. Data points which appear as obvious outliers on bivariate plots are listed separately from the dominant population(s). Means calculated from multiple data points on a single shard are indicated in the far right column. Note also that the smaller data sets obtained for some samples may not fully capture the range of compositions present, especially for the more heterogeneous tephra beds. Together with limitations in the precision of EPMA data, this results in some variability in the range of values reported for individual samples. Mean values, which are based on a larger number of data points, tend to be less variable than compositional ranges. 29

Math 95--Review Prealgebra--page 1

Math 95--Review Prealgebra--page 1 Math 95--Review Prealgebra--page 1 Name Date In order to do well in algebra, there are many different ideas from prealgebra that you MUST know. Some of the main ideas follow. If these ideas are not just

More information

Terms of Use. Copyright Embark on the Journey

Terms of Use. Copyright Embark on the Journey Terms of Use All rights reserved. No part of this packet may be reproduced, stored in a retrieval system, or transmitted in any form by any means - electronic, mechanical, photo-copies, recording, or otherwise

More information

Classification of Components

Classification of Components Classification of Components Classification of SMD LEDs TLM.31../TLM.32../TLM.33../ + 3... series, Mini LEDs TLM.21... / TLM.23.. / TLM.2.. and 63 LEDs TLM.11../TLM1.. Light Intensity / Color Devices are

More information

Lesson 24: True and False Number Sentences

Lesson 24: True and False Number Sentences NYS COMMON CE MATHEMATICS CURRICULUM Lesson 24 6 4 Student Outcomes Students identify values for the variables in equations and inequalities that result in true number sentences. Students identify values

More information

& $ CORED mbsf SITE 932 HOLE A. Graphic Lith. Section Age. Sample. Disturb. Meter. Color. Description. Structure. CALCAREOUS CLAY and CLAY

& $ CORED mbsf SITE 932 HOLE A. Graphic Lith. Section Age. Sample. Disturb. Meter. Color. Description. Structure. CALCAREOUS CLAY and CLAY SITE 932 HOLE A Meter 1_ 2_ 3_ 4_ 5_ 6 : 3 α IV.V.V a πt = π 4..-.V. Section Age 1 2 3 4 CC late Pleistocene \ Holocene CORE & & $ Disturb 1H Sample S S S S I M Color 1YR 5/3 2. 4/2 4/1 CORED.-6. mbsf

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

A A A A A A A A A A A A. a a a a a a a a a a a a a a a. Apples taste amazingly good.

A A A A A A A A A A A A. a a a a a a a a a a a a a a a. Apples taste amazingly good. Victorian Handwriting Sheet Aa A A A A A A A A A A A A Aa Aa Aa Aa Aa Aa Aa a a a a a a a a a a a a a a a Apples taste amazingly good. Apples taste amazingly good. Now make up a sentence of your own using

More information

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra Worksheets for GCSE Mathematics Quadratics mr-mathematics.com Maths Resources for Teachers Algebra Quadratics Worksheets Contents Differentiated Independent Learning Worksheets Solving x + bx + c by factorisation

More information

Patterns of soiling in the Old Library Trinity College Dublin. Allyson Smith, Robbie Goodhue, Susie Bioletti

Patterns of soiling in the Old Library Trinity College Dublin. Allyson Smith, Robbie Goodhue, Susie Bioletti Patterns of soiling in the Old Library Trinity College Dublin Allyson Smith, Robbie Goodhue, Susie Bioletti Trinity College aerial view Old Library E N S W Old Library main (south) elevation Gallery Fagel

More information

2mm Pitch 2 Piece Battery Connector for Litium-ion / Litium-polymer GF SERIES E-9

2mm Pitch 2 Piece Battery Connector for Litium-ion / Litium-polymer GF SERIES E-9 2mm Pitch 2 Piece Battery Connector for Litium-ion / Litium-polymer GF SERIES E-9 E-10 Horizontal Mating GF SERIES Mating Variation PLUG : GF 01-1 F PLUG : GF 02-1 F PLUG : GF 21 - -1F PLUG RECEPTACLE

