Chapter 12 - Long term climate regulation. Chapter 10-11* -Brief History of the Atmosphere. What is p really about? New and improved!

Size: px
Start display at page:

Download "Chapter 12 - Long term climate regulation. Chapter 10-11* -Brief History of the Atmosphere. What is p really about? New and improved!"

Transcription

1 What is p16164 really about? New and improved! 1) When CO 2 dissolves in water, some reacts with water to produce acid and ions, making gas exchange NOT just CO 2 (g in atm) <-> CO 2 (aq in ocn) 2) If CO 2 increases, ocn can uptake more than it otherwise would. But this acidifies the ocn. 3) Increasing acidity depletes CO 3, lessoning (buffering) acidification somewhat. 4) Plankton and coral dissolve when CO 3 becomes scarce (or undersaturated) What is p16164 really about? New and improved! Good thing: ocn can take up anthropogenic CO 2 Bad thing: ocn acidifies (ie increase H + ) Why is this bad? Ask a plankton! Their shells tend to dissolve when CO 3 is depleted because: CO 3 + Ca + <-> CaCO 3 (not obvious from book) (Currently plankton shells dissolve very little in the upper ocn, but we worry about the future) Chapter 10-11* -Brief History of the Atmosphere 1. Presently there is enough O 2 to oxidize everything in sight. Early on there wasn t. 2. First life, at least 3.5 billion years ago (b.y.), depleted CO 2 and made CH 4 Atm constituents in order by % Advanced Life 3. O 2 Photosynthesis originated ~2.7 b.y., and CH 4 must have nearly disappear (like today) *Know this much of it. The rest makes a good story, but it is not required reading. Fig 11-3 Tree of Life Chapter 12 - Long term climate regulation Single Cell Organisms Higher plants and animals Arose at Cambrian explosion Methanogens first life, generate CH4 Do not tolerate O2 Advanced Life How could the climate be warm enough to support liquid water? 1

2 Faint Young Sun Revisited Possibility 1 How to keep Ts big enough? 1. Lower albedo 2. Other heat source AND/OR 3. Increase Greenhouse effect Planetary Energy Balance S (1-A) / 4 + F OTHER = σ T E 4 Planet Greenhouse Effect T S = T E + ΔT g A would have to be ~0 to compensate for 30% reduction in S Water covered planet has nearly zero SURFACE albedo But it would be cloudy Can you think of a way? Possibility 2 Possibility 3 F OTHER? Geothermal is too small Recall Pluto F OTHER need only be large locally, say via horizontal heat transport! But to make a hot spot, we need heat to go from cold to warm. an you think of how to do this? Increase Greenhouse Effect? But which gas? Case for CO 2 Impact and vaporization of planetesimals Increased volcanism Smaller continents with less weathering Fig 13 Amount of CO 2 needed to make Earth at least partly ice-free while accounting for S Is that much CO 2 possible? (80+ C for bacteria) Rocks could supply 60 bars of CO 2 to atmosphere (so yes!) 2

3 CH 4 and CO 2 together Upper limit on CO2 Lower limit On Temp If early bacteria produced CH 4 and loved heat. Some bacteria are both methanogens and hypothermophiles f(ch 4 ) = Mixing ratio, mass of CH 4 / mass of air With a stabilizing negative feedback Titan appears orangish due to CH 4 generated aerosols in its atmosphere (like Earth s horizon sometimes from smog) CH 4 makes long organic chains (gas-to-aerosol transformation) that scatter red light CH 4 gas absorbs red light - In large quantity heating up atmosphere instead of surface! Anti-greenhouse gas Earth s climate was not always warm in the past Major partial glaciations: Huronian (2.2.4 b.y.), Ordovician (440 m.y.), etc Complete glaciation: Snowball Earth - Neoproterozoic b.y. Ice covered entire planet - mandatory to get out of it plus best observational evidence requires it Ice cut off weathering but didn t stop volcanoes, so CO 2 built up to enormous levels over ~10 million years Snowball Earth continued Gigantic greenhouse effect starts to melt ice Positive ice-albedo feedback melts ice in a hurry, leaving Earth in a super greenhouse state without ice Massive weathering takes Ca 2+ to the ocean where it precipitates and settles. In shallow regions ~400 m deep layer overlies materials freshly deposited by glaciation, this is known as a cap carbonate Evidence from cap carbonates, BIFs (banded iron formations), and glacial deposits 3

