Keywords: ASTER, SRTM, Digital Elevation Model, GPS-Levelling data, Validation.

Size: px
Start display at page:

Download "Keywords: ASTER, SRTM, Digital Elevation Model, GPS-Levelling data, Validation."

Transcription

1 ACCURACY ASSESSMENT OF ASTER AND SRTM DIGITAL ELEVATION MODELS: A CASE STUDY IN TURKEY H. Tugba Arli IL 1 Dr. R. Alpay ABBAK 2 1 Ministry of Health - Turkey 2 Selcuk University - Turkey ABSTRACT Digital Elevation Model (DEM) describes the physical and topographic information of earth s surface. Today, DEM produced by different methods is successfully utilized in many geospatial applications such as gravimetric geoid determination in geodesy, morphology analysis in geology, topographic map production in cartography etc. As known, every year, the new satellites are launched to space and provide the most current information about the earth s surface with different working principles and different image taking configurations and offer this information to end users from large variety disciplines. SRTM (Shuttle Radar Topography Mission) and ASTER (Advanced Spacebased Thermal Emission and Reflection Radiometer) are among these methods. ASTER has high resolution and superimposed image with Terra platform. SRTM aims to create a high resolution DEM of 80% of the Earth surface from radar images taken by Space Shuttle Endeavour. In this study, SRTM and ASTER DEM at one-arc second resolution are compared with local heights obtained from GPS-levelling data and accuracies of both DEMs are investigated in the territory of Turkey. The numerical results show that SRTM DEM gives better statics than ASTER DEM with respect to the local height data. Keywords: ASTER, SRTM, Digital Elevation Model, GPS-Levelling data, Validation.

2 17 th International Multidisciplinary Scientific GeoConference SGEM 2017 INTRODUCTION Developments in remote sensing technologies provide new possibilities for digital height data. It has become a need in today's world to determine the Digital Elevation Models as quickly and reliably as. Apart from geodetic, photogrammetric and remote sensing methods, Digital Elevation Models can also be constructed from topographic maps providing high position accuracy. In this method, numerical data is obtained by digitizing the maps. Although the digitization of maps is automatic, it often requires manual intervention of problems. This disadvantage means a large amount of time, which requires intensive effort as well as high cost. However, the application areas of conventional geodetic surveying techniques are limited depending on the physical conditions. Different height measurement methods have been developed using a wide variety of measuring equipment in some techniques that require laborious and intensive work. Methods such as precise leveling, global positioning system, stereo SAR, and InSAR (Interferometric SAR) are used to determine the temporal variation and spatial distribution of elevation. The nature of the altitude data, the accuracy expectations, the economic and other factors that are influential affect the choice of geodetic technique to be applied. Another important advantage of these techniques is that data collection is not required to be in the region and work locally. Digital Elevation Model (DEM) is used in many applications such as earth sciences, natural resources management, engineering projects, military applications, threedimensional visualization. The accuracy of the produced digital elevation model is important for different applications. Therefore, the investigation of the accuracy of the Digital Elevation Models produced remains important as a current field of study. In this study, it is aimed to determine the accuracy of height values obtained from SRTM (Shuttle Radar Topography Mission) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Models and to find out which height data has better precision. GLOBAL DIGITAL ELEVATION MODEL The elevation data of many regions are in the form of contour a map on the earth. Height values which are located on the maps with contour lines and irregular points, are transferred to the computer in the digital format and these files are converted to regular grid points. Grid points consist of a square shape covering the entire map surface, containing the height information of the coordinates in which they are located. The map created by these points is called grid map. The result is a model called the digital elevation model, in which the heights can be obtained as matrix points equally spaced horizontally and vertically [7]. The Global Digital Elevation Model is a suitable structure for showing the surface of the earth continuously changing in topography. This model is a general data source for terrain analysis and other 3D applications. In largescale standard topographic maps, it is desirable to keep the point density below roughly 30 m in Turkey. Considering the above criteria, a DEM which is between parallel and meridians for Turkey with a resolution of 1" 1" ( 30 30) consists of about 1.4 billion grid points. The width and intensity data corresponding to a field in Turkey width can be gathered by satellite techniques only in today's conditions. In this context, SRTM and ASTER are among the examples that can be given to GDEM Global Digital Elevation Models.