More information

INTRODUCTION TO TEPHROCHRONOLOGY

INTRODUCTION TO TEPHROCHRONOLOGY ENEGeol 2017 - PART 1 INTRODUCTION TO TEPHROCHRONOLOGY Eruption of Chaiten, 2008 Tephra is an all-embracing term for the explosively erupted, loose fragmental (pyroclastic) products of a volcanic eruption,

More information

Lesson 7: Linear Transformations Applied to Cubes

Lesson 7: Linear Transformations Applied to Cubes Classwork Opening Exercise Consider the following matrices: AA = 1 2 0 2, BB = 2, and CC = 2 2 4 0 0 2 2 a. Compute the following determinants. i. det(aa) ii. det(bb) iii. det(cc) b. Sketch the image of

More information

Eureka Lessons for 6th Grade Unit FIVE ~ Equations & Inequalities

Eureka Lessons for 6th Grade Unit FIVE ~ Equations & Inequalities Eureka Lessons for 6th Grade Unit FIVE ~ Equations & Inequalities These 2 lessons can easily be taught in 2 class periods. If you like these lessons, please consider using other Eureka lessons as well.

More information

Feet. Cape May Core #51 Start depth: 240 ft Stop depth: 245 ft Recovery (ft): 5.1 ft Date: 3/21/94 Described by: JVB, KGM, CL. 5.

Feet. Cape May Core #51 Start depth: 240 ft Stop depth: 245 ft Recovery (ft): 5.1 ft Date: 3/21/94 Described by: JVB, KGM, CL. 5. SAND; medium to fine sand with abundant silt, homogenous slightly mottled appearance; mica on outside, mostly quartz; few darks; peat layer.9 - ft; cnv - same as above; the last few cores are all the same;

More information

Mrs. Charnley, J303 Mrs. Zayaitz Ruhf, J305

Mrs. Charnley, J303 Mrs. Zayaitz Ruhf, J305 Mrs. Charnley, J303 charnleyc@eastonsd.org Mrs. Zayaitz Ruhf, J305 zayaitzruhfm@eastonsd.org Part I. Online Quiz/Review, DUE June 30, 016 This is a quick review of some material from Pre-Calculus and other

More information

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator Lecture No. 1 Introduction to Method of Weighted Residuals Solve the differential equation L (u) = p(x) in V where L is a differential operator with boundary conditions S(u) = g(x) on Γ where S is a differential

More information

Appendix A: Core descriptions

Appendix A: Core descriptions Appendix A: Core descriptions Core: Tan0706 1 Water Depth: 2550m Gear: Piston Date Collected: 6/5/07 Date Described: 7/12/10 Description and Comments: 0-23 (2.5Y 6/4), light yellowish brown. Sandy silt.

More information

Station A. 3. The amount of time it takes molten rock to cool and harden mainly affects the rock s. A. Color B. Mass C. Crystals D.

Station A. 3. The amount of time it takes molten rock to cool and harden mainly affects the rock s. A. Color B. Mass C. Crystals D. Station A 1. Specimen AA is. A. Limestone B. Quartzite C. Basalt D. Slate 2. Specimen AA is. A. Metamorphic B. Igneous C. Sedimentary D. None of the above 3. The amount of time it takes molten rock to

More information

Detection of Late Pleistocene tephras and cryptotephras using major element chemistry of glass shards from Chikyu C9001C cores, NW Pacific Ocean

Detection of Late Pleistocene tephras and cryptotephras using major element chemistry of glass shards from Chikyu C9001C cores, NW Pacific Ocean JAMSTEC Rep. Res. Dev., Volume 26, March 2018, 1 20 doi: 10.5918/jamstecr.26.1 Detection of Late Pleistocene tephras and cryptotephras using major element chemistry of glass shards from Chikyu C9001C cores,

More information

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely Atomic fluorescence 1. Introduction Transitions in multi-electron atoms Energy levels of the single-electron hydrogen atom are well-described by EE nn = RR nn2, where RR = 13.6 eeee is the Rydberg constant.

