Strain accumulation at Yucca Mountain, Nevada,

Size: px
Start display at page:

Download "Strain accumulation at Yucca Mountain, Nevada,"

Transcription

1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. B8, PAGES 17,627-17,631, AUGUST 10, 1999 Strain accumulation at Yucca Mountain, Nevada, J. C. Savage, J.L. Svarc, and W. H. Prescott U.S. Geological Survey, Menlo Park, California Abstract. A 14-station, 50-km aperture geodetic array centered on the proposed radioactive waste disposal site at Yucca Mountain, Nevada, was surveyed in 1983, 1984, 1993, and 1998 to determine the rate of strain accumulation there. The coseismic effects of the 1992 (Ms=5.4) Little Skull Mountain earthquake, which occurred within the array, were calculated from a dislocation model and removed from the data. The measured principal strain accumulation rates determined over the interval are 1 = 2_+12 nanostrain/yr N87øW_+12 ø and 2 = -22_+12 nanostrain/yr N03øE_+l 2 ø (extension reckoned positive and quoted uncertainties are standard deviations). The N65øW extension rate is -2_+12 nanostrain/yr, significantly less than the N65øW rate of 50_+9 nanostrain/yr reported by Wernicke et al. [1998]. The implied maximum right-lateral engineering-shear, strain accumulation rate is? =e -e2 = 23_+10 nanostrain/yr, a marginally significant rate. Almost half (el = 6 nanostrain/yr N90øW, e2 = -6 nanostrain/yr N00øE, and? = 12 nanostrain/yr ) of the measured strain rate can be attributed to strain accumulation on the Death Valley-Furnace Creek (50 km distant) and Hunter Mountain- Panamint Valley (90 km distant) faults. The residual strain rate after the removal of those fault contributions is not significant at the 95% confidence level. 1. Introduction On the basis of repeated surveys from 1991 through 1997 of the relative motion between geodetic monuments Claim, Black, Mile, 67TJS, and Wahomie (Figure 1), Wernicke et al. [1998] deduced a N65øW strain accumulation rate of 50 +_ 9 nanostrain/yr across the proposed high-level radioactive waste disposal repository at Yucca Mountain, Nevada. (In this paper extension is reckoned positive and all quoted uncertainties are standard deviations.) That strain rate is sufficient to suggest a higher than expected earthquake hazard at the repository. Savage [1998] argued that the strain rate reported by Wernicke et al. was contaminated by the coseismic and postseismic effects of the 1992 Little Skull Mountain earthquake (Ms=5.4), which occured at the edge of their array, and that the standard deviation assigned to their measurement was too small owing to the failure to include an allowance for monument instability. Savage et al. [1994] had earlier found the N65øW strain rate to be 8 +_ 20 nanostrain/yr, a rate not significantly different from zero. Although the two (Wernicke et al. and Savage et al.) measurements of the N65øW strain rate are marginally consistent at the 95% confidence level (i.e., the 42+_22 nanostrain/yr difference is less than two standard deviations), the earthquake hazard implications are somewhat different. To resolve the discrepancy between the strain rates determined by Savage et al. [1994] and Wernicke et al. [1998], the strain array (Figure 1) employed by Savage et al. was resurveyed in late May The strain rate was inferred from This paper is not subjecto U.S. copyright.. Published in 1999 by the American Geophysical Union. Paper number 1999JB measurements of 29 distances between neighboring geodetic monuments (the distances used are shown by lines in Figure 1). The earlier measurements were made in 1983 and again in 1984 using a Geodolite, an electro-optical distance measuring instrument, with the refractivity correction determined from meteorological parameters measured from a small aircraft flying along the line of sight at the time of ranging. In 1993 the 14 lines terminating at either Mile or Shoshone (Figure 1) were again measured by Geodolite. In addition, all stations were surveyed in 1993 with Global Positioning System (GPS) receivers so that the relative position of each geodetic monument was determined with respect to all other monuments. The GPS survey was repeated in The standard deviation in the Geodolite measurement of a distance L is given by (a2+b2l2) 1/2, where a=3 mm and b=0.2 ppm [Savage and Prescott, 1973]. The standard deviation in the GPS location of one geodetic monument with respect to another is thought to be 4 mm in each horizontal coordinate (see the white noise model in Table 1 of Zhang et al. [1997]). We refer to these uncertainty estimates as the a priori standard deviations. 2. Strain Measurement Because the earlier (1983 and 1984) surveys of the strain array in Figure 1 involved measurements of only the 29 distances shown in Figure 1, we have used in this analysis only the GPS measurements of those same distances in 1993 and The data then consist of 25 line lengths measured in the original 1983 survey (all lines in Figure 1 except for Bare-Mile and the three lines out of Rock), 27 line lengths measured in 1984 (all lines in Figure 1 except Mine-Pass and Specter-Well), 14 line lengths (all lines terminating at either Mile or Shoshone) measured by Geodolite in 1993, and all 29 line lengths measured by GPS in both 1993 and ,627

2 17,628 SAVAGE ET AL.: YUCCA MOUNTAIN STRAIN RATE 37 ø 00' 36 ø 30' 117 ø 00' 116 ø 30' 116 ø 00' Figure 1. Map of the Yucca Mountain strain network (solid triangles). Also shown (open triangles) are three stations included in the 5 station array (Claim, Black, Mile, 67TJS, and Wahomie) used by Wernicke et al. [1998]. The lines connecting stations indicate distances used in calculating the strain rate. The proposed radioactive waste disposal site is near station Mile. The sinuous lines show active faults. The Death Valley- Furnace Creek (DVFC) fault s shown in the lower left corner. The star locates the epicenter of the Little Skull Mountain earthquake. The striped rectangle is the surface projection of the earthquake rupture and the dashed rectangle is the surface projection of its updip extension. Notice that monument Wahomie lies virtually on the surface trace of the fault plane. Because there is a systematic discrepancy of 0.28 _ ppm between distances measured by GPS and Geodolite [Savage et al., 1996], all distances measured by Geodolite have been decreased by 0.28 ppm. The monuments within the strain network were displaced by the 1992 Little Skull Mountain earthquake (Ms=5.4; epicenter shown in Figure 1). Because we wish to determine the rate of strain accumulation, we have used a dislocation model (Table 1) to estimate the effect of the earthquake on each line and removed the calculated offsets from the data. The fault plane for the dislocation model was taken from the focal plane solution of Meremonte et al. [1995]. Notice (Figure 1) that the fault trace for that solution passes very close to monument Wahomie, and one must expect some difficulties in fitting a simple dislocation model to data that involve that monument. The dimensions of the rupture (along-strike length and downdip width) were suggested by the aftershock distribution [Meremonte et al., 1995]. The slip on the fault was found from a fit to the observed changes in the 29 line lengths measured between and That slip was largely determined by the changes in just three lines: Rock to Specter (observed 7.9_+5.2 mm, calculated 14.2 mm), Rock to Wahomie (observed-25.4_+4.8 mm, calculated-17.9 mm), and Rock to Well (observed-15.3_+4.9 mm, calculated-12.7 mm). The model fits all of the observed line-length changes within 2 standard deviations. Only dip slip on the fault was required to fit the data; the inclusion of strike slip did not significantly improve the fit. The seismic moment calculated for the model is (3.6_+0.5) x 1017 N m (compare (3.0_+1.3) x 1017 N m and Table 1. Parameters for the Dislocation Model the Little Skull Mountain Earthquake. Parameter Value Latitude Trace Midpoint 36 ø 46' 55" N Longitude Trace Midpoint 116 ø 20' 49"W Strike N55øE Dip 56 ø SE Depth of Top 6 km Downdip Width 5 km Length Along Strike 5 km Normal Slip _ m Seismic Moment 3.6 x 1017 N m Moment Magnitude 5.6 of