3 SRTM Model Shuttle Radar Topography mission (SRTM) is a joint project between US National Geographic Intelligence Agency (NGIA), German and Italian Space agencies under the leadership of the American National Aeronautics and Space Administration (NASA). The aim of the project is to create a high-resolution Digital Elevation Model of 80% of the world's surface (area between 60 degrees north and 50 degrees south latitudes) from radar images taken with the aid of a space shuttle. With the project, a section almost all of the ground except for the regions close to the poles was selected as a target and aimed at establishing a DEM that has reached the highest level of integrity in this field by then. Figure 1. SRTM Coverage Map (URL-1) The SRTM project was carried out by the Space Shuttle Endeavor on February Continuously collect data by viewing 99.97% of the earth in the mission area at least once (94.59% at least twice, 50% at three or more) with a 10-day orbital flight. Figure 1 is scanned area on the world map and the number of times it is displayed depending on the colors. The red areas on the map represent the not displayed land area. The areas covered by ocean waters are not taken into account (JPL, 2008). Figure 2. Space Shuttle used for SRTM (URL-2)

4 17 th International Multidisciplinary Scientific GeoConference SGEM 2017 SRTM equipment to obtain two radar images taken from different locations consists of two radars attached to one under the shuttle and the other is attached to a shuttle and attached to a 60 m long bar extending out from the shuttle (Maathuis, 2004). SRTM heights are published on NASA servers in 3 different resolutions which are 1 grid interval (~30 meters resolution), 3 (~90 meters) and 30 (about 1 km). The SRTM1 is in hgt format with geographic lat/long coordinates and a 1 arc-second (30 m) grid of elevation postings. It is referenced to the WGS84/EGM96 geoid. Accuracies for this global product were ± 16 meters for vertical data. ASTER Model Terra satellite which is part of NASA's Earth Observing System (EOS), was launched from Van Der Berg Air Base in California in December 1999 and began operations in February There are five different modules on the satellite, ASTER, MODIS, CERES, MOPITT and MISR. It is generated from data collected from Advanced Space Based Thermal Emission and Reflection Radiometer (ASTER) module, a spaceborne earth observing optical instrument with single high resolution and superimposed image capture capability. ASTER is the only high-resolution device on the Terra platform. ASTER module is an important device in that it serves as a zoom lens for other Terra devices at change detection, calibration/validity. It was produced in partnership with American NASA, the Japanese Ministry of Trade and Industry and scientific and industrial organizations of both countries (Abrams vd., 2003). Today, it is still operated by NASA Earth Observing System (EOS), Ministry of Economy Trade and Industry of Japan (METI) and Japan Earth Remote Sensing Data Analysis Center (ERSDAC). Table 1. General information about Terra Repeat Time 16 Day Revolution in a Day 14 Elevation Orbital Period 705 km min. Inclination 98.3 o Image capture is done only by ASTER'S VNIR sensor from Terra satellite. ASTER has 14 bands in total. For the 14 bands, which serve different purposes, the resolution values change to 15, 30 and 90 m. The first 3 bands of the ASTER suit are referred to as VNIR (Visible Near Infrared) bands and include visible and near infra-red spectral range. The spatial resolution is 15 m in the horizontal plane. The ASTER GDEM covers land surfaces between 83 N and 83 S and is composed of 22,600 1 Ï1 tiles. The ASTER GDEM is in GeoTIFF format with geographic lat/long coordinates and a 1 arc-second (30 m) grid of elevation postings. It is referenced to the WGS84/EGM96 geoid. Pre-production estimated accuracies for this global product were 20 meters at 95 % confidence for vertical data and 30 meters at 95 % confidence for horizontal data (URL-3).

5 NUMERICAL ANALYSIS Study Area The study area covers approximately 70,000 km² which is between Northern latitudes and Eastern longitudes (the provinces of Konya, Niğde, Aksaray and Karaman). Heights in the area are ranging from 50 m in the flat area to 3000 m in the mountainous areas (Fig. 3). This study area is an ideal study area in terms of containing different types of land cover and usage including water surface, urban, mountainous and agricultural areas. Figure 3. Study area Data Used As it is well known, the users should be aware of the accuracy of any model before use it in the project area. Accuracy is analyzed by reference data (ground truth). The reference data to be used in this study are 3074 GPS-Levelling heights with known positions provided by the Map General Command. Vertical datum is determined

