SISYPHE v5p9 tutorial RCEM, Sept 2009

Size: px
Start display at page:

Download "SISYPHE v5p9 tutorial RCEM, Sept 2009"

Transcription

1 SISYPHE is a morphodynamical model, which has been developed to obtain realistic estimates of bed movements and sediment transport patterns driven by currents and/or waves. The bottom evolution equation is solved, using either a finite element or a finite volume method, yielding the bottom evolution and the solid transport rate at each node of the model. An additional transport equation can be solved for the suspended sediment concentration, in order to account properly for the effect of the suspension under non-equilibrium situations. The model formulation also includes the effects of non-uniform grain size and vertical stratification in the bed. SISYPHE is part of the TELEMAC system and is developed by the Laboratoire national d hydraulique et environnement of Electricité de France (LNHE-EDF, Chatou, France). As such the model is compatible with the other modules of the TELEMAC system. In particular, the hydrodynamics driving the morphodynamical model (currents in a river environment, waves in a coastal environment, or a combination of both in an estuarial environment for example) can be derived from TELEMAC-2D (-3D) and/or TOMAWAC computations. For more information see telemacsystem.com. In the case of relatively small bed evolutions, it is possible to use constant, steady state hydrodynamics from a previous TELEMAC-2D (-3D) computation. In this case, the flow is updated at each time step in an effort to conserve both the flow rate and the free surface elevation (velocities are locally increased where deposition occurs and decreased where erosion takes place). It is also possible to couple the hydrodynamic (TELEMAC-2D or TOMAWAC) and morphodynamical (SISYPHE) solvers for a better representation of the hydrodynamics and its response to the changing bed profile. Originally SISYPHE was developed to model bed load transport. Depending on the environmental conditions (driving conditions, type of sediment, etc.), a number of formulations are available to choose from. The users can also use their own formulations through user subroutines. SISYPHE has since then evolved to include the pick-up and transport of suspended material. It should be noted that only a limited number of formulations are available at this stage. Applications of SISYPHE include the prediction of sedimentation rates within ports and the assessment of alternative design for coastal harbours, river flow and deposit in the lee of a dike.

2 CAS file and user subroutines Similarly to other TELEMAC modules, SISYPHE relies on a CAS file or parameter file to describe the processes to be modelled and the driving conditions. A typical CAS file will include the following (general) keywords: STEERING FILE FORTRAN FILE GEOMETRY FILE X1 X7 LIEBOR EBOR X10 X11 N K BOUNDARY CONDITIONS FILE LIEBOR & EBOR: bottom evolution (depth) LIEBOR = 2, 0 : solid LIEBOR = 4 : free at liquid boundary LIEBOR = 5 : imposed to EBOR at liquid boundary When Q is free, LIEBOR is free; when Q is imposed, so is LIEBOR. LIQBOR & QBOR: sediment (bed-load) flow If you want to impose a load at the boundary, set LIEBOR to 4 (file or CONLIT) and LIQBOR to 5 (CONLIT) RESULTS FILE VARIABLES FOR GRAPHIC PRINTOUTS REFERENCE FILE the most notable being B bottom elevation, E bottom evolution, QSBL bed load transport rate of sediment, CSi concentration for class i, QSSUSP suspended transport rate of sediment For comparison and validation IF VALIDATION = Yes PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE IF COMPUTATION CONTINUE = Yes

3 Principal keywords related to the sediment properties: Non cohesive sediments (D50 > 60 µm) WATER DENSITY Default value kg/m 3 WATER VISCOSITY Default value 1.E-6 m 2 /s SEDIMENT DENSITY Default value kg/m 3 COEFFICIENT FUNCTION OF THE POROSITY Default value is 1.6 NUMBER OF SIZE-CLASSES OF BED MATERIAL INITIAL FRACTION FOR PARTICULAR SIZE CLASS MEAN DIAMETER OF THE SEDIMENT SETTLING VELOCITIES Default value is 1 for each sediment class. Default value is 1 for each sediment class. Default value is 10 mm for each sediment class. If this keyword is not in the CAS file, the subroutine vitchu-sisyphe is used to calculate the settling velocity based on the grain size (Stockes, Zanke or Van Rijn formulae). Cohesive sediment properties COHESIVE SEDIMENTS VOLUME CONCENTRATION OF THE COHESIVE BED.Default value is 0.08 Use the subroutines User_Krone_part.f to define the parameter of the Krone and Partheniades erosion deposition law, critical erosion velocity and deposition velocity (M, u*ce, u*cd).

4 Sediment transport parameters: RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER BED LOAD BED-LOAD TRANSPORT FORMULA Default value : KSPRATIO = 3 Ksp= KSPRATIO D50 Default value is YES 10 bed-load or total load transport formulations have been implemented in SISYPHE. (3), (30) and (9) should not be used if suspension is to be considered as well. (4), (5), (8) and (9) model the transport under the combined action of currents and waves. SHIELDS PARAMETER Default value is SLOPING BED EFFECT Koch and Flokstra BETA VALUE Empirical coefficient of the formula b= 1.3 FORMULA FOR SLOPE EFFECT Default = 1 : Koch and Flochstra as a function of 2. Soulsby SUSPENSION REFERENCE CONCENTRATION FORMULA EQUILIBRIUM INFLOW CONCENTRATION INITIAL SUSPENSION CONCENTRATION 'CONCENTRATION PER CLASS AT BOUNDARIES' CORRECTION ON CONVECTION VELOCITY (1) Zyserman and Fredsoe formula (2) Bijker concentrations on the boundary are calculated assuming equilibrium conditions Default value is 0 Imposed concentrations on the boundary Default is NO

5 Those parameters need only to be specified if the model is used alone. They will not be accounted for, if Sisyphe is coupled internally with Telemac: The flow field can be either given in the fortran, within the user-subroutine condim_sisyphe.f Or it can be prescribed from a previous Telemac run. TIME STEP NUMBER OF TIME STEPS HYDRODYNAMIC FILE LAW OF BOTTOM FRICTION FRICTION COEFFICIENT Previous Telemac 2d results choice between wave induced ripple height (1), Chezy (2), Strickler (3), Manning (4), or Nikuradse (5) formulations; default law is Strickler When Sisyphe is coupled internally to Telemac, those keywords need to be specified in Telemac steering file COUPLING WITH SISYPHE STEERING FILE COUPLING PERIOD SISYPHE Ratio between SISYPHE and TELEMAC-2D time steps (must be an integer) In the coupled runs, the time step of Sisyphe is equal to the hydrodynamic time multiplied by the coupling period. Therefore it does not need to be specified. The total friction is also calculated by the hydrodynamic model and key words like FRICTION LAW and FRICTION COEFFICIENT are no longer needed.