More information

Big Bang Planck Era. This theory: cosmological model of the universe that is best supported by several aspects of scientific evidence and observation

Big Bang Planck Era. This theory: cosmological model of the universe that is best supported by several aspects of scientific evidence and observation Big Bang Planck Era Source: http://www.crystalinks.com/bigbang.html Source: http://www.odec.ca/index.htm This theory: cosmological model of the universe that is best supported by several aspects of scientific

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 16: Volcaniclastic Petrography Instructor: Dr. Douglas W. Haywick Last Time (online) Moscow Landing, Alabama Photo credit: Jan Smit (http://www.geo.vu.nl/~smit/indexjansmit/jansmitindex.htm)

More information

" = Y(#,$) % R(r) = 1 4& % " = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V,

 = Y(#,$) % R(r) = 1 4& %  = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V, Recitation Problems: Week 4 1. Which of the following combinations of quantum numbers are allowed for an electron in a one-electron atom: n l m l m s 2 2 1! 3 1 0 -! 5 1 2! 4-1 0! 3 2 1 0 2 0 0 -! 7 2-2!

More information

Classwork. Example 1 S.35

Classwork. Example 1 S.35 Classwork Example 1 In the picture below, we have a triangle AAAAAA that has been dilated from center OO by a scale factor of rr = 1. It is noted 2 by AA BB CC. We also have triangle AA BB CC, which is

More information

GSA Data Repository item

GSA Data Repository item GSA Data Repository item 2007167 A 25,000-year record of earthquakes on the Owens Valley fault near Lone Pine, California: Implications for recurrence intervals, slip rates, and segmentation models, by

More information

KENNESAW STATE UNIVERSITY ATHLETICS VISUAL IDENTITY

KENNESAW STATE UNIVERSITY ATHLETICS VISUAL IDENTITY KENNESAW STATE UNIVERSITY ATHLETICS VISUAL IDENTITY KENNESAW STATE DEPARTMENT OF ATHLETICS VISUAL IDENTITY GENERAL University Athletics Brand History...3 Referencing the Institution...3 Referencing the

More information

Geometry. A. Right Triangle. Legs of a right triangle : a, b. Hypotenuse : c. Altitude : h. Medians : m a, m b, m c. Angles :,

Geometry. A. Right Triangle. Legs of a right triangle : a, b. Hypotenuse : c. Altitude : h. Medians : m a, m b, m c. Angles :, Geometry A. Right Triangle Legs of a right triangle : a, b Hypotenuse : c Altitude : h Medians : m a, m b, m c Angles :, Radius of circumscribed circle : R Radius of inscribed circle : r Area : S 1. +

More information

Chapter 5. The Sedimentary Archives

Chapter 5. The Sedimentary Archives Chapter 5 The Sedimentary Archives Factors affecting Sedimentary Characteristics 1. Tectonic setting 2. Physical, chemical, and biological processes in the depositional environment 3. Method of sediment

More information

Quantitative Screening of 46 Illicit Drugs in Urine using Exactive Ultrahigh Resolution and Accurate Mass system

Quantitative Screening of 46 Illicit Drugs in Urine using Exactive Ultrahigh Resolution and Accurate Mass system Quantitative Screening of 46 Illicit Drugs in Urine using Exactive Ultrahigh Resolution and Accurate Mass system Kevin Mchale Thermo Fisher Scientific, San Jose CA Presentation Overview Anabolic androgenic

More information

Bring a printed copy of this lab to your lab section. We will answer the lettered questions in class.

Bring a printed copy of this lab to your lab section. We will answer the lettered questions in class. Lab 2 GEO 302C Week of January 30, 2006. Bring a printed copy of this lab to your lab section. We will answer the lettered questions in class. Goal for today: Be able to understand the greenhouse effect

More information

TSOKOS READING ACTIVITY Section 7-2: The Greenhouse Effect and Global Warming (8 points)

TSOKOS READING ACTIVITY Section 7-2: The Greenhouse Effect and Global Warming (8 points) IB PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS TSOKOS READING ACTIVITY Section 7-2: The Greenhouse Effect and Global Warming (8 points) 1. IB Assessment Statements for Topic 8.5.