6 17 th International Multidisciplinary Scientific GeoConference SGEM 2017 according to Antalya Tide gauge station. ASTER and SRTM1 data are available free of charge to users worldwide via electronic download. ASTER Model which global vertical accuracy is in the range of 7-14 meters and SRTM1 Model which Global vertical accuracy is 16 meters. Data can be downloaded from national agency web addresses. Table 2. General characteristics of SRTM1 And ASTER Data General Characteristics of Data Source SRTM1 ASTER Generation and distribution METI/NASA NASA/USGS Release year 2003 ~ 2009 ~ Temporal Extend 11 days (in 2000) 2000 on going Coordinate System Geographical latitude and longitude Horizontal Datum WGS84 WGS84 Vertical Datum EGM96 EGM96 Geographic Dimension 1 x 1 1 x 1 File Formats hgt Geotiff Geographical latitude and longitude Posting interval 1 arc-second (30 m) 1 arc-second (30 m) DEM accuracy ± 16 m 7 14 m Coverage Area of missing data 60 degrees north ~ 56 degrees south Topographically steep area (due to radar characteristics) 83 degress north 83 degrees south Areas with no ASTER data due to constant cloud cover (supplied by other DEM) Comparison In this study, after the ASTER and SRTM DEMs of 3074 geographical coordinates are transferred to the Global Mapper program separately with the required interpolation calculations, the heights obtained from the ASTER and SRTM models were compared with the GPS-Nivelman heights and the accuracy analyzes were made with respect to each other. The software generates difference maps by calculating the differences between height values with the same x, y coordinates for two height data and provides statistical information. The most important feature of this program is the use of many height data and vector data without the need to merge them together. The statistical data calculated according to the heights obtained from the ASTER and SRTM1 Models with reference to the control data are shown in Table 3.

7 Table 3. Statistical summary [m] Elevation Data Number of Points Min. Max. Median Mean Δh /n RMSE SRTM ASTER The outliers in the observation were determined by the 3-sigma rule. Outliers were eliminated then accuracy assessments were performed with 3019 points for SRTM1 and 2992 points for ASTER. The accuracy of SRTM1 is 1.06 times more accurate than that of ASTER in Turkey. CONCLUSION This study aimed to determine the accuracy of ASTER and SRTM1 against to a ground truth data in Turkey. In this context the heights of 3074 data, of which geographical coordinates are known, are interpolated from both DEMs and compared with GPSleveling height. According to statistical tests, the root mean square error of differences obtained from ASTER is ± m, and the root mean square error of differences obtained from SRTM1 is ± m. According to these results, the accuracy of the SRTM1 is times more accurate than that of the ASTER. If we assume that the leveling data in our hand is a few meters defective, the accuracy achieved for SRTM1 and ASTER remains within global accuracy limits. From the results of this study, it can be seen that the height data obtained from both Digital Elevation Models can be preferred in studies using scale maps of 1/ and above. REFERENCES [1] Abrams, M., Hook, S., Ramachandran, B., 2003, ASTER User Handbook Version 2. [2] Maathuis B., 2004, DEM from Active Sensor SRTM, WRS [3] JPL, The Shuttle Radar Topography Mission. Jet Propulsion Labratory, California Institute of Technology, , [4] URL [5]URL-2 [6] URL-3 [7] Venkatachalam, P,. Mohan, B.K., Kotwal, A., Mıshra, V., Muthuramakrıshnan, V., Pandya M., Automatic Delineation of Watersheds for Hydrological Applications Proc. ACRS nd Asian Conference on Remote Sensing, 5-9 November 2001, Singapore. Vol. 2, pp

ACCURACY ASSESSMENT OF ASTER GLOBAL DEM OVER TURKEY

ACCURACY ASSESSMENT OF ASTER GLOBAL DEM OVER TURKEY ACCURACY ASSESSMENT OF ASTER GLOBAL DEM OVER TURKEY E. Sertel a a ITU, Civil Engineering Faculty, Geomatic Engineering Department, 34469 Maslak Istanbul, Turkey sertele@itu.edu.tr Commission IV, WG IV/6

More information

Positional accuracy of the drainage networks extracted from ASTER and SRTM for the Gorongosa National Park region - Comparative analysis

Positional accuracy of the drainage networks extracted from ASTER and SRTM for the Gorongosa National Park region - Comparative analysis Positional accuracy of the drainage networks extracted from ASTER and SRTM for the Gorongosa National Park region - Comparative analysis Tiago CARMO 1, Cidália C. FONTE 1,2 1 Departamento de Matemática,