3 ( ) x 1017 N m estimated from broadband and longperiod seismograms by Zhao and Helmberger [1994]), and the implied moment magnitude is 5.6, in reasonable agreement with the magnitudes (Ms=5.4 and Mœ=5.6) assigned to the quake. The coseismic effects of the earthquake were then removed from the data by adding the coseismic offset calculated from the dislocation model to each of the preearthquake (1983 and 1984) Geodolite length measurements. The observed line lengths corrected for the coseismic offsets and the Geodolite-GPS difference are shown as a function of time in Figure 2. The horizontal lines in that figure represent the expected locus of observations if there had been no deformation in the network. We have also calculated weighted (inverse square of the a priori standard deviations) least squares fits to the data for each line. The slopes in mm/yr E E 3OO 25O x mile-yucca t --- }--... m ine-pass--- -.? z mine-shoshone pass-shoshone.- -,,, rock-specter rock-wahomie-,-1 ] r'; rock-well ],... roses-wahomie (, t & l roses-well... )-- --shoshone-timber. J -½ I i ', 100- ' z shoshone-wahomie, t... (i>'- -- ' hø' h øne'yucca'- q- I I specter-well ', & 0/ Time, yr Figure 2. Corrected line-length L less a nominal constant length L o for each line plotted as a function of time. The coseismic distance change as calculated from a dislocation model has been added to the preearthquake (1983 and 1984) observations. The horizontal lines correspond to no change in length, and the error bars represent 2 standard deviations on either side of the plotted points. The vertical dashed line indicates the time of occurrence of the Little Skull Mountain earthquake. SAVAGE ET AL.: YUCCA MOUNTAIN S2RAIN RATE 17,629 Table 2. Yucca Mountain Strain Rates 1 in a Coordinate System with the 1 Axis East and the 2 axis North. Interval el 1 el2 e _ _ _ _ _ _+18.3 Geodolite only 6.0_ _ _ _ _ _+42.1 GPS only -9.2_ _ _ In nanostrain/yr for the ten steepest fits in descending order of absolute magnitude are Cane-Wahomie , Rock-Wahomie , Bare-Brick , Roses-Wahomie , Pass-Shoshone , Shoshone-Wahomie , Cane-Mile , Cane-Specter , Mile-Shoshone , and Bare-Mile 0.47_ (The standard deviations of the slopes are based upon the a priori estimates of the standard deviations in the line-length measurements plus a nominal 1 mm/x/yr random walk allowance for monument instability [Langbein and Johnson, 1997].) The slopes of the first two of those fits are significant at the 95% confidence level, and both of those fits involve monument Wahomie. Indeed, four (Cane-Wahomie, Rock- Wahomie, Roses-Wahomie, and Shoshone-Wahomie) of the six lines out of Wahomie are in the list of the ten largest slopes. As will be discussed in section 3, we suspect that these changes may be related to the fact that Wahomie is located virtually on the surface trace of the Little Skull Mountain earthquake rupture (Figure 1). To detect the overall deformation of the network, we assume that the strain accumulation across the Yucca Mountain array is uniform in both space and time and find the uniform strain rate that best explains the corrected line-length changes. The procedure used was explained by Savage et al. [1986]. The best-fit, uniform strain rate for all of the data is shown as the first entry in Table 2. The principal strain rates are œ1 = 1.6_+11.9 nanostrain/yr N87øW_+12 ø and œ2 = -21.8_+12.5 nanostrain/yr N03øE_+12 ø. The total engineering-shear accumulation rate is 7 = œ1-œ2-23.4_+9.9 nanostrain/yr and the areal dilatation rate is A = œ1+œ2 = -20.1_+22.3 nanostrain/yr. (The quoted standard deviations were calculated from the a priori standard deviations assigned to the line-length measurements. The standard deviations estimated from the fit of the observations to the uniform strain field would have been 4% smaller. Thus the a priori estimates of standard deviation are consistent with the actual fit to a uniform strain rate.) Only the engineering shear strain accumulation rate y is significant at the 95% confidence level. 3. Discussion The interseismic velocity field implied by the corrected (i.e., coseismic effects and Geodolite-GPS discrepancy removed) line-length changes can be calculated from the estimated rates of change in length of the 29 observed lines (i.e., slopes of the linear fits to the corrected lengths in Figure 2). As stated earlier, only two of those slopes are significant at the 95% confidence level. Because all of the measurements are internal to the network, the rigid-body motion of the network as a whole is undetermined. Here we choose the rigid-