6 Principal keywords related to suspended sediment transport SUSPENSION SETTLING VELOCITIES OPTION FOR THE DISPERSION DISPERSION ALONG THE FLOW DISPERSION ACROSS THE FLOW.!! if the user wants to activate transport by suspension, not only has this keyword to be set to YES, but the user subroutine USER_KRONE_PART.f also has to be modified to define sensible values for erosion and deposition critical shear velocities. By default, these values are such that there is no erosion and no deposition. for each sediment class. If this keyword is not in the CAS file, the subroutine vitchu-sisyphe is used to calculate the settling velocity based on the grain size (Stockes, Zanke or Van Rijn formulae). Default option is 1, whereby dispersion along and across the flow are set to a constant value by the user. Default value is 1.E-2 Default value is 1.E-2 For waves effect : EFFECT OF WAVES WAVE FILE name of a file containing the results a previous wave computation made on the same mesh. (use of TOMAWAC)

7 User subroutines Following is a list and short description of the FORTRAN subroutines available to the user in the context of SISYPHE: condim_sisyphe.f : Initial conditions condim_susp.f : Initial conditions for suspension conlit.f : Boundary conditions for suspension (EBOR=bed evolution; CBOR=suspended sediment concentration). Useful for time varying simulations since conlit is called at each timestep. A fixed bottom elevation / depth is usually imposed at the boundaries with an inflow, whereas free evolution of the bottom is usually imposed at the boundaries with an outflow. corrxy.f : Mesh geometry modification (in BIEF) corstr_sisyphe.f : Time varying roughness coefficient gf_user.f : Grain feeding init_compo.f : Bed composition init_constant.f : Definition of physical constants (gravity ) noerod.f : No erodable bottom nomvar_sisyphe.f : Name of stored variables predes.f : Computation of new variables qsform.f : User transport formula strche.f : Space varying roughness coefficient user_krone_part.f : Definition of Krone/Partheniades law for cohesive sediments (M,VITCD, threshold for deposition and VITCE, threshold for erosion)

Sisyphe v6.3 User's Manual

Sisyphe v6.3 User's Manual NATIONAL HYDRAULICS AND ENVIRONMENT LABORATORY NUMERICAL AND PHYSICAL MODELLING IN RIVER AND COASTAL HYDRODYNAMICS 6 quai Watier - 78401 CHATOU CEDEX, +33 (1) 30 87 79 46 Front Page January 13 2014 Sisyphe

More information

Temporal variability of partially-contaminated sediments in a strongly regulated reservoir of the upper Rhine River

Temporal variability of partially-contaminated sediments in a strongly regulated reservoir of the upper Rhine River Temporal variability of partially-contaminated sediments in a strongly regulated reservoir of the upper Rhine River Germain Antoine 1,2,, Thomas Pretet 1,3,, Matthieu Secher 3,, and Anne Clutier 3, 1 Laboratoire

More information

ESTIMATION OF MORPHOLOGICAL IMPACT OF GROYNE LENGTHENING I. RÁTKY, ÉVA RÁTKY

ESTIMATION OF MORPHOLOGICAL IMPACT OF GROYNE LENGTHENING I. RÁTKY, ÉVA RÁTKY ESTIMATION OF MORPHOLOGICAL IMPACT OF GROYNE LENGTHENING I. RÁTKY, ÉVA RÁTKY Abstract. Hydraulic-morphological calculations in open channel flows still cause problems for modellers, partially because of

More information

How to predict the sedimentological impacts of reservoir operations?

How to predict the sedimentological impacts of reservoir operations? ICSE 212 How to predict the sedimentological impacts of reservoir operations? E. Valette EDF CIH eric.valette@edf.fr M. Jodeau EDF R&D LNHE magali.jodeau@edf.fr Presentation of the numerical code Courlis

More information

Sediment Transport, Numerical Modeling and Reservoir Management some Concepts and Applications

Sediment Transport, Numerical Modeling and Reservoir Management some Concepts and Applications Sediment Transport, Numerical Modeling and Reservoir Management some Concepts and Applications CEMRACS 2013 August 6 th Magali Jodeau EDF R&D LNHE magali.jodeau@edf.fr Overview of the presentation What

More information

Research Topic Updated on Oct. 9, 2014

Research Topic Updated on Oct. 9, 2014 Research Topic Updated on Oct. 9, 204 Mixed Cohesive/Non-cohesive Sediments Sedimentation in Estuary: Flocculation Deposition Erosion Transport Consolidation *: It has been recognized that when the fraction

More information

Figure 34: Coordinate system for the flow in open channels.

Figure 34: Coordinate system for the flow in open channels. OE466 redging Processes 5. SCOUR 5.. Steady uniform flow in open channels This chapter is written with a view to bottom scour. The main outcome is the scour velocity as a function of the particle diameter.