More information

COMPARISON OF SRTM AND 25K TOPOGRAPHIC MAPS IN TURKEY

COMPARISON OF SRTM AND 25K TOPOGRAPHIC MAPS IN TURKEY COMPARISON OF SRTM AND 25K TOPOGRAPHIC MAPS IN TURKEY Oztug Bildirici 1, Aydin Ustun, Necla Ulugtekin 2, H. Zahit Selvi 1, Alpay Abbak 1, Ilkay Bugdayci 1, A. Ozgur Dogru 2 1 Selcuk University, Faculty

More information

Geographic Information Systems class # 1 February 19, Coordinate reference systems in GIS: geodetic coordinates

Geographic Information Systems class # 1 February 19, Coordinate reference systems in GIS: geodetic coordinates Geographic Information Systems class # 1 February 19, 2013 Coordinate reference systems in GIS: geodetic coordinates Manuel Campagnolo ISA Manuel Campagnolo (ISA) GIS/SIG 2012 2013 February 19, 2013 1

More information

GIS and Remote Sensing

GIS and Remote Sensing Spring School Land use and the vulnerability of socio-ecosystems to climate change: remote sensing and modelling techniques GIS and Remote Sensing Katerina Tzavella Project Researcher PhD candidate Technology

More information

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 1, No 4, 2011

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 1, No 4, 2011 Accuracy and relevance of Digital Elevation Models for Geomatics applications A case study of Makkah Municipality, Saudi Arabia Mirza.M 1, 2, Dawod.G. 2, 3, and Al Ghamdi.K 2 1 Center of Research Excellence

More information

A Study On The Usabılıty Of Dıgıtal Elevatıon Models Obtaıned From Open Sources In The Productıon Of Contours: Comparıson Of Alos And Srtm Dem Data

A Study On The Usabılıty Of Dıgıtal Elevatıon Models Obtaıned From Open Sources In The Productıon Of Contours: Comparıson Of Alos And Srtm Dem Data A Study On The Usabılıty Of Dıgıtal Elevatıon Models Obtaıned From Open Sources In The Productıon Of Contours: Comparıson Of Alos And Srtm Dem Data S.Cabuk a, A.C. Kiracı, M.Kaya, M.Erdogan, O.Eker, A.Okul

More information

SPOT DEM Product Description

SPOT DEM Product Description SPOT DEM Product Description Version 1.1 - May 1 st, 2004 This edition supersedes previous versions Acronyms DIMAP DTED DXF HRS JPEG, JPG DEM SRTM SVG Tiff - GeoTiff XML Digital Image MAP encapsulation

More information

Comparison in terms of accuracy of DEMs extracted from SRTM/X-SAR data and SRTM/C-SAR data: A Case Study of the Thi-Qar Governorate /AL-Shtra City

Comparison in terms of accuracy of DEMs extracted from SRTM/X-SAR data and SRTM/C-SAR data: A Case Study of the Thi-Qar Governorate /AL-Shtra City International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Comparison

More information

USING LIDAR MEASUREMENTS FOR IMPROVING OR UP-DATING A DEM

USING LIDAR MEASUREMENTS FOR IMPROVING OR UP-DATING A DEM JAES_1(14)_3_2011 VAIS M. et. all, pp.123-128 SECTION Geodesic Engineering USING LIDAR MEASUREMENTS FOR IMPROVING OR UP-DATING A DEM VAIS Manuel*, IOSIF Gheorghe, Bucharest University, *e-mail: manuel.vais@sipg.ro

More information

DAMAGE DETECTION OF THE 2008 SICHUAN, CHINA EARTHQUAKE FROM ALOS OPTICAL IMAGES

DAMAGE DETECTION OF THE 2008 SICHUAN, CHINA EARTHQUAKE FROM ALOS OPTICAL IMAGES DAMAGE DETECTION OF THE 2008 SICHUAN, CHINA EARTHQUAKE FROM ALOS OPTICAL IMAGES Wen Liu, Fumio Yamazaki Department of Urban Environment Systems, Graduate School of Engineering, Chiba University, 1-33,

More information

Validation of the ASTER Global Digital Elevation Model (GDEM) Version 2 over the Conterminous United States

Validation of the ASTER Global Digital Elevation Model (GDEM) Version 2 over the Conterminous United States Validation of the ASTER Global Digital Elevation Model (GDEM) Version 2 over the Conterminous United States U.S. Geological Survey Earth Resources Observation Science (EROS) Center Sioux Falls, South Dakota,

More information

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 6, No 1, 2015

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 6, No 1, 2015 INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 6, No 1, 2015 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4380 Vertical accuracy assessment of

More information

Digital Elevation Model (DEM) Generation from Stereo Images

Digital Elevation Model (DEM) Generation from Stereo Images Pertanika J. Sci. & Technol. 19 (S): 77-82 (2011) ISSN: 0128-7680 Universiti Putra Malaysia Press Digital Elevation Model (DEM) Generation from Stereo Images C. E. Joanna Tan *, M. Z. Mat Jafri, H. S.