More information

Laboratory#6 Sediment Particle Size Distribution and Turbidity Flows

Laboratory#6 Sediment Particle Size Distribution and Turbidity Flows Laboratory#6 Sediment Particle Size Distribution and Turbidity Flows Although this laboratory will pertain to oceanic sediments similar processes can also be observed on land and other aquatic systems

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL DESCRIPTIONS OF OTHER STRATIGRAPHIC SECTIONS Cherry Creek In its middle reaches, Cherry Creek meanders between three paired terraces within a narrow bedrock valley. The highest is

More information

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Algebraic Expressions Mr Black 's Maths Resources for Teachers GCSE 1-9 Algebra Algebraic Expressions Worksheets Contents Differentiated Independent Learning Worksheets

More information

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet Secondary H Unit Lesson Worksheet Simplify: mm + 2 mm 2 4 mm+6 mm + 2 mm 2 mm 20 mm+4 5 2 9+20 2 0+25 4 +2 2 + 2 8 2 6 5. 2 yy 2 + yy 6. +2 + 5 2 2 2 0 Lesson 6 Worksheet List all asymptotes, holes and

More information

4º ESO BIOLOGY & GEOLOGY SUMMER REINFORCEMENT: CONTENTS & ACTIVITIES

4º ESO BIOLOGY & GEOLOGY SUMMER REINFORCEMENT: CONTENTS & ACTIVITIES COLEGIO INTERNACIONAL SEK ALBORÁN 4º ESO BIOLOGY & GEOLOGY SUMMER REINFORCEMENT: CONTENTS & ACTIVITIES 1 ST EVALUATION UNIT 4: CELLS 1. Levels of biological organization 2. Cell theory 3. Basic unit of

More information

A A. an at and April fat Ana black orange gray cage. A a A a a f A a g A N a A n N p A G a A g A n a A a a A g a. Name. Copy the letter Aa.

A A. an at and April fat Ana black orange gray cage. A a A a a f A a g A N a A n N p A G a A g A n a A a a A g a. Name. Copy the letter Aa. Copy the letter Aa. A A a a Highlight the letter Aa. an at and April that fat Ana black orange gray cage Glue the uppercase A here. Glue the lowercase a here. A a A a a f A a g A N a A n N p A G a A g

More information

8D Series Common Section

8D Series Common Section MIL-DTL-38999 qualified crimp contacts - 1.27µm gold plated #22D type Part number Ø M39029/58 360 M39029/56 348 Conductor section AWG Conductor section mm² External Ø over insulator Min Max Min Max Min

More information

NAME: GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test.

NAME: GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test. GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test. 1. Sketch a map view of three types of deltas showing the differences in river,

More information

27 Figure 7 Poorly cleaved, massive, light-weathering Bomoseen graywacke outcrop located on Brandon Mountain Road. Figure 8 Photomicrograph of Bomoseen graywacke. Subangular, poorly sorted quartz grains

More information

GEL 109 Midterm W05, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!

GEL 109 Midterm W05, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers! GEL 109 Midterm W05, Page 1 50 points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!) 1. Are the following flow types typically laminar or turbulent and

More information

(Lecture 18) MAT FOUNDATIONS

(Lecture 18) MAT FOUNDATIONS Module 5 (Lecture 18) MAT FOUNDATIONS Topics 1.1 FIELD SETTLEMENT OBSERVATIONS FOR MAT FOUNDATIONS 1.2 COMPENSATED FOUNDATIONS 1.3 Example FIELD SETTLEMENT OBSERVATIONS FOR MAT FOUNDATIONS Several field

More information

Data supplement to. Villamor, P., Berryman, K.R., Nairn, I.A., Wilson, K., Litchfield, N., Ries, W., GSA Bulletin

Data supplement to. Villamor, P., Berryman, K.R., Nairn, I.A., Wilson, K., Litchfield, N., Ries, W., GSA Bulletin DR2011015 Data supplement to Associations between volcanic eruptions from Okataina volcanic center and surface rupture of nearby active faults, Taupo rift, New Zealand: Insights into the nature of volcano-tectonic

More information

7.3 The Jacobi and Gauss-Seidel Iterative Methods

7.3 The Jacobi and Gauss-Seidel Iterative Methods 7.3 The Jacobi and Gauss-Seidel Iterative Methods 1 The Jacobi Method Two assumptions made on Jacobi Method: 1.The system given by aa 11 xx 1 + aa 12 xx 2 + aa 1nn xx nn = bb 1 aa 21 xx 1 + aa 22 xx 2