More information

Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke

Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke 1 Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke with contributions from Norwegian and international project partners 2 Outline 1. Introduction 2. Basic ideas of flow

More information

Sediment transport and river bed evolution

Sediment transport and river bed evolution 1 Chapter 1 Sediment transport and river bed evolution 1.1 What is the sediment transport? What is the river bed evolution? System of the interaction between flow and river beds Rivers transport a variety

More information

EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018

EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018 EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018 Q1. Using Cheng s formula estimate the settling velocity of a sand particle of diameter 1 mm in: (a) air; (b) water. Q2. Find the critical Shields parameter diameter

More information

Effect of bed roughness prediction on morphodynamic modelling: Application to the Dee estuary (UK) and to the Gironde estuary (France)

Effect of bed roughness prediction on morphodynamic modelling: Application to the Dee estuary (UK) and to the Gironde estuary (France) 34 th IAHR World Congress - Balance and Uncertainty 26 June - 1 July 2011, Brisbane, Australia 33 rd Hydrology & Water Resources Symposium 10 th Hydraulics Conference Effect of bed roughness prediction

More information

Numerical Simulation Of Sediment Transport And Bedmorphology Around A Hydraulic Structure On A River

Numerical Simulation Of Sediment Transport And Bedmorphology Around A Hydraulic Structure On A River City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 Numerical Simulation Of Sediment Transport And Bedmorphology Around A Hydraulic Structure On

More information

Sedimentation Scour Model Gengsheng Wei, James Brethour, Markus Grünzner and Jeff Burnham August 2014; Revised October 2014

Sedimentation Scour Model Gengsheng Wei, James Brethour, Markus Grünzner and Jeff Burnham August 2014; Revised October 2014 Flow Science Report 03-14 Sedimentation Scour Model Gengsheng Wei, James Brethour, Markus Grünzner and Jeff Burnham August 2014; Revised October 2014 1. Introduction The three-dimensional sediment scour

More information

SEDIMENT TRANSPORT MODELLING FOR COASTAL MORPHODYNAMICS. A.G. Davies 1 and C. Villaret 2

SEDIMENT TRANSPORT MODELLING FOR COASTAL MORPHODYNAMICS. A.G. Davies 1 and C. Villaret 2 SEDIMENT TRANSPORT MODELLING FOR COASTAL MORPHODYNAMICS A.G. Davies 1 and C. Villaret 2 Abstract: The accurate prediction of sand transport rates in the coastal zone depends not only upon the choice of

More information

A hydro-morphodynamic model integrating extended sediment particle size distribution and flocculation processes for better simulating hydro-sedimentary fluxes Jeremy Lepesqueur 1, Renaud Hostache 1, Núria

More information

Bed roughness feedback in TELEMAC-2D and SISYPHE

Bed roughness feedback in TELEMAC-2D and SISYPHE Bed roughness feedback in TELEMAC-2D and SISYPHE David L. McCANN, Alan G. DAVIES, James D. BENNELL School of Ocean Sciences, Bangor University Menai Bridge, Anglesey, UK, LL595AB d.l.mccann@bangor.ac.uk

More information

National Center for Earth-surface Dynamics: Renesse 2003: Non-cohesive Sediment Transport

National Center for Earth-surface Dynamics: Renesse 2003: Non-cohesive Sediment Transport Introduction to Morphodynamics For the original references on the work of Exner see Graf, W., 1971, Hydraulics of Sediment Transport, McGraw Hill, New York, 513 p. Sediment Properties Dietrich, E. W.,

More information

MIKE 21 ST. Non-Cohesive Sediment Transport Module. User Guide

MIKE 21 ST. Non-Cohesive Sediment Transport Module. User Guide MIKE 21 ST Non-Cohesive Sediment Transport Module User Guide DHI Software 2007 Software development by : JAZ/HKJ Written by: JAZ G:\f-share\MikeZero\new\source\manuals\M21\m21st\Cover.fm 22 January 2007

More information

Conclusion Evaluating Methods for 3D CFD Models in Sediment Transport Computations

Conclusion Evaluating Methods for 3D CFD Models in Sediment Transport Computations Conclusion Evaluating Methods for 3D CFD Models in Sediment Transport Computations Hamid Reza Madihi* 1, Bagher Keshtgar 2, Sina Hosseini Fard 3 1, 2, 3 M.Sc. Coastal Environmental Engineering, Graduate

More information

BED LOAD SEDIMENT TRANSPORT

BED LOAD SEDIMENT TRANSPORT BED LOAD SEDIMENT TRANSPORT Kamal EL KADI ABDERREZZAK EDF-R&D, Laboratoire National d Hydraulique et Environnement (LNHE) 1 17-19 September 2009 UNL, Santa Fe, Argentina OUTLINE I. Bed load II. Settling

More information

Texas A & M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory Model Description Form

Texas A & M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory Model Description Form Texas A & M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory Model Description Form JUNE, 1999 Name of Model: Two-Dimensional Alluvial River and Floodplain Model (MIKE21 CHD & CST)

More information

INTRODUCTION TO SEDIMENT TRANSPORT AUTUMN 2018

INTRODUCTION TO SEDIMENT TRANSPORT AUTUMN 2018 INTRODUCTION TO SEDIMENT TRANSPORT AUTUMN 2018 1. OVERVIEW 1.1 Introduction 1.2 Particle properties 1.2.1 Diameter, d 1.2.2 Specific gravity, s 1.2.3 Settling velocity, w s 1.2.4 Porosity, P 1.2.5 Angle

More information

MODELLING OF SEDIMENTATION OF DREDGED TRENCHES AND CHANNELS UNDER THE COMBINED ACTION OF TIDAL CURRENTS AND WAVES

MODELLING OF SEDIMENTATION OF DREDGED TRENCHES AND CHANNELS UNDER THE COMBINED ACTION OF TIDAL CURRENTS AND WAVES MODELLING OF SEDIMENTATION OF DREDGED TRENCHES AND CHANNELS UNDER THE COMBINED ACTION OF TIDAL CURRENTS AND WAVES D.J.R. Walstra 1, L.C. Van Rijn 1, S.E. Hoogewoning 2, S.G.J. Aarninkhof 1 Abstract: The

More information

National Center for Earth-surface Dynamics: Renesse 2003: Non-cohesive Sediment Transport

National Center for Earth-surface Dynamics: Renesse 2003: Non-cohesive Sediment Transport National Center or Earth-surace Dynamics: Summary o Lectures on Transport o Non-Cohesive Sediment What is Morphodynamics? Sediment Properties Modes o Transport o Sediment Equations or Conservation o Bed