4 17,630 SAVAG ET AL.: YUCCA MOUNTAIN STRAIN RATE body motion so as to minimize the sum of the squares of the velocities at a certain subset of the stations, the inner coordinate solution [Gu and Prescott, 1986]. The minimum velocity constraint was applied to include all monuments except the five (Cane, Rock, Specter, Wahomie, and Well) in the southeast corner of the array. Those five monuments are the closest to the epicenter of the Little Skull Mountain earthquake and most subject to possible postseismic offsets and to uncertainties in the coseismic correction calculated from the simple dislocation model. Figure 3 shows the minimum velocity field consistent with the observed linelength-change rates. In Figure 3 only the displacements at Wahomie and Specter are significant at the 95% confidence level. Those two monuments are close to the 1992 Little Skull Mountain rupture (Figure 1), and, as mentioned in section 2, are subject to postseismic readjustment and uncertainties in the coseismic correction. Wahomie is virtually on the trace of the Little Skull Mountain rupture plane (Figure 1), and the velocity there is probably a consequence of postseismic readjustment: Wernicke et al. [1998, Figure 4] show a postseismic 1.0 mm/yr S65øE component of motion at Wahomie relative to Mile that could reasonably be interpreted as a postseismic effect. No obvious overall pattern has been recognized in the velocity field shown in Figure 3. In particular, the subset of velocities (velocities at all monuments except the five in the southeast corner of the network) minimized in the inner coordinate constraint appear random. The regional 50 nanostrain/yr N65øW extension proposed by Wernicke et al. [1998] is not apparent. Strain rates for the intervals and are also shown in Table 2. Both strain rates were calculated by the same procedures as used for the calculation of the strain rate, but only the data appropriate to the respective time intervals were included. (The entries labeled Geodolite only and GPS only use only Geodolite and GPS data, respectively.) The standard deviations in the strain rate estimates are inversely proportional to the time interval ' - 20 )Timber Mine B_. rick Yucca OQ - 1 O Shoshone Pass Cane m/y e Specter Distance East from Mile, km Figure 3. Map showing the minimum velocity field consistent with the observed corrected (coseismic effects removed) line-length changes. The minimum velocity constraint requires that the sum of the squares of the velocities at all stations except the five in the southeast corner of the network be a minimum. The ellipses represent 95% confidence limits. I I involved. Thus, if the strain rate has in fact been constant over the interval, the standard deviation in the strain rate estimate is inversely proportional to the time interval over which measurements were made. Savage et al. [1994] had previously estimated the strain accumulation for the interval to be Sll= nanostrain/yr, sl2 = -2_+8 nanostrain/yr, œ22 = -9_+21 nanostrain/yr, el = 10_+20 nanostrain/yr N87øW_+24 ø, 2 = -9_+21 nanostrain/yr N03øE_+21ø, y = 19_+16 nanostrain/yr, and A = 1_+37 nanostrain/yr. Savage et al. did not correct the observations for coseismic offsets associated with the Little Skull Mountain earthquake but rather eliminated data from the three lines terminating at Rock, the lines most affected by the earthquake. The resulting strain rates are in reasonable agreement with the rates reported in Table 2. The analysis reported here is subject to a bias associated with the uncertainty in the systematic difference between distances determined by Geodolite (the 1983, 1984, and part of the 1993 surveys) and GPS (part of the 1993 survey and all of the 1998 survey): Geodolite measurements were found to be 0.28_+0.10 ppm longer than GPS measurements of distance [Savage et al., 1996]. The correction for this discrepancy was determined from measurements made elsewhere (i.e., not the GPS and Geodolite measurements used in this paper), but the correction is subject to some uncertainty. The uncertainty in this correction of the Geodolite measurements would appear as an extraneous uniform dilatation rate in our strain rate estimates. We can avoid this contamination by comparing measurements in which only the same instruments were used. For example, the 14 lines terminating at Mile and Shoshone were measured with the Geodolite in 1993 and can be compared with the Geodolite measurements of those same 14 lines in 1983 and The resulting strain rate (Table 2, Geodolite only) agrees well with the strain rate. Similarly the GPS measurements in 1993 and 1998 can be used to estimate the strain rate (Table 2, GPS only). However, the 5-year time interval for this latter determination is too short to determine the strain rate very accurately. Our determination of the strain rate may be criticized on the basis that it was estimated from some of the same data used to determine the slip on the fault dislocation model. Indeed, the slip in the dislocation model was estimated from the observed changes in line length between and 1993 with the implicit assumption that the line length changes were unaffected by strain accumulation. Thus, in the estimate of the strain accumulation, the dislocation model was used to explain as much of the deformation as possible, and the strain accumulation was determined from the residual deformation. The analysis is then biased to give zero strain accumulation because the dislocation model had already been chosen to explain as much of the deformation as possible. However, the dislocation model fit is largely determined by the changes in the three lines radiating from station Rock, and the coseismic effect on the other lines is minor. Moreover, the coseismic line length changes would not have been significantly different if the slip had been calculated from the moment deduced from the seismic record [Zhao and Helmberger, 1994] or even calculated from the observed magnitude (Ms=5.4 or M L=5.6) through the momentmagnitude relation log Mo=l.5 M +9.1, where M o is the moment in N m and M is the magnitude. Finally, as described above, the earlier estimate of the strain rate by Savage et al. [1994] did not correct for coseismic displacements and yet

5 SAVAGE ET AL.: YUCCA MOUNTAIN STRAIN RATE 17,631 found strain rates consistent with those found here. Thus we do not think that the coseismic correction has introduced any significant bias into the strain rates. Strain accumulation in the Yucca Mountain strain array may be associated with right lateral slip on the Death Valley- Furnace Creek (lower left corner of Figure 1) and Hunter Mountain-Panamint Valley fault systems, 50 and 90 km, respectively, southwest of monument Mile. The paleoseismological estimate of the secular slip rate on the Death Valley-Furnace Creek fault is 5 i 1 mm/yr and on the Hunter Mountain-Panamint Valley fault 2 i 1 mm/yr [Bennett et al., 1997, p. 3076]. Both faults strike roughly N4$øW. The rate of accumulation of engineering-shear strain at the surface due to a long strike-slip fault slipping at a rate b below the locking depth d is y=(bd/e)/(d2+x 2) [Savage and Burford, 1973] where x is the distance from the fault. The locking depth d is generally taken to be about 15 km but may be as large as 25 km or more for a fault that has not ruptured in over 100 years [Savage and Lisowski, 1998]. Thus the engineering-shear strain rate in the Yucca Mountain array due to strain accumulation on the Death Valley-Furnace Creek and Hunter Mountain-Panamint Valley faults is expected to be nanostrain/yr. The principal strain rates in the Yucca Mountain array associated with that accumulation would then be el = 6 nanostrain/yr N90øW and e2- -6 nanostrain/yr N00øE. About half (10-14 nanostrain/yr) of the observed engineering-shear strain rate (23i10 nanostrain/yr) can be accounted for by strain accumulation on the Death Valley- Furnace Creek and Hunter Mountain-Panamint Valley faults. The remainder (9-13i10 nanostrain/yr) is not significantly different from zero. The 1993 and 1998 GPS surveys indicate that the average velocity of the monuments within the Yucca Mountain network is about 5 mm/yr N60øW with respect to the stable interior of North America (see web site gov:80/quakes/ geodetic/gps/yuccamtn/). The source of that relative motion has not been identified. 4. Conclusions The principal strain rates determined over the interval are œ1 = 2_+12 nanostrain/yr N87øW_+12 ø and 2 = -22_+12 nanostrain/yr N03øE_+12 ø. The total engineeringshear accumulation rate is?= 1-2 = 23_+10 nanostrain/yr and the areal dilatation rate is A = el+e2 = -20_+22 nanostrain/yr. The N65øW extension rate is -2_+12 nanostrain/yr, significantly less than the rate of nanostrain/yr reported by Wernicke et al. [1998]. Only the engineering-shear strain accumulation rate T is significant at the 95% confidence' level. However, almost half of the observed T can be attributed to strain accumulation on the nearby Death Valley-Furnace Creek and Hunter Mountain- Panamint Valley fault systems. Once that contribution is removed, the remaining engineering-shear strain rate is not significant. Acknowledgment. This research was supported by U.S. Department of Energy through the Yucca Mountain Project of the U.S. Geological Survey. References Bennett, R.A., B.P. Wernicke, J.L. Davis, P. Elosegui, J.K. Snow, M.J. Abolins, M.A. House, G.L. Stirewalt, and D.A. Ferrill, Global Positioning System constraints on fault slip rates in the Death Valley region, California and Nevada, Geophys. Res. Lett., 24, , Gu, G., and W.H. Prescott, Discussion on displacement analysis: Detection of crustal deformation, J. Geophys. Res., 91, , Langbein, J., and H. Johnson, Correlated errors in geodetic time series: Implications for time-dependent deformation, J. Geophys. Res., 102, , Meremonte, M., J. Gomberg, and E. Cranswick, Constraints on the 29 June 1992 Little Skull Mountain, Nevada, earthquake sequence provided by robust hypocenter estimates, Bull. Seismol. Soc. Am., 85, , Savage, J. C., Technical Comment: Anomalous strain accumulation in the Yucca Mountain area, Nevada, Science, 282, 1007, (available as Savage, J.C., and R.O. Burford, Geodetic determination of relative plate motion in central California, J. Geophys. Res. 78, , Savage, J.C., and M. Lisowski, Viscoelasti coupling model of the San Andreas Fault along the big bend, southern California, J. Geophys. Res., 103, , Savage, J.C., and W.H. Prescott, Precision of Geodolite distance measurements for determining fault movements, J. Geophys. Res., 78, , Savage, J.C., W.H. Prescott, and G. Gu, Strain rate accumulation in southern California, , J. Geophys. Res., 91, , Savage, J.C., M. Lisowski, W.K. Gross, N.E. King, and J.L. Svarc, Strain accumulation near Yucca Mountain, Nevada, , J. Geophys. Res., 99, 18,103-18,107, Savage, J.C., M. Lisowski, and W.H. Prescott, Observed discrepancy betweeen Geodolite and GPS distance measurements, J. Geophys. Res., 101, 25,547-25,552, Wernicke, B., J.L. Davis, R.A. Bennett, P. Elosegui, M.J. Abolins, R.J. Brady, M.A. House, N.A. Niemi, and J.K. Snow, Anomalou strain accumulation in the Yucca Mountain area, Nevada, Science, 279, , Zhang, J., Y. Bock, H. Johnson, P. Fang, J. Gertrich, S. Williams, S. Wdowinski, and J. Behr, Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities, J. Geophys. Res., 102, 18,035-18,055, Zhao, L.-S., and D.V. Helmberger, Source estimation from broadband regional seismograms, Bull. Seismol. Soc. Am., 84, , W.H. Prescott, J.C. Savage, and J.L. Svarc, U.S. Geological Survey, M/S 977, 345 Middlefield Rd, Menlo Park, CA (jsavage@ isdnml.wr.usgs.gov) (Received September 30, 1998; revised February 11, 1999; accepted March 4, 1999)

Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network

Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L14302, doi:10.1029/2006gl026140, 2006 Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN

More information

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise Strain Analysis Introduction Name: The earthquake cycle can be viewed as a process of slow strain accumulation

More information

to: Interseismic strain accumulation and the earthquake potential on the southern San

to: Interseismic strain accumulation and the earthquake potential on the southern San Supplementary material to: Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system by Yuri Fialko Methods The San Bernardino-Coachella Valley segment of the

More information

Regional Geodesy. Shimon Wdowinski. MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region. University of Miami

Regional Geodesy. Shimon Wdowinski. MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region. University of Miami MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region Regional Geodesy Shimon Wdowinski University of Miami Rowena Lohman, Kim Outerbridge, Tom Rockwell, and Gina Schmalze

More information

Kinematics of the Southern California Fault System Constrained by GPS Measurements

Kinematics of the Southern California Fault System Constrained by GPS Measurements Title Page Kinematics of the Southern California Fault System Constrained by GPS Measurements Brendan Meade and Bradford Hager Three basic questions Large historical earthquakes One basic question How

More information

Electro-Optical Distance Measurements in the Tokai Region, Central Japan ( )

Electro-Optical Distance Measurements in the Tokai Region, Central Japan ( ) Electro-Optical Distance Measurements in the Tokai Region, Central Japan (1977-1981) Fumiaki KIMATA Inuyama Crustal Movement Observatory, School of Science,. Nagoya University Tsuneo and YAMAUCHI Regional

More information

Location and mechanism of the Little Skull Mountain earthquake as constrained by satellite radar interferometry and seismic waveform modeling

Location and mechanism of the Little Skull Mountain earthquake as constrained by satellite radar interferometry and seismic waveform modeling JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B6, 2118, 10.1029/2001JB000627, 2002 Location and mechanism of the Little Skull Mountain earthquake as constrained by satellite radar interferometry and seismic

More information

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source Nevada Bureau of Mines and Geology Special Publication 36 Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source by Mendoza, C. 1 and Hartzell S. 2 1 Centro de Geociencias, Universidad

More information

Analysis of Vertical Velocities from BARGEN Continuous GPS Data at Yucca Mountain, Southern Nevada

Analysis of Vertical Velocities from BARGEN Continuous GPS Data at Yucca Mountain, Southern Nevada Analysis of Vertical Velocities from BARGEN Continuous GPS Data at Yucca Mountain, Southern Nevada Emma Hill and Geoffrey Blewitt Nevada Bureau of Mines and Geology/178 University of Nevada, Reno Reno,

More information

Regional deformation and kinematics from GPS data

Regional deformation and kinematics from GPS data Regional deformation and kinematics from GPS data Jessica Murray, Jerry Svarc, Elizabeth Hearn, and Wayne Thatcher U. S. Geological Survey Acknowledgements: Rob McCaffrey, Portland State University UCERF3

More information

Jack Loveless Department of Geosciences Smith College

Jack Loveless Department of Geosciences Smith College Geodetic constraints on fault interactions and stressing rates in southern California Jack Loveless Department of Geosciences Smith College jloveless@smith.edu Brendan Meade Department of Earth & Planetary

More information

Lab 9: Satellite Geodesy (35 points)

Lab 9: Satellite Geodesy (35 points) Lab 9: Satellite Geodesy (35 points) Here you will work with GPS Time Series data to explore plate motion and deformation in California. This lab modifies an exercise found here: http://www.unavco.org:8080/cws/pbonucleus/draftresources/sanandreas/

More information

Measurements in the Creeping Section of the Central San Andreas Fault

Measurements in the Creeping Section of the Central San Andreas Fault Measurements in the Creeping Section of the Central San Andreas Fault Introduction Duncan Agnew, Andy Michael We propose the PBO instrument, with GPS and borehole strainmeters, the creeping section of

More information

along the big bend, southern California

along the big bend, southern California JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. B4, PAGES 7281-7292, APRIL 10, 1998 Viscoelastic coupling model of the San Andreas Fault along the big bend, southern California J. C. Savage and M. Lisowski

More information

Today: Basic regional framework. Western U.S. setting Eastern California Shear Zone (ECSZ) 1992 Landers EQ 1999 Hector Mine EQ Fault structure