More information

Uncertain Compression & Graph Coloring. Madhu Sudan Harvard

Uncertain Compression & Graph Coloring. Madhu Sudan Harvard Uncertain Compression & Graph Coloring Madhu Sudan Harvard Based on joint works with: (1) Adam Kalai (MSR), Sanjeev Khanna (U.Penn), Brendan Juba (WUStL) (2) Elad Haramaty (Harvard) (3) Badih Ghazi (MIT),

More information

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin A Posteriori DG using Non-Polynomial Basis 1 A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin Department of Mathematics, UC Berkeley;

More information

Clyde River Landslide

Clyde River Landslide Clyde River Landslide Department of Geology, Perkins Hall, University of Vermont, Burlington, VT 05405 Abstract: This paper investigates a landslide on the Clyde River in Newport, Vermont. The landslide

More information

Piles of Fire Individual and Team Project Modified from

Piles of Fire Individual and Team Project Modified from Piles of Fire Individual and Team Project Modified from http://www.spacegrant.hawaii.edu/class_acts/pilesfirete.html The purpose of this activity is to investigate how particle size affects the angle of

More information

Recurrence Relations

Recurrence Relations Recurrence Relations Recurrence Relations Reading (Epp s textbook) 5.6 5.8 1 Recurrence Relations A recurrence relation for a sequence aa 0, aa 1, aa 2, ({a n }) is a formula that relates each term a k

More information

Feet CLAY; silty, greenish gray and clayey fine sand; Color: 5Y 3/1

Feet CLAY; silty, greenish gray and clayey fine sand; Color: 5Y 3/1 -. CLAY; silty, greenish gray and clayey fine sand; Color: Y /. -. SAND; fine-medium, clayey, with sandy clay layers; very abundant broken thin, tiny shells; shell hash at several horizons, heavily burrowed;

More information

1. The timeline below represents time on Earth from the beginning of the Paleozoic Era Ato the present B.

1. The timeline below represents time on Earth from the beginning of the Paleozoic Era Ato the present B. Name Roy G Biv 1. The timeline below represents time on Earth from the beginning of the Paleozoic Era Ato the present B. Which numbered position best represents the time when humans first appeared in the

More information

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each) Sedimentary Rocks & Surface Processes Quest Name: Earth Science 2013 Block: Date: Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

More information

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems SECTION 7: STEADY-STATE ERROR ESE 499 Feedback Control Systems 2 Introduction Steady-State Error Introduction 3 Consider a simple unity-feedback system The error is the difference between the reference

More information

GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lectures 16 & 17: Deltaic Facies

GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lectures 16 & 17: Deltaic Facies GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lectures 16 & 17: Deltaic Facies What controls morphology and facies of the Nile Delta? Basic processes Classification Facies

More information

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

UltraWeatherBug3 HSPI User s Guide A HomeSeer HS3 plug-in to access live local weather conditions, forecasts and severe weather alerts

UltraWeatherBug3 HSPI User s Guide A HomeSeer HS3 plug-in to access live local weather conditions, forecasts and severe weather alerts UltraWeatherBug3 HSPI User s Guide A HomeSeer HS3 plug-in to access live local weather conditions, forecasts and severe weather alerts Copyright 2015 ultrajones@hotmail.com Revised 08/08/2015 This document

More information

2.4 Error Analysis for Iterative Methods

2.4 Error Analysis for Iterative Methods 2.4 Error Analysis for Iterative Methods 1 Definition 2.7. Order of Convergence Suppose {pp nn } nn=0 is a sequence that converges to pp with pp nn pp for all nn. If positive constants λλ and αα exist

More information

ES120 Sedimentology/Stratigraphy

ES120 Sedimentology/Stratigraphy Midterm Exam 5/05/08 NAME: 1. List or describe 3 physical processes that contribute to the weathering of rocks (3pts). exfoliation frost wedging many others. roots, thermal expansion/contraction also credit

More information

As compaction and cementation of these sediments eventually occur, which area will become siltstone? A) A B) B C) C D) D

As compaction and cementation of these sediments eventually occur, which area will become siltstone? A) A B) B C) C D) D 1. A student obtains a cup of quartz sand from a beach. A saltwater solution is poured into the sand and allowed to evaporate. The mineral residue from the saltwater solution cements the sand grains together,

More information

Landscape Development

Landscape Development Landscape Development Slopes Dominate Natural Landscapes Created by the interplay of tectonic and igneous activity and gradation Deformation and uplift Volcanic activity Agents of gradation Mass wasting

More information

State the principle of uniformitarianism. Explain how the law of superposition can be used to determine the relative age of rocks.