More information

Chester River Shallow Water Project SCHISM model results

Chester River Shallow Water Project SCHISM model results Chester River Shallow Water Project SCHISM model results Harry Wang, Joseph Zheng, Fei Ye, Zhengui Wang, and Xiaonan Li Virginia Institute of Marine Science, College of William and Mary Gloucester Point,

More information

Influence of extreme events on sedimentation in sedimentation fields enclosed by brushwood fences

Influence of extreme events on sedimentation in sedimentation fields enclosed by brushwood fences Influence of extreme events on sedimentation in sedimentation fields enclosed by brushwood fences A. Matheja Franzius-Institute for Hydraulic, Waterways and Coastal Engineering, University of Hannover,

More information

2D NUMERICAL CODE TO SIMULATE THE TRANSPORT AND DEPOSITION OF DISSOLVED AND PARTICULATE CONTAMINANTS IN A FLOOD RETENTION RESERVOIR

2D NUMERICAL CODE TO SIMULATE THE TRANSPORT AND DEPOSITION OF DISSOLVED AND PARTICULATE CONTAMINANTS IN A FLOOD RETENTION RESERVOIR DVNCES IN HYDRO-SCIENCE ND ENGINEERING, VOLUME VI 1 2D NUMERICL CODE TO SIMULTE THE TRNSPORT ND DEPOSITION OF DISSOLVED ND PRTICULTE CONTMINNTS IN FLOOD RETENTION RESERVOIR George Jacoub 1 and Bernhard

More information

XXIIIrd TELEMAC-MASCARET User Conference

XXIIIrd TELEMAC-MASCARET User Conference Proceedings of the XXIIIrd TELEMAC-MASCARET User Conference 11 to 13 October 2016, Paris, France Assembled and edited by Sébastien Bourban and members of the Scientiic Committee Proceedings of the XXIII

More information

Final Report for TWDB Contract No

Final Report for TWDB Contract No Final Report for TWDB Contract No. 1004831127 Sediment Transport Modeling of Channel Scale Geomorphic Processes J.K. Haschenburger University of Texas at San Antonio July 31, 2012 1 Introduction This study

More information

SEDLIB Multiple Grain Sized Mixed Sediment Library: Technical Manual

SEDLIB Multiple Grain Sized Mixed Sediment Library: Technical Manual SEDLIB Multiple Grain Sized Mixed Sediment Library: Technical Manual Corresponding to SEDLIB v.1.2 Gary L Brown, Corey Trahan, Jennifer N Tate, Gaurav Savant February, 2014 1 SEDLIB Multiple Grain Sized

More information

PREDICTION ON MORPHOLOGICAL RESPONSE OF DREDGED SAND-BORROW PITS. Qimiao Lu 1 and Robert B. Nairn 1

PREDICTION ON MORPHOLOGICAL RESPONSE OF DREDGED SAND-BORROW PITS. Qimiao Lu 1 and Robert B. Nairn 1 PREDICTION ON MORPHOLOGICAL RESPONSE OF DREDGED SAND-BORROW PITS Qimiao Lu 1 and Robert B. Nairn 1 Dredged pits in coastal zones are generally required for sand borrows for beach nourishment. The morphological

More information

Hindcasting morphodynamic evolution with sand mud interactions in the Yangtze Estuary

Hindcasting morphodynamic evolution with sand mud interactions in the Yangtze Estuary doi:10.5194/piahs-368-430-2015 430 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Hindcasting morphodynamic

More information

Dealing with Sedimental Transport Over Partly Non-Erodible Bottoms

Dealing with Sedimental Transport Over Partly Non-Erodible Bottoms Utah State University DigitalCommons@USU International Junior Researcher and Engineer Workshop on Hydraulic Structures Jun 17th, 12:00 AM - Jun 20th, 12:00 AM Dealing with Sedimental Transport Over Partly

More information

Development and application of demonstration MIKE 21C morphological model for a bend in Mekong River

Development and application of demonstration MIKE 21C morphological model for a bend in Mekong River Development and application of demonstration MIKE 21C morphological model for a bend in Mekong River September 2015 0 Table of Contents 1. Introduction... 2 2. Data collection... 3 2.1 Additional data...

More information

ADH Sediment Module Testing

ADH Sediment Module Testing ADH Sediment Module Testing By Jennifer N. Tate and R. C. Berger PURPOSE: The Kate Aubrey reach of the Mississippi River, located north of Memphis, TN, was used as a test domain for the ADaptive Hydraulics

More information

U.S. Army Corps of Engineers Detroit District. Sediment Trap Assessment Saginaw River, Michigan

U.S. Army Corps of Engineers Detroit District. Sediment Trap Assessment Saginaw River, Michigan U.S. Army Corps of Engineers Detroit District December 2001 December 2001 This report has been prepared for USACE, Detroit District by: W.F. BAIRD & ASSOCIATES LTD. 2981 YARMOUTH GREENWAY MADISON, WISCONSIN

More information

WQMAP (Water Quality Mapping and Analysis Program) is a proprietary. modeling system developed by Applied Science Associates, Inc.

WQMAP (Water Quality Mapping and Analysis Program) is a proprietary. modeling system developed by Applied Science Associates, Inc. Appendix A. ASA s WQMAP WQMAP (Water Quality Mapping and Analysis Program) is a proprietary modeling system developed by Applied Science Associates, Inc. and the University of Rhode Island for water quality

More information

Evaluating methods for 3D CFD Models in sediment transport computations

Evaluating methods for 3D CFD Models in sediment transport computations American Journal of Civil Engineering 2015; 3(2-2): 33-37 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/ajce) doi: 10.11648/j.ajce.s.2015030202.17 ISSN: 2330-8729 (Print);

More information

Securing Manoeuverability of a Deep Draft Ship in a Sediment loaded Tidal River Berth

Securing Manoeuverability of a Deep Draft Ship in a Sediment loaded Tidal River Berth Securing Manoeuverability of a Deep Draft Ship in a Sediment loaded Tidal River Berth O. Stoschek 1, A. Matheja 1 & C. Zimmermann 1 1 Franzius-Institute for Hydraulic, Waterways and Coastal Engineering,