Today: Basic regional framework. Western U.S. setting Eastern California Shear Zone (ECSZ) 1992 Landers EQ 1999 Hector Mine EQ Fault structure Today: Basic regional framework Western U.S. setting Eastern California Shear Zone (ECSZ) 1992 Landers EQ 1999 Hector Mine EQ Fault structure 1 2 Mojave and Southern Basin and Range - distribution of strike-slip

More information

Earthquakes and Seismotectonics Chapter 5

Earthquakes and Seismotectonics Chapter 5 Earthquakes and Seismotectonics Chapter 5 What Creates Earthquakes? The term Earthquake is ambiguous: Applies to general shaking of the ground and to the source of the shaking We will talk about both,

More information

Crustal deformation by the Southeast-off Kii Peninsula Earthquake

Crustal deformation by the Southeast-off Kii Peninsula Earthquake Crustal deformation by the Southeast-off Kii Peninsula Earthquake 51 Crustal deformation by the Southeast-off Kii Peninsula Earthquake Tetsuro IMAKIIRE, Shinzaburo OZAWA, Hiroshi YARAI, Takuya NISHIMURA

More information

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION 6-1 6: EARTHQUAKE FOCAL MECHANISMS AND PLATE MOTIONS Hebgen Lake, Montana 1959 Ms 7.5 1 Stein & Wysession, 2003 Owens Valley, California 1872 Mw ~7.5 EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE

More information

Separating Tectonic, Magmatic, Hydrological, and Landslide Signals in GPS Measurements near Lake Tahoe, Nevada-California

Separating Tectonic, Magmatic, Hydrological, and Landslide Signals in GPS Measurements near Lake Tahoe, Nevada-California Separating Tectonic, Magmatic, Hydrological, and Landslide Signals in GPS Measurements near Lake Tahoe, Nevada-California Geoffrey Blewitt, Corné Kreemer, William C. Hammond, & Hans-Peter Plag NV Geodetic

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

Ground displacement in a fault zone in the presence of asperities

Ground displacement in a fault zone in the presence of asperities BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 2, pp. 95-110; JUNE 2000 Ground displacement in a fault zone in the presence of asperities S. SANTINI (1),A.PIOMBO (2) and M. DRAGONI (2) (1) Istituto

More information

Focused Observation of the San Andreas/Calaveras Fault intersection in the region of San Juan Bautista, California

Focused Observation of the San Andreas/Calaveras Fault intersection in the region of San Juan Bautista, California Focused Observation of the San Andreas/Calaveras Fault intersection in the region of San Juan Bautista, California Clifford Thurber, Dept. of Geology and Geophysics, Univ. Wisconsin-Madison Mick Gladwin,

More information

The Earthquake Cycle Chapter :: n/a

The Earthquake Cycle Chapter :: n/a The Earthquake Cycle Chapter :: n/a A German seismogram of the 1906 SF EQ Image courtesy of San Francisco Public Library Stages of the Earthquake Cycle The Earthquake cycle is split into several distinct

More information

Exploring the Relationship between Geothermal Resources and Geodetically Inferred Faults Slip Rates in the Great Basin

Exploring the Relationship between Geothermal Resources and Geodetically Inferred Faults Slip Rates in the Great Basin Exploring the Relationship between Geothermal Resources and Geodetically Inferred Faults Slip Rates in the Great Basin William C. Hammond, Corné Kreemer, Geoff Blewitt Nevada Bureau of Mines and Geology

More information

Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere. Kaj M. Johnson Indiana University

Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere. Kaj M. Johnson Indiana University 3D Viscoelastic Earthquake Cycle Models Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere Kaj M. Johnson Indiana University In collaboration with:

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Introduction Our proposal focuses on the San Andreas fault system in central and northern California.

More information

2 compared with the uncertainty in relative positioning of the initial triangulation (30 { 50 mm, equivalent to an angular uncertainty of 2 p.p.m. ove

2 compared with the uncertainty in relative positioning of the initial triangulation (30 { 50 mm, equivalent to an angular uncertainty of 2 p.p.m. ove Reply to: `Comment on \Geodetic investigation of the 13 May 1995 Kozani { Grevena (Greece) earthquake" by Clarke et al.' by Meyer et al. P. J. Clarke, 1 D. Paradissis, 2 P. Briole, 3 P. C. England, 1 B.

More information

Power-law distribution of fault slip-rates in southern California

Power-law distribution of fault slip-rates in southern California Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L23307, doi:10.1029/2007gl031454, 2007 Power-law distribution of fault slip-rates in southern California Brendan J. Meade 1 Received 31

More information

San Andreas Movie Can It Happen?

San Andreas Movie Can It Happen? San Andreas Movie Can It Happen? Learning Objectives (LO) Lecture 14: Faults and Quakes Read: Chapter 10 and 11 Homework #12 due Thursday 12pm What we ll learn today:! 1. Compare strike-slip to dip-slip

More information

Journal of Geophysical Research Letters Supporting Information for

Journal of Geophysical Research Letters Supporting Information for Journal of Geophysical Research Letters Supporting Information for InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan H. Fattahi 1, F. Amelung

More information

COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES

COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES Madlazim Physics Department, Faculty Mathematics and Sciences of Surabaya State University (UNESA) Jl. Ketintang, Surabaya 60231, Indonesia. e-mail:

More information

Supplementary Material

Supplementary Material 1 Supplementary Material 2 3 4 Interseismic, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38-18 S) 5 6 7 8 9 11 12 13 14 1 GPS data set We combined in a single data set

More information

Targeting of Potential Geothermal Resources in the Great Basin from Regional Relationships between Geodetic Strain and Geological Structures

Targeting of Potential Geothermal Resources in the Great Basin from Regional Relationships between Geodetic Strain and Geological Structures Targeting of Potential Geothermal Resources in the Great Basin from Regional Relationships between Geodetic Strain and Geological Structures Geoffrey Blewitt and Mark Coolbaugh Great Basin Center for Geothermal

More information

Synthetic Seismicity Models of Multiple Interacting Faults

Synthetic Seismicity Models of Multiple Interacting Faults Synthetic Seismicity Models of Multiple Interacting Faults Russell Robinson and Rafael Benites Institute of Geological & Nuclear Sciences, Box 30368, Lower Hutt, New Zealand (email: r.robinson@gns.cri.nz).