4 So you believe in Snowball Earth now. How did it happen? Something perturbs Earth s temperature substantially below normal Polar sea ice advances and positive feedback ensues Once some high portion of the globe is ice covered, ice expands rapidly due to a climate instability Positive temperature-ice-albedo feedback exceeds the negative temperature-ir feedback giving net positive feedback Continents were in the tropics, so weathering carries on Something special happens when ice reaches midlatitudes So what? Ice covering the planet is cool Rapid melt warmed Earth ~100 C in a thousand years How did Eukaria (our relatives) survived these Events? Snowball Earth Events Eukaryotes Prokaryotic Bacteria 11 animal phyla emerge Two possibilities that caused life to diversify: 1. Isolations of populations in hot springs allowed for genetic mutations and produced new species (recall odd species exist on small, isolated islands) 2. Maybe hardship and rapidly changing environment favored emergence of new life forms 3,500 2, Time in millions of years Temperature/Precipitation History So maybe life can survive on ice-house planet We have other evidence that the planet was icefree: Absence of glacial deposits Sedimentary (carbonate) rocks and their Carbon isotopes Absence of BIFs - deep ocean had oxygen Paleosols Redbeds etc 4

5 Glaciations were just blips - deep past was mostly warm Although Ordovician (440 m.y.) and Permian (250 m.y.) ended with partial glaciations Why? Continents in the polar regions Comet/asteroid impact Volcanism Warm Mesozoic ( m.y.) Dinosaurs - 6 deg C warmer globally Poles were especially warm - mystery Evidence: Lush ferns and alligators in Siberia Carbon isotopes in ocean sediments Higher CO 2 Sea-floor spreading rate was higher Cenozoic - 65 m.y. to present Earth slowly cooled Life retreats from poles Polar ice caps established Most recent ice-ages begin Himalayas form when India collides with Asia Silicate weathering increases Draws down CO2 Eocene ~50 m.y. (recall Dr Battisti s lecture) Extremely warm in the high latitudes Evidence: Crocodiles and redwood trees in the Arctic needed 20 deg C warmer at the poles! CO 2 Clouds in the stratosphere Cause for future concern? end of last ice-age beginning of modern era of ice-ages asteroid impact; end of dinosaurs Cambrian explosion of life; beginning of fossil record Earth freezes over; life survives in pockets rise of atmospheric oxygen life! (prokaryotic bacteria) formation of Earth Geological Time: Fig Origin of Earth 2. Origin of Life 3. Rise of Oxygen to ~ modern levels 4. Snowball Earth events 5. Beginning of fossil record (Cambrian explosion) 6. Extinction of Dinosaurs by asteroid 7. Beginning of modern glaciations 8. End of last ice-age 4.6 billion ybp (years before present) ~4 billion ybp ~2 billion ybp million ybp 540 million ybp 65 million ybp 3 million ybp 10 thousand ybp 5

Chapter 12 Long-Term Climate Regulation

Chapter 12 Long-Term Climate Regulation Chapter 12 Long-Term Climate Regulation Sun about 30% less luminous than today - Ts would have been below freezing - Earth seems to have had liquid water nonetheless - Faint Young Sun Paradox (FYSP) Warm

More information

Long-term Climate Change. We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold.

Long-term Climate Change. We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold. Long-term Climate Change We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold. Long-term Climate Change The Archean is thought to have been warmer,

More information

Chapter 12: Long-Term Climate Regulation. Carl Sagan and George Mullen posed the Faint Young Sun Paradox in 1972.

Chapter 12: Long-Term Climate Regulation. Carl Sagan and George Mullen posed the Faint Young Sun Paradox in 1972. Chapter 12: Long-Term Climate Regulation Carl Sagan and George Mullen posed the Faint Young Sun Paradox in 1972. What about the details? Faint young Sun paradox Solution: A greenhouse gas or a lower albedo

More information

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks End of last ice-age rise of human civilization Modern ice-ages begin Asteroid impact end of dinosaurs Cambrian

More information

Lecture 20. Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p )

Lecture 20. Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p ) Lecture 20 Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p.158-170) end of last ice-age; begin civilization beginning of modern era of ice-ages asteroid

More information

PTYS 214 Spring Announcements. Get exam from Kyle!

PTYS 214 Spring Announcements. Get exam from Kyle! PTYS 214 Spring 2018 Announcements Get exam from Kyle! 1 Midterm #3 Total Students: 24 Class Average: 78 Low: 32 High: 100 If you have questions see one of us! 2 All exams Top 2 exams 3 Previously Feedbacks

More information

Prof Lyatt Jaegle, UW, "Space-based observations of biomass-burning emissions of NOx" [a pollutant gas]

Prof Lyatt Jaegle, UW, Space-based observations of biomass-burning emissions of NOx [a pollutant gas] Announcements: 9.0 earthquake in Puget Sound! (in 1700) TALK TODAY: Monday 10 Nov 3:30 310 ATG Prof Lyatt Jaegle, UW, "Space-based observations of biomass-burning emissions of NOx" [a pollutant gas] Where