More information

Computers & Geosciences

Computers & Geosciences Computers & Geosciences 53 (2013) 105 113 Contents lists available at SciVerse ScienceDirect Computers & Geosciences journal homepage: www.elsevier.com/locate/cageo Morphodynamic modeling using the Telemac

More information

WATER INJECTION DREDGING by L.C. van Rijn

WATER INJECTION DREDGING by L.C. van Rijn WATER INJECTION DREDGING by L.C. van Rijn (info@leovanrijn-sediment.com) Description of method Almost all harbour basins suffer from the problem of siltation of sediments. Usually, the deposited materials

More information

PART 2:! FLUVIAL HYDRAULICS" HYDROEUROPE

PART 2:! FLUVIAL HYDRAULICS HYDROEUROPE PART 2:! FLUVIAL HYDRAULICS" HYDROEUROPE 2009 1 HYDROEUROPE 2009 2 About shear stress!! Extremely complex concept, can not be measured directly!! Computation is based on very primitive hypotheses that

More information

MIKE 21 & MIKE 3 Flow Model FM. Mud Transport Module. Short Description

MIKE 21 & MIKE 3 Flow Model FM. Mud Transport Module. Short Description MIKE 21 & MIKE 3 Flow Model FM Mud Transport Module Short Description DHI headquarters Agern Allé 5 DK-2970 Hørsholm Denmark +45 4516 9200 Telephone +45 4516 9333 Support +45 4516 9292 Telefax mike@dhigroup.com

More information

Morphodynamic Model Suitable for River Flow and Wave-Current Interaction

Morphodynamic Model Suitable for River Flow and Wave-Current Interaction IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Morphodynamic Model Suitable for River Flow and Wave-Current Interaction To cite this article: Silvia Bosa et al 27 IOP Conf.

More information

2. Governing Equations

2. Governing Equations 1. Introduction Submarine pipeline, unlike any other hydraulic structures that are vertically erected, are laid horizontally on the bed of oceans and rivers. Hence, the design of submarine pipelines associated

More information

3 Theoretical Basis for SAM.sed Calculations

3 Theoretical Basis for SAM.sed Calculations 3 Theoretical Basis for SAM.sed Calculations Purpose Sediment transport functions can be used to calculate the bed material portion of the sediment discharge rating curve. This rating curve can then be

More information

The simulation tool DredgeSim Predicting dredging needs in 2- and 3-dimensional models to evaluate dredging strategies

The simulation tool DredgeSim Predicting dredging needs in 2- and 3-dimensional models to evaluate dredging strategies River Flow 2010 - Dittrich, Koll, Aberle & Geisenhainer (eds) - 2010 Bundesanstalt für Wasserbau ISBN 978-3-939230-00-7 The simulation tool DredgeSim Predicting dredging needs in 2- and 3-dimensional models

More information

Effect of turbulence on tidal suspended transport. B.A. O'Connor Department of Civil Engineering, University of Liverpool, UK

Effect of turbulence on tidal suspended transport. B.A. O'Connor Department of Civil Engineering, University of Liverpool, UK Effect of turbulence on tidal suspended transport B.A. O'Connor Department of Civil Engineering, University of Liverpool, UK Abstract The effect of enhanced turbulence upon tidal suspended transport has

More information

NUMERICAL SIMULATION OF EROSION PROCESSES ON CROSSBAR BLOCK RAMPS

NUMERICAL SIMULATION OF EROSION PROCESSES ON CROSSBAR BLOCK RAMPS E-proceedings of the 36 th IAHR World Congress NUMERICAL SIMULATION OF EROSION PROCESSES ON CROSSBAR BLOCK RAMPS MARIO OERTEL (1), JAN P. BALMES (2), DANIEL B. BUNG (3) (1) Hydraulic Engineering Section,

More information

Adaptive Hydraulics (AdH) Version 4.6 Sediment Transport User Manual

Adaptive Hydraulics (AdH) Version 4.6 Sediment Transport User Manual Adaptive Hydraulics (AdH) Version 4.6 Sediment Transport User Manual A TWO-DIMENSIONAL MODELING SYSTEM DEVELOPED BY THE COASTAL AND HYDRAULICS LABORATORY June 2017 Adaptive Hydraulics (AdH) SedLib Version

More information

What? River response to base level rise. The morphodynamic system. Why? Channel-forming discharge. Flow. u = What s in a name. Flow Sediment transport

What? River response to base level rise. The morphodynamic system. Why? Channel-forming discharge. Flow. u = What s in a name. Flow Sediment transport River response to base level rise and other boundary conditions Dr. Maarten Kleinhans Summer course climate change and fluvial systems Course materials of Prof. Gary Parker Flow Sediment transport What?

More information

Small-scale physical modelling of scour at bridge piers with light-weight sediments

Small-scale physical modelling of scour at bridge piers with light-weight sediments Small-scale physical modelling of scour at bridge piers with light-weight sediments S. Perrin ARTELIA Eau & Environnement, Grenoble, France C. Keppers, S. Roux ARTELIA International, Dubai, United Arab

More information

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling Attachment B-1 Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling 1 October 2012 Lower Susquehanna River Watershed Assessment Evaluation of AdH Model Simplifications

More information

CHAPTER 126 ^^^C^SR, SEDIMENTATION STUDIES ON THE NIGER RIVER DELTA

CHAPTER 126 ^^^C^SR, SEDIMENTATION STUDIES ON THE NIGER RIVER DELTA CHAPTER 126 SEDIMENTATION STUDIES ON THE NIGER RIVER DELTA Ramiro Mayor-Mora, D. Eng. (1) Preben Mortensen, M.Sc. (2) Jorgen Fredsoe, M.Sc. (2) 1. Introduction An area of the Niger River Delta was studied

More information

Particle Tracking Model (PTM): II. Overview of Features and Capabilities

Particle Tracking Model (PTM): II. Overview of Features and Capabilities Particle Tracking Model (PTM): II. Overview of Features and Capabilities PURPOSE: This Dredging Operations and Engineering Research (DOER) Technical Note (TN) is the second in a series. It describes the