State the principle of uniformitarianism. Explain how the law of superposition can be used to determine the relative age of rocks. Objectives State the principle of uniformitarianism. Explain how the law of superposition can be used to determine the relative age of rocks. Compare three types of unconformities. Apply the law of crosscutting

More information

Math 171 Spring 2017 Final Exam. Problem Worth

Math 171 Spring 2017 Final Exam. Problem Worth Math 171 Spring 2017 Final Exam Problem 1 2 3 4 5 6 7 8 9 10 11 Worth 9 6 6 5 9 8 5 8 8 8 10 12 13 14 15 16 17 18 19 20 21 22 Total 8 5 5 6 6 8 6 6 6 6 6 150 Last Name: First Name: Student ID: Section:

More information

The Geology of Sebago Lake State Park

The Geology of Sebago Lake State Park Maine Geologic Facts and Localities September, 2002 43 55 17.46 N, 70 34 13.07 W Text by Robert Johnston, Department of Agriculture, Conservation & Forestry 1 Map by Robert Johnston Introduction Sebago

More information

Quantum state measurement

Quantum state measurement Quantum state measurement Introduction The rotation properties of light fields of spin are described by the 3 3 representation of the 0 0 SO(3) group, with the generators JJ ii we found in class, for instance

More information

The Geology of Cobscook Bay State Park

The Geology of Cobscook Bay State Park Maine Geologic Facts and Localities August, 2000 44 50 24.67 N, 67 9 3.01 W Text by Robert A. Johnston, Department of Agriculture, Conservation & Forestry 1 Map by USGS Introduction Cobscook Bay State

More information

The San Benito Gravels: Fluvial Depositional Systems, Paleocurrents, and Provenance

The San Benito Gravels: Fluvial Depositional Systems, Paleocurrents, and Provenance ES120 FIELD TRIP #2 10 April 2010 NAME: The San Benito Gravels: Fluvial Depositional Systems, Paleocurrents, and Provenance Introduction The San Benito Gravels (SBG) consists of a 500 m thick section of

More information

SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS

SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS GSA DATA REPOSITORY 2014069 Hajek and Edmonds SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS Each experiment starts from the initial condition of a straight channel 10 km

More information

Geology Stratigraphic Correlations (Lab #4, Winter 2010)

Geology Stratigraphic Correlations (Lab #4, Winter 2010) Name: Answers Reg. lab day: Tu W Th Geology 1023 Stratigraphic Correlations (Lab #4, Winter 2010) Introduction Stratigraphic correlation is the process of comparing rocks at one locality with related rocks

More information

Free energy dependence along the coexistence curve

Free energy dependence along the coexistence curve Free energy dependence along the coexistence curve In a system where two phases (e.g. liquid and gas) are in equilibrium the Gibbs energy is G = GG l + GG gg, where GG l and GG gg are the Gibbs energies

More information

Lab Activity on Sedimentary and Metamorphic Rocks

Lab Activity on Sedimentary and Metamorphic Rocks Lab Activity on Sedimentary and Metamorphic Rocks 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this

More information

Investigation #5 Position, speed, and acceleration

Investigation #5 Position, speed, and acceleration Investigation #5 Position, speed, and acceleration 1. A car is initially at a position of x = ft. It is traveling in the positive direction at a speed of 88 ft/s. What is the car s position after: a. 1

More information

Lecture 3 Transport in Semiconductors

Lecture 3 Transport in Semiconductors EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 3 Transport in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken,

More information

Geo 302D: Age of Dinosaurs. LAB 2: Sedimentary rocks and processes

Geo 302D: Age of Dinosaurs. LAB 2: Sedimentary rocks and processes Geo 302D: Age of Dinosaurs LAB 2: Sedimentary rocks and processes Last week we covered the basic types of rocks and the rock cycle. This lab concentrates on sedimentary rocks. Sedimentary rocks have special

More information

Chapter 4. Eumeralla Formation Facies and Distribution

Chapter 4. Eumeralla Formation Facies and Distribution Chapter 4 Eumeralla Formation Facies and Distribution 4. EUMERALLA FORMATION FACIES 4.1 Previous Work The Eumeralla Formation thickens in a broad wedge towards its main depocentre in the southwestern Otway