More information

Elizabeth H. Hearn modified from W. Behr

Elizabeth H. Hearn modified from W. Behr Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones Elizabeth H. Hearn hearn.liz@gmail.com modified

More information

Two ways to think about the dynamics of earthquake ruptures

Two ways to think about the dynamics of earthquake ruptures Two ways to think about the dynamics of earthquake ruptures (1) In terms of friction (2) In terms of fracture mechanics Scholz describes conditions for rupture propagation (i.e. instability) via energy

More information

Aftershocks are well aligned with the background stress field, contradicting the hypothesis of highly heterogeneous crustal stress

Aftershocks are well aligned with the background stress field, contradicting the hypothesis of highly heterogeneous crustal stress JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010jb007586, 2010 Aftershocks are well aligned with the background stress field, contradicting the hypothesis of highly heterogeneous crustal stress

More information

Stress modulation on the San Andreas fault by interseismic fault system interactions Jack Loveless and Brendan Meade, Geology, 2011

Stress modulation on the San Andreas fault by interseismic fault system interactions Jack Loveless and Brendan Meade, Geology, 2011 Stress modulation on the San Andreas fault by interseismic fault system interactions Jack Loveless and Brendan Meade, Geology, 2011 A three step process: 1 - Assimilate plate boundary wide GPS data into

More information

LAB 5: THE EARTHQUAKE CYCLE

LAB 5: THE EARTHQUAKE CYCLE NAME: LAB TIME: LAB 5: THE EARTHQUAKE CYCLE This lab will introduce you to the basic quantitative concepts of the earthquake cycle for a vertical strike-slip fault. Most of your time will be spent calculating

More information

Journal of Geophysical Research - Solid Earth

Journal of Geophysical Research - Solid Earth Journal of Geophysical Research - Solid Earth Supporting Information for Transpressional Rupture Cascade of the 2016 M w 7.8 Kaikoura Earthquake, New Zealand Wenbin Xu 1*, Guangcai Feng 2*, Lingsen Meng

More information

GPS Strain & Earthquakes Unit 4: GPS strain analysis examples Student exercise

GPS Strain & Earthquakes Unit 4: GPS strain analysis examples Student exercise GPS Strain & Earthquakes Unit 4: GPS strain analysis examples Student exercise Example 1: Olympic Peninsula Name: Please complete the following worksheet to estimate, calculate, and interpret the strain

More information

Shaking Hazard Compatible Methodology for Probabilistic Assessment of Fault Displacement Hazard

Shaking Hazard Compatible Methodology for Probabilistic Assessment of Fault Displacement Hazard Surface Fault Displacement Hazard Workshop PEER, Berkeley, May 20-21, 2009 Shaking Hazard Compatible Methodology for Probabilistic Assessment of Fault Displacement Hazard Maria Todorovska Civil & Environmental

More information

Once you have opened the website with the link provided choose a force: Earthquakes

Once you have opened the website with the link provided choose a force: Earthquakes Name: Once you have opened the website with the link provided choose a force: Earthquakes When do earthquakes happen? On the upper left menu, choose number 1. Read What is an Earthquake? Earthquakes happen

More information

Predicted reversal and recovery of surface creep on the Hayward fault following the 1906 San Francisco earthquake

Predicted reversal and recovery of surface creep on the Hayward fault following the 1906 San Francisco earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L19305, doi:10.1029/2008gl035270, 2008 Predicted reversal and recovery of surface creep on the Hayward fault following the 1906 San Francisco earthquake D. A. Schmidt

More information

Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System

Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003jb002746, 2004 Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global

More information

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL INFORMATION GSA DATA REPOSITORY 2013310 A.M. Thomas et al. MOMENT TENSOR SOLUTIONS SUPPLEMENTAL INFORMATION Earthquake records were acquired from the Northern California Earthquake Data Center. Waveforms are corrected

More information

A TESTABLE FIVE-YEAR FORECAST OF MODERATE AND LARGE EARTHQUAKES. Yan Y. Kagan 1,David D. Jackson 1, and Yufang Rong 2

A TESTABLE FIVE-YEAR FORECAST OF MODERATE AND LARGE EARTHQUAKES. Yan Y. Kagan 1,David D. Jackson 1, and Yufang Rong 2 Printed: September 1, 2005 A TESTABLE FIVE-YEAR FORECAST OF MODERATE AND LARGE EARTHQUAKES IN SOUTHERN CALIFORNIA BASED ON SMOOTHED SEISMICITY Yan Y. Kagan 1,David D. Jackson 1, and Yufang Rong 2 1 Department

More information

Earthquake. What is it? Can we predict it?

Earthquake. What is it? Can we predict it? Earthquake What is it? Can we predict it? What is an earthquake? Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy. Rocks under stress accumulate

More information

Description of faults

Description of faults GLG310 Structural Geology Description of faults Horizontal stretch Crustal thickness Regional elevation Regional character Issues Normal Thrust/reverse Strike-slip >1 1 in one direction and < 1 in

More information

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo 2012/9/24 17:20-17:35 WCEE SS24.4 Special Session: Great East Japan (Tohoku) Earthquake Earthquake Source Kazuki Koketsu Earthquake Research Institute, University of Tokyo 1 Names and features of the earthquake

More information

The Current Distribution of Deformation in the Western Tien Shan from Block Models Constrained by Geodetic Data

The Current Distribution of Deformation in the Western Tien Shan from Block Models Constrained by Geodetic Data The Current Distribution of Deformation in the Western Tien Shan from Block Models Constrained by Geodetic Data Brendan J. Meade and Bradford H. Hager Massachusetts Institute of Technology, Cambridge,

More information

Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge

Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge GSA Data Repository Item: 2007183 Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge Brian J. demartin 1*, Robert

More information

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Toshitaka Baba Research Program for Plate Dynamics, Institute for Frontier

More information

Global Positioning System Constraints on Crustal Deformation Before and During the 21 February 2008 Wells, Nevada M 6.0 Earthquake

Global Positioning System Constraints on Crustal Deformation Before and During the 21 February 2008 Wells, Nevada M 6.0 Earthquake Nevada Bureau of Mines and Geology Special Publication 36 Global Positioning System Constraints on Crustal Deformation Before and During the 21 February 2008 Wells, Nevada M 6.0 Earthquake by William C.

More information

SCIENCE CHINA Earth Sciences. Preseismic deformation in the seismogenic zone of the Lushan M S 7.0 earthquake detected by GPS observations

SCIENCE CHINA Earth Sciences. Preseismic deformation in the seismogenic zone of the Lushan M S 7.0 earthquake detected by GPS observations SCIENCE CHINA Earth Sciences RESEARCH PAPER September 2015 Vol.58 No.9: 1592 1601 doi: 10.1007/s11430-015-5128-0 Preseismic deformation in the seismogenic zone of the Lushan M S 7.0 earthquake detected

More information

Magnitude 7.6 & 7.6 PERU

Magnitude 7.6 & 7.6 PERU Two deep 7.6 magnitude earthquakes have shaken a sparsely populated jungle region near the Peru-Brazil border in southeast Peru. There were no immediate reports of injuries or damage. The second M 7.6

More information

The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets

The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets P. Banerjee, 1 F. F. Pollitz, 2 R. Bürgmann 3 * 1 Wadia Institute of Himalayan Geology, Dehra Dun, 248001, India. 2

More information

Basics of the modelling of the ground deformations produced by an earthquake. EO Summer School 2014 Frascati August 13 Pierre Briole