More information

Sand Ripple Dynamics on the Inner Shelf

Sand Ripple Dynamics on the Inner Shelf Sand Ripple Dynamics on the Inner Shelf Donald N. Slinn Department of Civil and Coastal Engineering, University of Florida Gainesville, FL 32611-6590, Phone: (352) 392-9537 x 1431 Fax: (352) 392-3466 E-mail:

More information

Archimer

Archimer Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site Continental

More information

MIKE 21 & MIKE 3 Flow Model FM. Sand Transport Module. Scientific Documentation

MIKE 21 & MIKE 3 Flow Model FM. Sand Transport Module. Scientific Documentation MIKE & MIKE 3 Flow Model FM Sand Transport Module Scientific Documentation MIKE 7 DHI headquarters Agern Allé 5 DK-97 Hørsholm Denmark +45 456 9 Telephone +45 456 9333 Support +45 456 99 Telefax mike@dhigroup.com

More information

A model for the simulation of coupled flow bed form evolution in turbulent flows

A model for the simulation of coupled flow bed form evolution in turbulent flows JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010jc006103, 2010 A model for the simulation of coupled flow bed form evolution in turbulent flows Yi Ju Chou 1 and Oliver. Fringer 1 Received 7

More information

Sediment and Water Quality in HEC-RAS. Mark Jensen

Sediment and Water Quality in HEC-RAS. Mark Jensen Sediment and Water Quality in HEC-RAS Mark Jensen The HEC-RAS Modeling System 1D River Hydraulics Graphical User Interface Steady & Unsteady Flow Bridges, Culverts, Dams, weirs, gates, etc Data storage/management

More information

HUMBERTO AVILA, M.Sc. Ph.D. student. Factors Affecting Scour of Previously Captured Sediment from Stormwater Catchbasin Sumps. Experimental Design

HUMBERTO AVILA, M.Sc. Ph.D. student. Factors Affecting Scour of Previously Captured Sediment from Stormwater Catchbasin Sumps. Experimental Design HUMBERTO AVILA, M.Sc. Ph.D. student Academic Background: Ph.D. Student in Water Resources Engineering at the University of Alabama. Currently working on Computational Fluid Dynamics and Physical Modeling

More information

MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq Shakir

MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq Shakir ISSN 2320-9100 11 International Journal of Advance Research, IJOAR.org Volume 1, Issue 8,August 2013, Online: ISSN 2320-9100 MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq

More information

Applying Gerris to Mixing and Sedimentation in Estuaries

Applying Gerris to Mixing and Sedimentation in Estuaries Applying Gerris to Mixing and Sedimentation in Estuaries Timothy R. Keen U.S. Naval Research Laboratory Stennis Space Center, Mississippi, U.S.A. 4 July 2011 Université Pierre et Marie Curie Paris, France

More information

Module 2. The Science of Surface and Ground Water. Version 2 CE IIT, Kharagpur

Module 2. The Science of Surface and Ground Water. Version 2 CE IIT, Kharagpur Module The Science of Surface and Ground Water Lesson Sediment Dynamics in Alluvial Rivers and Channels Instructional Objectives On completion of this lesson, the student shall be able to learn the following:.

More information

HUMBERTO AVILA, M.Sc. Ph.D. student

HUMBERTO AVILA, M.Sc. Ph.D. student HUMBERTO AVILA, M.Sc. Ph.D. student Academic Background: Ph.D. Student in Water Resources Engineering at the University of Alabama. Currently working on Computational Fluid Dynamics and Physical Modeling

More information

Erosion of sand under high flow velocities

Erosion of sand under high flow velocities Delft University of Technology Faculty of Mechanical, Maritime and Materials Engineering Department of Offshore Engineering Erosion of sand under high flow velocities Author: Juneed Sethi MSc Thesis Thesis

More information

Fluvial Dynamics. M. I. Bursik ublearns.buffalo.edu October 26, Home Page. Title Page. Contents. Page 1 of 18. Go Back. Full Screen. Close.

Fluvial Dynamics. M. I. Bursik ublearns.buffalo.edu October 26, Home Page. Title Page. Contents. Page 1 of 18. Go Back. Full Screen. Close. Page 1 of 18 Fluvial Dynamics M. I. Bursik ublearns.buffalo.edu October 26, 2008 1. Fluvial Dynamics We want to understand a little of the basic physics of water flow and particle transport, as so much

More information

Aqueous and Aeolian Bedforms

Aqueous and Aeolian Bedforms Aqueous and Aeolian Bedforms 1 Further reading & review articles R.A. Bagnold, 1941, The physics of blown sand and desert dunes Charru et al., 2013, Sand ripples and dunes, Ann. Review of Fluid Mech. 2

More information

ONE-DIMENSIONAL (1-D) FLOW AND SEDIMENT TRANSPORT NUMERICAL MODELS

ONE-DIMENSIONAL (1-D) FLOW AND SEDIMENT TRANSPORT NUMERICAL MODELS ONE-DIMENSIONAL (1-D) FLOW AND SEDIMENT TRANSPORT NUMERICAL MODELS Kamal EL KADI ABDERREZZAK EDF-R&D, Laboratoire National d Hydraulique et Environnement (LNHE) 1 17-19 September 2009 UNL, Santa Fe, Argentina

More information

1 Slope Stability for a Cohesive and Frictional Soil

1 Slope Stability for a Cohesive and Frictional Soil Slope Stability for a Cohesive and Frictional Soil 1-1 1 Slope Stability for a Cohesive and Frictional Soil 1.1 Problem Statement A common problem encountered in engineering soil mechanics is the stability

More information

Development, Testing and Application of the Multi-Block LTFATE Hydrodynamic and Sediment Transport Model

Development, Testing and Application of the Multi-Block LTFATE Hydrodynamic and Sediment Transport Model Development, Testing and Application of the Multi-Block LTFATE Hydrodynamic and Sediment Transport Model Earl Hayter Environmental Lab October 25, 2012 LTFATE Multi-Block Hydrodynamic, Water Quality and