More information

ATOC OUR CHANGING ENVIRONMENT Lecture 21 (Chp 12) Objectives of Today s Class The long-term climate record

ATOC OUR CHANGING ENVIRONMENT Lecture 21 (Chp 12) Objectives of Today s Class The long-term climate record ATOC 1060-002 OUR CHANGING ENVIRONMENT Lecture 21 (Chp 12) Objectives of Today s Class The long-term climate record Announcements: 1. The Project; HW3; 2. Review session for the final exam: Dec 7 th. Sean

More information

Earth History. What is the Earth s time scale? Geological time Scale. Pre-Cambrian. FOUR Eras

Earth History. What is the Earth s time scale? Geological time Scale. Pre-Cambrian. FOUR Eras The Earth is 4.6 billion years old! Earth History Mrs. Burkey ESS Cy Creek HS 17-18 If the Earth formed at midnight 6:00 am First life appears 10:00 pm First animals/plants on land 11:59 pm First humans

More information

IX Life on Earth.

IX Life on Earth. IX Life on Earth http://sgoodwin.staff.shef.ac.uk/phy229.html 9.0 Introduction Life exists on the surface layers of the Earth. We cannot consider life and the planet separately: they interact with one

More information

Earth s Formation: 4.6 Billion Years ago

Earth s Formation: 4.6 Billion Years ago Earth s Formation: 4.6 Billion Years ago Formed from interstellar gas & dust into molten planet Earth s early atmosphere was hostile, made of carbon monoxide, methane, ammonia, nitrogen, nitrogen, sulfur,

More information

Natural Climate Variability: Longer Term

Natural Climate Variability: Longer Term Natural Climate Variability: Longer Term Natural Climate Change Today: Natural Climate Change-2: Ice Ages, and Deep Time Geologic Time Scale background: Need a system for talking about unimaginable lengths

More information

The History of Life on Earth

The History of Life on Earth 8 The History of Life on Earth lesson 1 Geologic Time and Mass Extinctions Grade Seven Science Content Standard. 4.b. Students know the history of life on Earth has been disrupted by major catastrophic

More information

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes. Earth s History Date: Been There, Done That What is the principle of uniformitarianism? The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

More information

Earth & Earthlike Planets. David Spergel

Earth & Earthlike Planets. David Spergel Earth & Earthlike Planets David Spergel Course Logistics Life Everywhere and Rare Earths are now in the U-Store Each precept will be divided into two teams (at this week s s precept). Debate topic: Are

More information

Chapter 14: The Changing Climate

Chapter 14: The Changing Climate Chapter 14: The Changing Climate Detecting Climate Change Natural Causes of Climate Change Anthropogenic Causes of Climate Change Possible Consequences of Global Warming Climate Change? -Paleo studies

More information

4 Changes in Climate. TAKE A LOOK 2. Explain Why is more land exposed during glacial periods than at other times?

4 Changes in Climate. TAKE A LOOK 2. Explain Why is more land exposed during glacial periods than at other times? Name Class CHAPTER 3 Date Climate 4 Changes in Climate SECTION National Science Education Standards BEFORE YOU READ After you read this section, you should be able to answer these questions: ES 1k, 2a

More information

The Role of Biology in the Climate System: Long Term Climate Regulation. Earth History, Gaia and Human Perturbations of Biological Systems

The Role of Biology in the Climate System: Long Term Climate Regulation. Earth History, Gaia and Human Perturbations of Biological Systems The Role of Biology in the Climate System: Long Term Climate Regulation Earth History, Gaia and Human Perturbations of Biological Systems How would the Earth differ if Life had not evolved or expanded?

More information

Lecture 3. - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years

Lecture 3. - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years Lecture 3 - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years METR 113/ENVS 113 Spring Semester 2011 March 1, 2011 Suggested Reading

More information

The Proterozoic Eon (2500 ma to 540 ma)

The Proterozoic Eon (2500 ma to 540 ma) The Proterozoic Eon (2500 ma to 540 ma) December November October September August July June May April March February January 0 Ma Phanerozoic C M P 540 Ma oldest shelly fossils Proterozoic 2500 Ma first

More information

Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era

Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era Earth s History Video Clip Earth s History Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era Scientists have put together a timeline of Earth s history

More information

Radiative Balance and the Faint Young Sun Paradox

Radiative Balance and the Faint Young Sun Paradox Radiative Balance and the Faint Young Sun Paradox Solar Irradiance Inverse Square Law Faint Young Sun Early Atmosphere Earth, Water, and Life 1. Water - essential medium for life. 2. Water - essential

More information

2 Eras of the Geologic Time Scale

2 Eras of the Geologic Time Scale CHAPTER 8 2 Eras of the Geologic Time Scale SECTION The History of Life on Earth BEFORE YOU READ After you read this section, you should be able to answer these questions: What kinds of organisms evolved

More information

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 Name: Student ID: Please answer the following questions on your Scantron Multiple Choice [1 point each] (1) The gases that contribute to

More information

PTYS 214 Spring Announcements Midterm #4: two weeks from today!