Basics of the modelling of the ground deformations produced by an earthquake. EO Summer School 2014 Frascati August 13 Pierre Briole Basics of the modelling of the ground deformations produced by an earthquake EO Summer School 2014 Frascati August 13 Pierre Briole Content Earthquakes and faults Examples of SAR interferograms of earthquakes

More information

Exploring the Relationship between Geothermal Resources and Geodetically Inferred Faults Slip Rates in the Great Basin

Exploring the Relationship between Geothermal Resources and Geodetically Inferred Faults Slip Rates in the Great Basin GRC Transactions, Vol. 31, 2007 Exploring the Relationship between Geothermal Resources and Geodetically Inferred Faults Slip Rates in the Great Basin William C. Hammond, Corné Kreemer, and Geoff Blewitt

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies GROUND TRUTH LOCATIONS USING SYNERGY BETWEEN REMOTE SENSING AND SEISMIC METHODS-APPLICATION TO CHINESE AND NORTH AFRICAN EARTHQUAKES C. K. Saikia 1, H. K. Thio 2, D. V. Helmberger 2, G. Ichinose 1, and

More information

CAP M S Wallace. Vol. 27 No. 2 Jun EARTHQUAKE RESEARCH IN CHINA M S 4. 8 CAP. 3km - - P315

CAP M S Wallace. Vol. 27 No. 2 Jun EARTHQUAKE RESEARCH IN CHINA M S 4. 8 CAP. 3km - - P315 27 2 207 ~ 214 2011 6 EARTHQUAKE RESEARCH IN CHINA Vol. 27 No. 2 Jun. 2011 2011 CAP 4. 8 27 2 207 ~ 214 CAP 4. 8 1 2 1 2 3 1 1 1 558 230031 2 96 230026 3 100081 CAP 2011 1 19 M S 4. 8 M W = 4. 1 I 16 74

More information

Evidence for Deep Magma Injection Beneath Lake Tahoe, Nevada-California

Evidence for Deep Magma Injection Beneath Lake Tahoe, Nevada-California Evidence for Deep Magma Injection Beneath Lake Tahoe, Nevada-California Kenneth D. Smith, 1* David von Seggern, 1 Geoffrey Blewitt, 1,2 Leiph Preston, 1 John G. Anderson, 1 Brian P. Wernicke, 3 James L.

More information

Creepmeter mini-proposal John Langbein, Evelyn Roeloffs, Mick Gladwin, Ross Gwyther

Creepmeter mini-proposal John Langbein, Evelyn Roeloffs, Mick Gladwin, Ross Gwyther Creepmeter mini-proposal John Langbein, Evelyn Roeloffs, Mick Gladwin, Ross Gwyther The Proposal We propose to install creepmeters in the creeping section of the San Andreas Fault system adjacent to borehole

More information

Electronic supplement for Forearc motion and deformation between El Salvador and Nicaragua: GPS, seismic, structural, and paleomagnetic observations

Electronic supplement for Forearc motion and deformation between El Salvador and Nicaragua: GPS, seismic, structural, and paleomagnetic observations DR2011053 Electronic supplement for Forearc motion and deformation between El Salvador and Nicaragua: GPS, seismic, structural, and paleomagnetic observations by D. Alvarado et al., Lithosphere, April,

More information

Lab 6: Earthquake Focal Mechanisms (35 points)

Lab 6: Earthquake Focal Mechanisms (35 points) Lab 6: Earthquake Focal Mechanisms (35 points) Group Exercise 1. Drawing Nodal Planes (8 pts) The outline map below labeled Figure 4.60a shows the positions of two earthquakes recorded on the Mid-Atlantic

More information

Rapid Determination of Earthquake Magnitude using GPS for Tsunami Warning Systems: An Opportunity for IGS to Make a Difference

Rapid Determination of Earthquake Magnitude using GPS for Tsunami Warning Systems: An Opportunity for IGS to Make a Difference Rapid Determination of Earthquake Magnitude using GPS for Tsunami Warning Systems: An Opportunity for IGS to Make a Difference Geoffrey Blewitt, 1 Corné Kreemer, 1 William C. Hammond, 1 Hans-Peter Plag,

More information

A unified analysis of crustal motion in Southern California, : The SCEC crustal motion map

A unified analysis of crustal motion in Southern California, : The SCEC crustal motion map JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011jb008549, 2011 A unified analysis of crustal motion in Southern California, 1970 2004: The SCEC crustal motion map Z. K. Shen, 1,2 R. W. King,

More information

Aseismic slip and fault-normal strain along the central creeping section of the San Andreas fault

Aseismic slip and fault-normal strain along the central creeping section of the San Andreas fault Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L14305, doi:10.1029/2008gl034437, 2008 Aseismic slip and fault-normal strain along the central creeping section of the San Andreas fault

More information

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard Ultimately what we want is a seismic intensity measure that will allow us to quantify effect of an earthquake on a structure. S a

More information

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March Sendai Earthquake NE Japan March 11, 2011 Some explanatory slides Bob Stern, Dave Scholl, others updated March 14 2011 Earth has 11 large plates and many more smaller ones. Plates are 100-200 km thick

More information

Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0)

Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0) Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0) Yuichi Kitagawa Senior Research Scientist, AIST, GSJ, Active Fault and Earthquake Research Cente Naoji Koizumi

More information

Postseismic relaxation across the Central Nevada Seismic Belt

Postseismic relaxation across the Central Nevada Seismic Belt JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B8, 2394, doi:10.1029/2002jb002257, 2003 Postseismic relaxation across the Central Nevada Seismic Belt E. A. Hetland and B. H. Hager Department of Earth,

More information

Lecture # 6. Geological Structures

Lecture # 6. Geological Structures 1 Lecture # 6 Geological Structures ( Folds, Faults and Joints) Instructor: Dr. Attaullah Shah Department of Civil Engineering Swedish College of Engineering and Technology-Wah Cantt. 2 The wavy undulations

More information

Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan.

Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan. Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan Masahiro Kosuga 1 1. Corresponding Author. Professor, Graduate School of

More information

Scientific Research on the Cascadia Subduction Zone that Will Help Improve Seismic Hazard Maps, Building Codes, and Other Risk-Mitigation Measures

Scientific Research on the Cascadia Subduction Zone that Will Help Improve Seismic Hazard Maps, Building Codes, and Other Risk-Mitigation Measures Scientific Research on the Cascadia Subduction Zone that Will Help Improve Seismic Hazard Maps, Building Codes, and Other Risk-Mitigation Measures Art Frankel U.S. Geological Survey Seattle, WA GeoPrisms-Earthscope

More information

3D temporal evolution of displacements recorded on Mt. Etna from the 2007 to 2010 through the SISTEM method

3D temporal evolution of displacements recorded on Mt. Etna from the 2007 to 2010 through the SISTEM method 3D temporal evolution of displacements recorded on Mt. Etna from the 2007 to 2010 through the SISTEM method Bonforte A., Guglielmino F.,, Puglisi G. INGV Istituto Nazionale di Gofisica e vulcanologia Osservatorio