More information

Chapter 8: Learning objectives

Chapter 8: Learning objectives Chapter 8: Learning objectives Understand concept of sedimentary facies Signinifance of lateral and vertical facies associations Walther s Law Understand the sedimentary facies of alluvial fans, eolian

More information

M.5 Modeling the Effect of Functional Responses

M.5 Modeling the Effect of Functional Responses M.5 Modeling the Effect of Functional Responses The functional response is referred to the predation rate as a function of the number of prey per predator. It is recognized that as the number of prey increases,

More information

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water Final Exam Running Water Erosion and Deposition Earth Science Chapter 5 Pages 120-135 Scheduled for 8 AM, March 21, 2006 Bring A scantron form A calculator Your 3 x 5 paper card of formulas Review questions

More information

Definition: A sequence is a function from a subset of the integers (usually either the set

Definition: A sequence is a function from a subset of the integers (usually either the set Math 3336 Section 2.4 Sequences and Summations Sequences Geometric Progression Arithmetic Progression Recurrence Relation Fibonacci Sequence Summations Definition: A sequence is a function from a subset

More information

Haar Basis Wavelets and Morlet Wavelets

Haar Basis Wavelets and Morlet Wavelets Haar Basis Wavelets and Morlet Wavelets September 9 th, 05 Professor Davi Geiger. The Haar transform, which is one of the earliest transform functions proposed, was proposed in 90 by a Hungarian mathematician

More information

Field Trip Number One. By: Pat Dryer. Geography 360

Field Trip Number One. By: Pat Dryer. Geography 360 Field Trip Number One By: Pat Dryer Geography 360 Table of Contents Introduction. Page 1 Stop One... Page 2 Stop Two... Page 4 Stop Three... Page 5 Stop Four... Page 7 Bibliography Page 8 Campus Map Source:

More information

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES COMPUTERS AND STRUCTURES, INC., FEBRUARY 2016 TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES Introduction This technical note

More information

PARTS MANUAL Gas Furnace F8MXN, F8MXL, G8MXN, G8MXL

PARTS MANUAL Gas Furnace F8MXN, F8MXL, G8MXN, G8MXL Gas Furnace F8MXN, F8MXL, G8MXN, G8MXL DANGER, WARNING, CAUTION, and NOTE The signal words DANGER, WARNING, CAU- TION, and NOTE are used to identify levels of hazard seriousness. The signal word DANGER

More information

LONG ISLAND CLAST ORIENTATIONS

LONG ISLAND CLAST ORIENTATIONS LONG ISLAND CLAST ORIENTATIONS AND WHAT THEY TILL US Elliot Klein and Dan Davis Department of Geosciences, State University of New York at Stony Brook, 11794 Long Island glacigenic surface deposits, where

More information

Stratigraphy and structure of the Ganson Hill area: northern Taconic Allochthon

Stratigraphy and structure of the Ganson Hill area: northern Taconic Allochthon University at Albany, State University of New York Scholars Archive Geology Theses and Dissertations Atmospheric and Environmental Sciences 1985 Stratigraphy and structure of the Ganson Hill area: northern

More information

Enhanced Instructional Transition Guide

Enhanced Instructional Transition Guide Enhanced Instructional Transition Guide High School Courses/Algebra I Unit 03: Suggested Duration: 12 days Unit 03: Linear Equations, Inequalities, and Applications (12 days) Possible Lesson 01 (12 days)

More information

NVLAP Proficiency Test Round 14 Results. Rolf Bergman CORM 16 May 2016

NVLAP Proficiency Test Round 14 Results. Rolf Bergman CORM 16 May 2016 NVLAP Proficiency Test Round 14 Results Rolf Bergman CORM 16 May 2016 Outline PT 14 Structure Lamp Types Lab Participation Format for results PT 14 Analysis Average values of labs Average values of lamps

More information

B) color B) Sediment must be compacted and cemented before it can change to sedimentary rock. D) igneous, metamorphic, and sedimentary rocks

B) color B) Sediment must be compacted and cemented before it can change to sedimentary rock. D) igneous, metamorphic, and sedimentary rocks 1. Which characteristic of nonsedimentary rocks would provide the least evidence about the environment in which the rocks were formed? A) structure B) color C) crystal size D) mineral composition 2. Which

More information

Pre-Lab Reading Questions ES202

Pre-Lab Reading Questions ES202 ES202 The are designed to encourage students to read lab material prior to attending class during any given week. Reading the weekly lab prior to attending class will result in better grade performance

More information

GEL 109 Midterm W01, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!