PTYS 214 Spring Announcements Midterm #4: two weeks from today! PTYS 214 Spring 2018 Announcements Midterm #4: two weeks from today! 1 Previously Radiometric Dating Compare parent / daughter to determine # of half lives 14C, 40K, 238U, 232Th, 87Ru Evidence for Early

More information

Climate Regulation. - What stabilizes the climate - Greenhouse effect

Climate Regulation. - What stabilizes the climate - Greenhouse effect Climate Regulation - What stabilizes the climate - Greenhouse effect Last time! Processes that shaped Earth: Volcanism, tectonics! How we retain atmospheric molecules ( escape speed )! A magnetic field

More information

/ Past and Present Climate

/ Past and Present Climate MIT OpenCourseWare http://ocw.mit.edu 12.842 / 12.301 Past and Present Climate Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. The Faint Young

More information

Temperature/Precipitation History Faint Young Sun paradox: Fig 12-2

Temperature/Precipitation History Faint Young Sun paradox: Fig 12-2 Mon May 8 Announcements: grades through midterm posted (but several extra credit reports not recorded) "Snowball Earth" article available, but not required Great website: "www.snowballearth.org" Where

More information

Ancient Climates: Readings

Ancient Climates: Readings Mon May 8 Announcements: grades through midterm posted (but several extra credit reports not recorded) "Snowball Earth" article available, but not required Great website: "www.snowballearth.org" Where

More information

NATS 101 Section 13: Lecture 32. Paleoclimate

NATS 101 Section 13: Lecture 32. Paleoclimate NATS 101 Section 13: Lecture 32 Paleoclimate Natural changes in the Earth s climate also occur at much longer timescales The study of prehistoric climates and their variability is called paleoclimate.

More information

Global Paleogeography

Global Paleogeography Global Paleogeography Overview of Global Paleogeography Paleogeography is the study of how the Earth s geography has changed during the course of history. Using geological data, scientists reconstruct

More information

AST 105 Intro Astronomy The Solar System

AST 105 Intro Astronomy The Solar System AST 105 Intro Astronomy The Solar System STRUCTURE OF A PLANET S ATMOSPHERE If you remember this. X-rays Ultraviolet Heating & Destruction Heating & Destruction Visible Infrared Transmission and Scattering

More information

Effect of Life on the Atmosphere: The Rise of Oxygen and Ozone

Effect of Life on the Atmosphere: The Rise of Oxygen and Ozone Some preliminary chemistry Chapter 11 Effect of Life on the Atmosphere: The Rise of Oxygen and Ozone Chemical reactions involve the giving and taking of electrons between atoms. the nucleus is not affected

More information

LECTURE #25: Mega Disasters - Mass Extinctions, Meteorite Impacts...

LECTURE #25: Mega Disasters - Mass Extinctions, Meteorite Impacts... GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #25: Mega Disasters - Mass Extinctions, Meteorite Impacts... Date: 19 April 2018 I. Time & Life on Earth geologic time scale o divided into named

More information

Planetary Atmospheres (Chapter 10)

Planetary Atmospheres (Chapter 10) Planetary Atmospheres (Chapter 10) Based on Chapter 10 This material will be useful for understanding Chapters 11 and 13 on Jovian planet systems and Extrasolar planets Chapters 4, 5, and 8 on Momentum,

More information

Diversity, Change and Continuity. History of Life

Diversity, Change and Continuity. History of Life Diversity, Change and Continuity History of Life Change throughout the history of Life. A summary of content covered 1 2 3 4 Changes in the atmosphere Changes in climate Geological events Biogeography

More information

Introduction to Climate Change

Introduction to Climate Change Ch 19 Climate Change Introduction to Climate Change Throughout time, the earth's climate has always been changing produced ice ages Hence, climate variations have been noted in the past what physical processes

More information

NOTES 1. Fossils. The BIG Idea Rocks, fossils, and other types of natural evidence tell Earth s story.