More information

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena Environmental Geology Chapter 8 Earthquakes and Related Phenomena Fall 2013 Northridge 1994 Kobe 1995 Mexico City 1985 China 2008 Earthquakes Earthquake Magnitudes Earthquake Magnitudes Richter Magnitude

More information

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake Earth Planets Space, 53, 235 241, 2001 Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake Yuichiro Tanioka 1 and Kenji Satake 2 1 Meteorological Research

More information

Yesterday scaling laws. An important one for seismic hazard analysis

Yesterday scaling laws. An important one for seismic hazard analysis Yesterday scaling laws An important one for seismic hazard analysis Estimating the expected size of an earthquake expected on a fault for which the mapped length is known. Wells & Coppersmith, 1994 And

More information

Earthquakes. Photo credit: USGS

Earthquakes. Photo credit: USGS Earthquakes Earthquakes Photo credit: USGS Pancaked Building - 1985 Mexico City Earthquakes don t kill people - buildings do! An earthquake is the motion or trembling of the ground produced by sudden displacement

More information

Earthquakes.

Earthquakes. Earthquakes http://quake.usgs.gov/recenteqs/latestfault.htm An earthquake is a sudden motion or shaking of the Earth's crust, caused by the abrupt release of stored energy in the rocks beneath the surface.

More information

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes N.J. Gregor Consultant, Oakland, California, USA N.A. Abrahamson University of California, Berkeley, USA K.O. Addo BC

More information

GPS strain analysis examples Instructor notes

GPS strain analysis examples Instructor notes GPS strain analysis examples Instructor notes Compiled by Phil Resor (Wesleyan University) This document presents several examples of GPS station triplets for different tectonic environments. These examples

More information

INGV. Giuseppe Pezzo. Istituto Nazionale di Geofisica e Vulcanologia, CNT, Roma. Sessione 1.1: Terremoti e le loro faglie

INGV. Giuseppe Pezzo. Istituto Nazionale di Geofisica e Vulcanologia, CNT, Roma. Sessione 1.1: Terremoti e le loro faglie Giuseppe Pezzo Istituto Nazionale di Geofisica e Vulcanologia, CNT, Roma giuseppe.pezzo@ingv.it The study of surface deformation is one of the most important topics to improve the knowledge of the deep

More information

SCEC Earthquake Gates Workshop Central Death Valley Focus Area

SCEC Earthquake Gates Workshop Central Death Valley Focus Area SCEC Earthquake Gates Workshop Central Death Valley Focus Area Fault Gates: Rheology, fault geometry, stress history or directionality? How do we recognize or suspect a fault gate? Paleoseismic or historic

More information

Seth Stein and Emile Okal, Department of Geological Sciences, Northwestern University, Evanston IL USA. Revised 2/5/05

Seth Stein and Emile Okal, Department of Geological Sciences, Northwestern University, Evanston IL USA. Revised 2/5/05 Sumatra earthquake moment from normal modes 2/6/05 1 Ultra-long period seismic moment of the great December 26, 2004 Sumatra earthquake and implications for the slip process Seth Stein and Emile Okal,

More information

Chapter 6: Earthquakes

Chapter 6: Earthquakes Section 1 (Forces in Earth s Crust) Chapter 6: Earthquakes 8 th Grade Stress a that acts on rock to change its shape or volume Under limited stress, rock layers can bend and stretch, but return to their

More information

DETECTION OF CRUSTAL DEFORMATION OF THE NORTHERN PAKISTAN EARTHQUAKE BY SATELLITE DATA. Submitted by Japan **

DETECTION OF CRUSTAL DEFORMATION OF THE NORTHERN PAKISTAN EARTHQUAKE BY SATELLITE DATA. Submitted by Japan ** UNITED NATIONS E/CONF.97/5/CRP. 5 ECONOMIC AND SOCIAL COUNCIL Seventeenth United Nations Regional Cartographic Conference for Asia and the Pacific Bangkok, 18-22 September 2006 Item 6 (b) of the provisional

More information

Surface Faulting and Deformation Assessment & Mitigation

Surface Faulting and Deformation Assessment & Mitigation Surface Faulting and Deformation Assessment & Mitigation Summary of a Shlemon Specialty Conference sponsored by the Association of Environmental & Engineering Geologists convened on February 19 & 20, 2009

More information

ENGINEER S CERTIFICATION OF FAULT AREA DEMONSTRATION (40 CFR )

ENGINEER S CERTIFICATION OF FAULT AREA DEMONSTRATION (40 CFR ) PLATTE RIVER POWER AUTHORITY RAWHIDE ENERGY STATION BOTTOM ASH TRANSFER (BAT) IMPOUNDMENTS LARIMER COUNTY, CO ENGINEER S CERTIFICATION OF FAULT AREA DEMONSTRATION (40 CFR 257.62) FOR COAL COMBUSTION RESIDUALS

More information

Journal of Geophysical Research (Solid Earth) Supporting Information for

Journal of Geophysical Research (Solid Earth) Supporting Information for Journal of Geophysical Research (Solid Earth) Supporting Information for Postseismic Relocking of the Subduction Megathrust Following the 2007 Pisco, Peru earthquake D.Remy (a), H.Perfettini (b), N.Cotte

More information

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER Douglas Dreger, Barbara Romanowicz, and Jeffry Stevens* Seismological Laboratory 281 McCone Hall University of

More information

Slip rates and off-fault deformation in Southern California inferred from GPS data and models

Slip rates and off-fault deformation in Southern California inferred from GPS data and models JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH, VOL. 8, 6 66, doi:./jgrb.6, Slip rates and off-fault deformation in Southern California inferred from GPS data and models K. M. Johnson Received 9 December

More information

22.5 Earthquakes. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia.

22.5 Earthquakes. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia. An earthquake is a movement of Earth s lithosphere that occurs when rocks in the lithosphere

More information

Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes

Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 7 74, doi:1.12/grl.976, 213 Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes Satoko Murotani,

More information

Investigation 3: Plate Tectonics

Investigation 3: Plate Tectonics Investigation 3: Plate Tectonics Table of Contents Folder 1: Plate Geography and Structure... 18 Folder 2: Rates of Plate Movement... 19 Folder 3: Driving Forces... 20 Folder 4: Plate Interactions... 22

More information

Strain accumulation and rotation in western Nevada,

Strain accumulation and rotation in western Nevada, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B5, 2090, 10.1029/2001JB000579, 2002 Strain accumulation and rotation in western Nevada, 1993 2000 J. L. Svarc, J. C. Savage, and W. H. Prescott U.S. Geological

More information

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength.

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength. Earthquakes Vocabulary: Stress Strain Elastic Deformation Plastic Deformation Fault Seismic Wave Primary Wave Secondary Wave Focus Epicenter Define stress and strain as they apply to rocks. Distinguish

More information

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation.

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. In the process zone, stress amplitudes are poorly determined and much

More information