More information

Calibration of CCHE2D for Sediment Simulation of Tarbela Reservoir

Calibration of CCHE2D for Sediment Simulation of Tarbela Reservoir Calibration of CCHE2D for Sediment Simulation of Tarbela Reservoir M.Uzair Qamar and Faisal Baig ABSTRACT_ The numerical model CCHE2D has been applied to simulate flow field for the Tarbela Reservoir on

More information

Paper - SIMULATION OF SEDIMENTATION PROCESSES IN RIVER PLATE S WATERWAYS, 15 YEARS OF HISTORY

Paper - SIMULATION OF SEDIMENTATION PROCESSES IN RIVER PLATE S WATERWAYS, 15 YEARS OF HISTORY Paper - SIMULATION OF SEDIMENTATION PROCESSES IN RIVER PLATE S WATERWAYS, 15 YEARS OF HISTORY NORMAN MARIA CECILIA (1), PETRONI RICARDO NICOLAS (2) (1) Civil and Port Engineer, (2) Hydraulic and Civil

More information

Reactivation of Klingnau reservoir sidearm: Numerical simulation of sediment release downstream

Reactivation of Klingnau reservoir sidearm: Numerical simulation of sediment release downstream River Flow 2014 Schleiss et al. (Eds) 2014 Taylor & Francis Group, London, ISBN 978-1-138-02674-2 Reactivation of Klingnau reservoir sidearm: Numerical simulation of sediment release downstream A. Amini

More information

HYDRAULIC STRUCTURES, EQUIPMENT AND WATER DATA ACQUISITION SYSTEMS - Vol. I - Hydraulics of Two-Phase Flow: Water and Sediment - G R Basson

HYDRAULIC STRUCTURES, EQUIPMENT AND WATER DATA ACQUISITION SYSTEMS - Vol. I - Hydraulics of Two-Phase Flow: Water and Sediment - G R Basson HYDRAULICS OF TWO-PHASE FLOWS: WATER AND SEDIMENT G R Basson Dept. of Civil Engineering, University of Stellenbosch, South Africa. Keywords: sediment, sediment transport, turbulence, river regime, stream

More information

Erosion Rate is a Function of Erodibility and Excess Shear Stress = k ( o - c ) From Relation between Shear Stress and Erosion We Calculate c and

Erosion Rate is a Function of Erodibility and Excess Shear Stress = k ( o - c ) From Relation between Shear Stress and Erosion We Calculate c and Equilibrium, Shear Stress, Stream Power and Trends of Vertical Adjustment Andrew Simon USDA-ARS, Oxford, MS asimon@msa-oxford.ars.usda.gov Non-Cohesive versus Cohesive Materials Non-cohesive: sands and

More information

SEDIMENT TRANSPORT AND GO-CONG MORPHOLOGICAL CHANGE MODELING BY TELEMAC MODEL SUITE

SEDIMENT TRANSPORT AND GO-CONG MORPHOLOGICAL CHANGE MODELING BY TELEMAC MODEL SUITE SEDIMENT TRANSPORT AND GO-CONG MORPHOLOGICAL CHANGE MODELING BY TELEMAC MODEL SUITE TABLE OF CONTENTS 1. INTRODUCTION... 2 2. OBJECTIVES... 2 3. METHOLOGY... 2 4. MODEL CALIBRATION, VALIDATION OF SEDIMENT

More information

Numerical modelling of morphological stability of proposed restoration measures along the Havel River

Numerical modelling of morphological stability of proposed restoration measures along the Havel River Numerical modelling of morphological stability of proposed restoration measures along the Havel River Small scale morphological evolution of coastal, estuarine and rivers systems 6 7 October 2014, Nantes,

More information

Geomorphological Modelling in Coastal Waters

Geomorphological Modelling in Coastal Waters Abstract Geomorphological Modelling in Coastal Waters Morteza Kolahdoozan 1, Roger A. Falconer 2 (Fellow), Yiping Chen 3 Details are given herein of the development and application of a three dimensional

More information

Objectives This tutorial demonstrates how to perform sediment transport simulations in SRH-2D.

Objectives This tutorial demonstrates how to perform sediment transport simulations in SRH-2D. SMS v. 12.2 SRH-2D Tutorial Objectives This tutorial demonstrates how to perform sediment transport simulations in SRH-2D. Prerequisites SMS Overview tutorial SRH-2D Requirements SRH-2D Model Map Module

More information

Analysis of the Sediment Transport Capabilities of TUFLOW

Analysis of the Sediment Transport Capabilities of TUFLOW Brigham Young University BYU ScholarsArchive All Theses and Dissertations 29-8-7 Analysis of the Sediment Transport Capabilities of TUFLOW Cameron G. Jenkins Brigham Young University - Provo Follow this

More information

Towards the prediction of free-forming meander formation using 3D computational fluid dynamics

Towards the prediction of free-forming meander formation using 3D computational fluid dynamics Wasserbaukolloquium 2006: Strömungssimulation im Wasserbau 31 Dresdner Wasserbauliche Mitteilungen Heft 32 Towards the prediction of free-forming meander formation using 3D computational fluid dynamics

More information

Università degli Studi di Napoli Federico II Facoltà di Ingegneria

Università degli Studi di Napoli Federico II Facoltà di Ingegneria Università degli Studi di Napoli Federico II Facoltà di Ingegneria Dottorato di Ricerca XX ciclo in Ingegneria dei Sistemi Idraulici, di Trasporto e Territoriali A procedure to store and access the stratigraphy

More information

Investigation on Dynamics of Sediment and Water Flow in a Sand Trap

Investigation on Dynamics of Sediment and Water Flow in a Sand Trap Investigation on Dynamics of Sediment and Water Flow in a Sand Trap M. R. Mustafa Department of Civil Engineering Universiti Teknologi Petronas 31750 Tronoh, Perak, Malaysia R. B. Rezaur Water Resources

More information

Improving sediment management in the reservoirs of the Lower Isère: a modelling-based approach

Improving sediment management in the reservoirs of the Lower Isère: a modelling-based approach ICSE6-169 Improving sediment management in the reservoirs of the Lower Isère: a modelling-based approach Jean-Claude CARRE 1, Pierre NEGRELLO 2, Sébastien MENU 2 1 SOGREAH Groupe ARTELIA BP 172 38042 Grenoble