NOTES 1. Fossils. The BIG Idea Rocks, fossils, and other types of natural evidence tell Earth s story. Name Period Date UNIT 6 NOTES 1 Fossils Objectives Identify and describe the types of fossils. Define fossils Explain fossil formation Explain how different kinds of fossils show traces of life from Earth

More information

Today. Events. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres. Homework DUE next time

Today. Events. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres. Homework DUE next time Today Terrestrial Planet Geology - Earth Terrestrial Planet Atmospheres Events Homework DUE next time Ring of Fire Boundaries of plates traced by Earthquakes and Volcanos Plate Motions Measurements of

More information

The History of Life. Before You Read. Read to Learn

The History of Life. Before You Read. Read to Learn 14 The History of Life section 1 Fossil Evidence of Change Before You Read Throughout Earth s history, many species have become extinct. On the lines below, name some organisms that have become extinct.

More information

The History of the Earth

The History of the Earth The History of the Earth Origin of the Universe The universe began about 13.9 billion years ago According to Big Bang theory almost all matter was in the form of energy E = MC 2 E = energy, M = mass and

More information

HOW OLD IS THE EARTH ANYWAYS?

HOW OLD IS THE EARTH ANYWAYS? HOW OLD IS THE EARTH ANYWAYS? EXAMINING THE CONCEPT OF GEOLOGIC TIME Did you ever wonder about all of the things that have ever happened on Earth and how old it really is? As it turns out, Mother Earth

More information

Short-Term Climate Variability (Ch.15) Volcanos and Climate Other Causes of Holocene Climate Change

Short-Term Climate Variability (Ch.15) Volcanos and Climate Other Causes of Holocene Climate Change Short-Term Climate Variability (Ch.15) Volcanos and Climate Other Causes of Holocene Climate Change Volcanos and Climate We learned in Chapter 12 that the volanos play an important role in Earth s climate

More information

Question #1: What are some ways that you think the climate may have changed in the area where you live over the past million years?

Question #1: What are some ways that you think the climate may have changed in the area where you live over the past million years? Reading 5.2 Environmental Change Think about the area where you live. You may see changes in the landscape in that area over a year. Some of those changes are weather related. Others are due to how the

More information

Eras of Earth's History Lesson 6

Eras of Earth's History Lesson 6 Eras of Earth's History Lesson 6 May 24 8:42 PM What happened in the Paleozoic Era? What happened in the Mesozoic Era? What happened in the Cenozoic Era? May 24 8:55 PM 1 I. What happened in the Paleozoic

More information

1 Earth s Oceans. TAKE A LOOK 2. Identify What are the five main oceans?

1 Earth s Oceans. TAKE A LOOK 2. Identify What are the five main oceans? CHAPTER 13 1 Earth s Oceans SECTION Exploring the Oceans BEFORE YOU READ After you read this section, you should be able to answer these questions: What affects the salinity of ocean water? What affects

More information

Cycles in the Phanerozoic

Cycles in the Phanerozoic Cycles in the Phanerozoic Evolutionary trends: extinctions, adaptive radiations, diversity over time Glaciations Sea level change Ocean chemistry Atmospheric CO 2 biosphere Mass extinctions in the..you

More information

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site:   Lecture 27 Dec Weather Forecasts and Climate AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Climate Natural Variations Feedback Mechanisms Lecture 27 Dec 4 2018 1 Climate

More information

Our Domestic Energy Focus The Big 3

Our Domestic Energy Focus The Big 3 2007 2018 Our Domestic Energy Focus The Big 3 >30 National Conference Invited Energy Talks--2015-2018 The Global Energy Dilemma Energy Food Water Let s Look At Climate Change 2011 Pearson Education, Inc.

More information

Paleoclimate indicators

Paleoclimate indicators Paleoclimate indicators Rock types as indicators of climate Accumulation of significant thicknesses of limestone and reef-bearing limestone is restricted to ~20º + - equator Gowganda tillite, Ontario

More information

Geological Time Scale UG Hons.1 st Year) DR. CHANDAN SURABHI DAS ASST. PROF. IN GEOGRAPHY BARASAT GOVT. COLLEGE

Geological Time Scale UG Hons.1 st Year) DR. CHANDAN SURABHI DAS ASST. PROF. IN GEOGRAPHY BARASAT GOVT. COLLEGE Geological Time Scale UG Hons.1 st Year) 1 DR. CHANDAN SURABHI DAS ASST. PROF. IN GEOGRAPHY BARASAT GOVT. COLLEGE 2 Imagine putting everything that has happened on Earth into a one hour time frame! 3 12:00am

More information

Ocean Acidification the other CO2 problem..

Ocean Acidification the other CO2 problem.. Ocean Acidification the other CO2 problem.. Recall: Atm CO 2 already above recent planetary history CO 2 Today: What does this do to ocean water? Main Outline: 1. Chemistry. How does ocean absorb CO 2,

More information

The ocean s overall role in climate

The ocean s overall role in climate The ocean s overall role in climate - moderates climate in time (diurnally, annually) - redistributes heat spatially in the largescale ocean circulation - lower albedo (sea ice higher albedo) - dry atmosphere

More information

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look.