GEL 109 Midterm W01, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers! GEL 109 Midterm W01, Page 1 50 points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!) 1. Where in a water flow is there usually a zone of laminar flow even

More information

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS Learning outcomes The student is able to: 1. understand and identify rocks 2. understand and identify parent materials 3. recognize

More information

CEE 437 Lecture 10 Rock Classification. Thomas Doe

CEE 437 Lecture 10 Rock Classification. Thomas Doe CEE 437 Lecture 10 Rock Classification Thomas Doe Igneous Origins Intrusive Batholithic or plutonic: phaneritic Dikes or sills that chill rapidly: aphanitic Extrusive deposition as melt (lava) pyroclastic

More information

Structural Geology Lab. The Objectives are to gain experience

Structural Geology Lab. The Objectives are to gain experience Geology 2 Structural Geology Lab The Objectives are to gain experience 1. Drawing cross sections from information given on geologic maps. 2. Recognizing folds and naming their parts on stereoscopic air

More information

Vero Beach Elks Lodge # th Street Vero Beach, FL /

Vero Beach Elks Lodge # th Street Vero Beach, FL / 1350-26th Street Vero Beach, FL 32960 772/562-8450 Annual Harry-Anna Saturday, February 13, 2016 Featuring our Popular Roast Beef Dinner Potatoes, Corn-on-the-Cob, Salad & Dessert by Chef Vic Cocktails:

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting.

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting. Press & Siever, 1995 compressive forces Compressive forces cause folding and faulting. faults 1 Uplift is followed by erosion, which creates new horizontal surface. lava flows Volcanic eruptions cover

More information

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Variations ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Last Time Probability Density Functions Normal Distribution Expectation / Expectation of a function Independence Uncorrelated

More information

Figure 1. Map of Feather River Basin in northern California. (A) Region straddles the northwestern Sierra Nevada and Sacramento Valley.

Figure 1. Map of Feather River Basin in northern California. (A) Region straddles the northwestern Sierra Nevada and Sacramento Valley. Figure 1. Map of Feather River Basin in northern California. (A) Region straddles the northwestern Sierra Nevada and Sacramento Valley. (B) Feather River Basin with Yuba and Bear subbasins. Most hydraulic

More information

SOUTH CERRO AZUL STRATIGRAPHIC SECTION. Upper Cerro Azul flow of the Servilleta Basalt (Tsbcau) Lower Sandlin unit (Tsl)

SOUTH CERRO AZUL STRATIGRAPHIC SECTION. Upper Cerro Azul flow of the Servilleta Basalt (Tsbcau) Lower Sandlin unit (Tsl) Figure A3-01 cobbles claysilt general grain size sand pebbles vf f m c vc SOUTH CERRO AZUL STRATIGRAPHIC SECTION Top at 18 m. Upper Cerro Azul flow of the Servilleta Basalt (Tsbcau) 15 Basalt: Very dark

More information

Geology 12 FINAL EXAM PREP. Possible Written Response Exam Questions

Geology 12 FINAL EXAM PREP. Possible Written Response Exam Questions Geology 12 FINAL EXAM PREP Possible Written Response Exam Questions Use this study guide to prepare for the written response portion of the final exam. Name FINAL EXAM - POSSIBLE WRITTEN RESPONSE QUESTIONS

More information

Labels Thermal Transfer Label Materials

Labels Thermal Transfer Label Materials Thermal Transfer Label Materials HellermannTyton provides a wide variety of thermal transfer label stocks to fit most industrial applications. Materials can be used in applications ranging from high heat,

More information

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds CS 6347 Lecture 8 & 9 Lagrange Multipliers & Varitional Bounds General Optimization subject to: min ff 0() R nn ff ii 0, h ii = 0, ii = 1,, mm ii = 1,, pp 2 General Optimization subject to: min ff 0()

More information