More information

COMPARISON OF TRANSPORT AND FRICTION OF MONO- SIZED AND TWO-SPECIES SEDIMENT IN UPPER PLANE BED REGIME

COMPARISON OF TRANSPORT AND FRICTION OF MONO- SIZED AND TWO-SPECIES SEDIMENT IN UPPER PLANE BED REGIME ISBN 978-83-927084-8-3 ISSN 0867-7964 COMPARISON OF TRANSPORT AND FRICTION OF MONO- SIZED AND TWO-SPECIES SEDIMENT IN UPPER PLANE BED REGIME Štěpán Zrostlík, Vojtěch Bareš, Jan Krupička, Tomáš Picek, Václav

More information

Suspension sorting at the Sand Motor NCK theme day

Suspension sorting at the Sand Motor NCK theme day Suspension sorting at the Sand Motor NCK theme day B.J.A. Huisman oct 2010 may 2011 oct 2013 feb 2014 1 Context PhD research Where do the sand grains go? Bed composition changes Case : Sand Motor Big disturbance!

More information

TIDAL FLAT EVOLUTION AT THE CENTRAL JIANGSU COAST, CHINA

TIDAL FLAT EVOLUTION AT THE CENTRAL JIANGSU COAST, CHINA Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 211) December 14 16, 211, Hong Kong, China TIDAL FLAT EVOLUTION AT THE CENTRAL JIANGSU COAST, CHINA Z. GONG State Key

More information

SIMPLE GENERAL FORMULAE FOR SAND TRANSPORT IN RIVERS, ESTUARIES AND COASTAL WATERS by L.C. van Rijn (www.leovanrijn-sediment.com)

SIMPLE GENERAL FORMULAE FOR SAND TRANSPORT IN RIVERS, ESTUARIES AND COASTAL WATERS by L.C. van Rijn (www.leovanrijn-sediment.com) SIMPLE GENERAL FORMULAE FOR SAND TRANSPORT IN RIVERS, ESTUARIES AND COASTAL WATERS by L.C. van Rijn (www.leovanrijn-sediment.com) 1. General characteristics Sand can be transported by gravity-, wind-,

More information

Modeling of long-term sedimentation in the Osijek port basin

Modeling of long-term sedimentation in the Osijek port basin Water Management and Hydraulic Engineering 2015 Litera Brno, ISBN 978-80-214-5230-5, ISSN 2410-5910 Modeling of long-term sedimentation in the Osijek port basin G. Gilja, N. Kuspilić (Faculty of civil

More information

Longitudinal dams as an alternative to wing dikes in river engineering. Fredrik Huthoff

Longitudinal dams as an alternative to wing dikes in river engineering. Fredrik Huthoff Longitudinal dams as an alternative to wing dikes in river engineering Fredrik Huthoff Contents Introduction Why consider longitudinal dams? Room for the river in the Netherlands The pilot study The Dutch

More information

Dynamics of the Ems Estuary

Dynamics of the Ems Estuary Dynamics of the Ems Estuary Physics of coastal systems Jerker Menninga 0439738 Utrecht University Institute for Marine and Atmospheric research Utrecht Lecturer: Prof. dr. H.E. de Swart Abstract During

More information

Applicability of a coastal morphodynamic model for fluvial environments Beevers, Lindsay Catherine; Popescu, Ioana; Pan, Quan; Pender, Douglas

Applicability of a coastal morphodynamic model for fluvial environments Beevers, Lindsay Catherine; Popescu, Ioana; Pan, Quan; Pender, Douglas Heriot-Watt University Heriot-Watt University Research Gateway Applicability of a coastal morphodynamic model for fluvial environments Beevers, Lindsay Catherine; Popescu, Ioana; Pan, Quan; Pender, Douglas

More information

Sediment continuity: how to model sedimentary processes?

Sediment continuity: how to model sedimentary processes? Sediment continuity: how to model sedimentary processes? N.M. Vriend 1 Sediment transport The total sediment transport rate per unit width is a combination of bed load q b, suspended load q s and wash-load

More information

Main issues of Deltas

Main issues of Deltas Global sediment supply to coastal seas and oceans; location of major river deltas RIVER DELTAS Depositional processes - Course Coastal Morphodynamics GEO3-436; lecture 4 Nile Delta, Egypt Solo Delta, Java,

More information

MIKE 21C Morphological and Hydrodynamic Modeling Software and its application on River Loire and Labe

MIKE 21C Morphological and Hydrodynamic Modeling Software and its application on River Loire and Labe Wasserbaukolloquium 2006: Strömungssimulation im Wasserbau Dresdner Wasserbauliche Mitteilungen Heft 32 117 MIKE 21C Morphological and Hydrodynamic Modeling Software and its application on River Loire

More information

Method for predicting sediment runoff processes and channel changes in West Rapti River, Nepal

Method for predicting sediment runoff processes and channel changes in West Rapti River, Nepal Method for predicting sediment runoff processes and channel changes in West Rapti River, Nepal Gopal Sharma* (MEE15628) ABSTRACT Supervisor: Dr. Atsuhiro Yorozuya** : Prof. Shinji Egashira*** Present study

More information

Coastal and Hydraulics Laboratory

Coastal and Hydraulics Laboratory SAM Hydraulic Design Package for Channels Coastal and Hydraulics Laboratory William A. Thomas, Ronald R. Copeland, and Dinah N. McComas September 2002 Approved for public release; distribution is unlimited.

More information

Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation

Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation Numerical Hydraulics Autumn semester 2016 Prof. Dr. Markus Holzner Author: Pascal

More information

Adaptive Hydraulics (AdH) Version 4.5 Sediment Transport User Manual

Adaptive Hydraulics (AdH) Version 4.5 Sediment Transport User Manual Adaptive Hydraulics (AdH) Version 4.5 Sediment Transport User Manual A TWO-DIMENSIONAL MODELING SYSTEM DEVELOPED BY THE COASTAL AND HYDRAULICS LABORATORY January 2015 Adaptive Hydraulics (AdH) SedLib

More information