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. Global Climate Change Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. If you live in an area such as the Mississippi delta (pictured)

More information

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes OCN 401-10 Nov. 16, 2010 KCR Global Carbon Cycle - I Systematics: Reservoirs and Fluxes The Global carbon cycle Reservoirs: biomass on land in the oceans, atmosphere, soil and rocks, waters Processes:

More information

5 Time Marches On. TAKE A LOOK 1. Identify What kinds of organisms formed the fossils in the picture?

5 Time Marches On. TAKE A LOOK 1. Identify What kinds of organisms formed the fossils in the picture? CHAPTER 6 5 Time Marches On SECTION The Rock and Fossil Record BEFORE YOU READ After you read this section, you should be able to answer these questions: How do geologists measure time? How has life changed

More information

Biodiversity Through Earth History

Biodiversity Through Earth History Chapter 13 Biodiversity Through Earth History Underlying assumption is that the process of evolution is occurring evolution: creation of new species random mutation: genetic changes natural selection:

More information

Geologic Time Test Study Guide

Geologic Time Test Study Guide Geologic Time Test Study Guide Chapter 12 Section 1 The Earth s Story and Those Who First Listened 1. What is the difference between uniformitarianism and catastrophism? Uniformitarianism: the same geologic

More information

Earth s Heat Budget. What causes the seasons? Seasons

Earth s Heat Budget. What causes the seasons? Seasons Earth s Heat Budget Solar energy and the global heat budget Transfer of heat drives weather and climate Ocean circulation A. Rotation of the Earth B. Distance from the Sun C. Variations of Earth s orbit

More information

Directed Reading. Section: Precambrian Time and the Paleozoic Era EVOLUTION. beginning of life is called. to. PRECAMBRIAN TIME.

Directed Reading. Section: Precambrian Time and the Paleozoic Era EVOLUTION. beginning of life is called. to. PRECAMBRIAN TIME. Skills Worksheet Directed Reading Section: Precambrian Time and the Paleozoic Era 1. Where is the geologic history of Earth recorded? 2. What kind of information can scientists get from the types of rock

More information

Earth s Heat Budget. What causes the seasons? Seasons

Earth s Heat Budget. What causes the seasons? Seasons Earth s Heat Budget Solar energy and the global heat budget Transfer of heat drives weather and climate Ocean circulation A. Rotation of the Earth B. Distance from the Sun C. Variations of Earth s orbit

More information

Carbon Cycling Internal

Carbon Cycling Internal Carbon Cycling Internal The 4 subcycles Atmosphere The Earth s Atmosphere The Earth has a radius of some 6400 km. Ninety-nine percent of the earth's atmosphere is contained within a layer approximately

More information

OCN 201: Earth Structure

OCN 201: Earth Structure OCN 201: Earth Structure Eric Heinen Eric H. De Carlo, Carlo: OCN 201, OCN Sp2010 201, Fall 2004 Early History of the Earth Rapid accretion of Earth and attendant dissipation of kinetic energy caused tremendous

More information

Understanding past climate change

Understanding past climate change Steven J. Phipps ARC Centre of Excellence for Climate System Science Climate Change Research Centre University of New South Wales CLIM1001 Introduction to Climate Change 3 September 2013 1 Why past climates

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Mars, Venus, Earth What is an atmosphere? An atmosphere is a (usually very thin) layer of gas that surrounds a world. How does the greenhouse effect warm a planet? No

More information

The greenhouse effect

The greenhouse effect The greenhouse effect Visible light arrives About half reflected, half is absorbed by the ground. This absorbed energy is then reradiated, but NOT in the visible (would just go out again anyway); in the

More information

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement Table of Contents Chapter: Atmosphere Section 1: Earth's Atmosphere Section 2: Energy Transfer in the Atmosphere Section 3: Air Movement Table of Contents Chapter: Atmosphere Section 2: Energy Transfer

More information

The Water Planet Ch. 22

The Water Planet Ch. 22 The Water Planet Ch. 22 What is Oceanography? the study of the Earth s oceans using chemistry, biology, geology, and physics. Oceans cover 70% of the Earth s surface Ocean Research 22.1 The use of submarines

More information

Development of the Global Environment

Development of the Global Environment Development of the Global Environment G302: Spring 2004 A course focused on exploration of changes in the Earth system through geological history Simon C. Brassell Geological Sciences simon@indiana.edu

More information

SAMPLE PAGE. pulses. The Ice Age By: Sue Peterson

SAMPLE PAGE. pulses. The Ice Age By: Sue Peterson Page 61 Objective sight words (pulses, intermittent, isotopes, chronicle, methane, tectonic plates, volcanism, configurations, land-locked, erratic); concepts (geological evidence and specific terminology

More information

0.5cm Eocene Foram

0.5cm Eocene Foram Eocene Foram 0.5cm Eocene Foram Bubbles in ice 5 µm Tree rings Tree rings Reconstructing past climate Talk outline: A trip through geologic time Take away points: Climate change through time What past

More information

Greenhouse Effect & Global Warming

Greenhouse Effect & Global Warming Chemical Cycles: Greenhouse Effect: Cause and effect Chemical Cycles: CO 2 and O 2 Chemical Fluxes: CO 2 and O 2 Proxies for climate change: Isotopes Greenhouse Effect & Global Warming Global Warming World

More information

AT 350 EXAM #1 February 21, 2008

AT 350 EXAM #1 February 21, 2008 This exam covers Ahrens Chapters 1 and 2, plus related lecture notes Write the letter of the choice that best completes the statement or answers the question. b_ 1. The Earth s atmosphere is currently

More information

Habitable Planets: Part 1 Estimating n p "

Habitable Planets: Part 1 Estimating n p Habitable Planets: Part 1 Estimating n p General Considerations Number of planets, per planetary system, suitable for life (n e ) Useful to break into 2 factors n e = n p x f s n p = n e for stars like

More information

Welcome to ATMS 111 Global Warming.

Welcome to ATMS 111 Global Warming. Welcome to ATMS 111 Global Warming http://www.atmos.washington.edu/2010q1/111 Isotopic Evidence 16 O isotopes "light 18 O isotopes "heavy" Evaporation favors light Rain favors heavy Cloud above ice is

More information

Figure 65: Reservoir in a steady state condition where the input flux is equal to the output flux and the reservoir size remains constant.

Figure 65: Reservoir in a steady state condition where the input flux is equal to the output flux and the reservoir size remains constant. 7. The carbon cycle 7.1. Box model of the carbon cycle Without the greenhouse effect, our planet would experience a permanent ice age and life as we know it would not be possible. The main contributors

More information

ATOC OUR CHANGING ENVIRONMENT

ATOC OUR CHANGING ENVIRONMENT ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 22 (Chp 15, Chp 14 Pages 288-290) Objectives of Today s Class Chp 15 Global Warming, Part 1: Recent and Future Climate: Recent climate: The Holocene Climate

More information

Rare Earth? See Rare Earth, by Ward and Brownlee

Rare Earth? See Rare Earth, by Ward and Brownlee Rare Earth? See Rare Earth, by Ward and Brownlee N to date N = N * f s f p n H f l f i f c L/T N * = 4 x 10 11 f s = 0.2 f p = 1.0 n H = 2 f l = 1.0 N = 1.6 x 10 11 The Goldilocks Effect Earth is Just

More information

Today s topic: co evolution of Earth & life

Today s topic: co evolution of Earth & life Co evolution of the atmosphere, oceans, and life of Earth Yasuhito SEKINE Dept. Complexity Si& Sci. Engr. The University of Tokyo Habitable planet workshop. 29.8.18 Today s topic: co evolution of Earth

More information

Geologic Time on a Strip of Paper

Geologic Time on a Strip of Paper Geologic Time on a Strip of Paper Introduction The Earth is 4,600,000,000 years old. That s 4.6 billion years! But what does this mean? This activity is designed to help you get a feel for the age of the

More information

TOPIC 1: RELATIVE DATING ESSENTIAL QUESTION: HOW DO WE DETERMINE A ROCK S AGE BY THE SURROUNDING ROCKS?

TOPIC 1: RELATIVE DATING ESSENTIAL QUESTION: HOW DO WE DETERMINE A ROCK S AGE BY THE SURROUNDING ROCKS? TOPIC 1: RELATIVE DATING ESSENTIAL QUESTION: HOW DO WE DETERMINE A ROCK S AGE BY THE SURROUNDING ROCKS? TOPIC 1: RELATIVE DATING UNIFORMITARIANISM: THE IDEA THAT THE SAME FORCES HAVE BEEN AND CONTINUE

More information

4) Outline the major developments that allowed life to exist on Earth.

4) Outline the major developments that allowed life to exist on Earth. Objectives 4) Outline the major developments that allowed life to exist on Earth. 5) Describe the types of organisms that arose during the four major divisions of the geologic time scale. Each layer of

More information

Evidence for Continental Drift and The Theory of Plate Tectonics

Evidence for Continental Drift and The Theory of Plate Tectonics Evidence for Continental Drift and The Theory of Plate Tectonics Did you know that the coal that is mined in Pennsylvania was actually formed from tropical plant life near the Equator? How did it travel

More information

Tales of the Past. Source: Sci-ber Text with the Utah State Office of Education

Tales of the Past. Source: Sci-ber Text with the Utah State Office of Education Tales of the Past Source: Sci-ber Text with the Utah State Office of Education http://www.uen.org/core/science/sciber/trb4/downloads/literacy4.pdf Do you like mystery and intrigue? Do you like to do detective

More information

Recent Climate History - The Instrumental Era.

Recent Climate History - The Instrumental Era. 2002 Recent Climate History - The Instrumental Era. Figure 1. Reconstructed surface temperature record. Strong warming in the first and late part of the century. El Ninos and major volcanic eruptions are

More information

Lecture 5: Climate Changes and Variations

Lecture 5: Climate Changes and Variations Lecture 5: Climate Changes and Variations Climate Sensitivity and Feedback El Nino Southern Oscillation Pacific Decadal Oscillation North Atlantic Oscillation (Arctic Oscillation) Major Climate Feedback

More information

What is the Earth s time scale?

What is the Earth s time scale? Earth History What is the Earth s time scale? The Geological time scale is a record of the life forms and geological events in Earth s history. Scientists developed the time scale by fossils world wide.

More information

How do we learn about ancient life? Fossil- a trace or imprint of a living thing that is preserved by geological processes.

How do we learn about ancient life? Fossil- a trace or imprint of a living thing that is preserved by geological processes. Unit 1B Lesson 4 History of Life on Earth How do we learn about ancient life? Paleontologists scientists that studies fossils Fossil- a trace or imprint of a living thing that is preserved by geological

More information

Lecture 16 - Stable isotopes

Lecture 16 - Stable isotopes Lecture 16 - Stable isotopes 1. The fractionation of different isotopes of oxygen and their measurement in sediment cores has shown scientists that: (a) ice ages are common and lasted for hundreds of millions

More information

Chapter Introduction. Chapter Wrap-Up. Explosion

Chapter Introduction. Chapter Wrap-Up. Explosion Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Chapter Wrap-Up Geologic Time Ancient Earth The Cambrian Explosion How have natural events changed Earth over time? What do you think? Before you begin,

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds What is an atmosphere? Sources of Gas Losses of Gas Thermal Escape Earth s Atmosphere About 10 km thick Consists mostly of molecular

More information

Climate Change Lecture Notes

Climate Change Lecture Notes Climate Change Lecture Notes (Topic 12A) page 1 Climate Change Lecture Notes Learning Outcomes for the Climate Change Unit 1. Students can list observations which suggest that the world is warming, and

More information

Module 9: Earth's History Topic 3 Content: A Tour of Geologic Time Notes

Module 9: Earth's History Topic 3 Content: A Tour of Geologic Time Notes The geologic time scale holds secrets to the life that has existed on Earth since the beginning of time. It is time for you to take a journey through the history of Earth. 1 Click on each of the segments

More information

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 Note Page numbers refer to Daniel Jacob s online textbook: http://acmg.seas.harvard.edu/publications/ jacobbook/index.html Atmos = vapor + sphaira

More information

Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow

Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow Lesson Objectives: Introduces students to the different kinds of ice found in Antarctica, Students will become familiar

More information

Outline 24: The Holocene Record

Outline 24: The Holocene Record Outline 24: The Holocene Record Climate Change in the Late Cenozoic New York Harbor in an ice-free world (= Eocene sea level) Kenneth Miller, Rutgers University An Ice-Free World: eastern U.S. shoreline

More information

Fossils & The Geologic Time Scale

Fossils & The Geologic Time Scale Fossils & The Geologic Time Scale Fossils Preserved remains or traces of an organism that lived in the past. Fossils are formed when organisms die and are buried in sediment. Eventually the sediment builds

More information

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE Today Terrestrial Planet Atmospheres (continued) Events Homework DUE Sources of Gas Outgassing from volcanoes 2014 Pearson Education, Inc. Evaporation of surface liquid; sublimation of surface ice (cometary

More information

The Phanerozoic Eon. 542 mya Present. Divided into 3 Eras The Paleozoic, Mesozoic, and Cenozoic Eras

The Phanerozoic Eon. 542 mya Present. Divided into 3 Eras The Paleozoic, Mesozoic, and Cenozoic Eras 542 mya Present The Phanerozoic Eon Divided into 3 Eras The Paleozoic, Mesozoic, and Cenozoic Eras The ends of the Paleozoic and Mesozoic Eras were marked by mass extinctions The Cenozoic Era is still

More information

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement Table of Contents Chapter: Atmosphere Section 1: Earth's Atmosphere Section 2: Energy Transfer in the Atmosphere Section 3: Air Movement Table of Contents Chapter 4: Atmosphere Section 1: Earth's Atmosphere

More information