More information

General Overview and Facts about the Irobland

General Overview and Facts about the Irobland Using Geoinformation Science to Reveal the Impact of the Eritrea-Ethiopia Boundary Commission s Decision on Irobland and People By Alema Tesfaye, Washington DC, USA Part I General Overview and Facts about

More information

GLL THE STUDY OF METHODS FOR CORRECTING GLOBAL DIGITAL TERRAIN MODELS USING REMOTE SENSING DATA. I. Kolb, M. Lucyshyn, M. Panek

GLL THE STUDY OF METHODS FOR CORRECTING GLOBAL DIGITAL TERRAIN MODELS USING REMOTE SENSING DATA. I. Kolb, M. Lucyshyn, M. Panek GLL http://dx.doi.org/10.15576/gll/2013.3.59 Geomatics, Landmanagement and Landscape No. 3 2013, 59 66 THE STUDY OF METHODS FOR CORRECTING GLOBAL DIGITAL TERRAIN MODELS USING REMOTE SENSING DATA Ihor Kolb,

More information

GeoSUR SRTM 30-m / TPS

GeoSUR SRTM 30-m / TPS GeoSUR SRTM 30-m / TPS Wm Matthew Cushing (USGS) 16 May 2013 U.S. Department of the Interior U.S. Geological Survey SRTM Mission Shuttle Radar Topography Mission (SRTM) Space Shuttle Endeavour during the

More information

Determining the Location of the Simav Fault

Determining the Location of the Simav Fault Lindsey German May 3, 2012 Determining the Location of the Simav Fault 1. Introduction and Problem Formulation: The issue I will be focusing on involves interpreting the location of the Simav fault in

More information

Positional Accuracy of the Google Earth Imagery In The Gaza Strip

Positional Accuracy of the Google Earth Imagery In The Gaza Strip Positional Accuracy of the Google Earth Imagery In The Gaza Strip Maher A. El-Hallaq Associate Professor of Surveying Civil Engineering Department The Islamic University of Gaza, Palestine mhallaq@iugaza.edu.ps

More information

GEOID UNDULATIONS OF SUDAN USING ORTHOMETRIC HEIGHTS COMPARED WITH THE EGM96 ANG EGM2008

GEOID UNDULATIONS OF SUDAN USING ORTHOMETRIC HEIGHTS COMPARED WITH THE EGM96 ANG EGM2008 GEOID UNDULATIONS OF SUDAN USING ORTHOMETRIC HEIGHTS COMPARED Dr. Abdelrahim Elgizouli Mohamed Ahmed* WITH THE EGM96 ANG EGM2008 Abstract: Positioning by satellite system determine the normal height above

More information

Terrain and Satellite Imagery in Madre de Dios, Peru

Terrain and Satellite Imagery in Madre de Dios, Peru Rhett Butler/mongabay.com Terrain and Satellite Imagery in Madre de Dios, Peru Katherine Lininger CE 394 GIS for Water Resources Term Paper December 1, 2011 Introduction Informal and small-scale gold mining

More information

QUANTITATIVE ASSESSMENT OF DIGITAL TOPOGRAPHIC DATA FROM DIFFERENT SOURCES

QUANTITATIVE ASSESSMENT OF DIGITAL TOPOGRAPHIC DATA FROM DIFFERENT SOURCES QUANTITATIVE ASSESSMENT OF DIGITAL TOPOGRAPHIC DATA FROM DIFFERENT SOURCES N. Yastıklı a, F. Esirtgen b, U. G. Sefercik c a YTU, Department of Geomatic Engineering, Davutpasa Campus, 31, Istanbul, Turkey

More information

Advanced Analysis of Differences between C and X Bands using SRTM Data for Mountainous Topography

Advanced Analysis of Differences between C and X Bands using SRTM Data for Mountainous Topography Photonirvachak J. Indian Soc. Remote Sens. (September 2009) 37:335 349 RESEARCH ARTICLE Advanced Analysis of Differences between C and X Bands using SRTM Data for Mountainous Topography Umut Güne Sefercik.

More information

Digital Elevation Models (DEM) / DTM

Digital Elevation Models (DEM) / DTM Digital Elevation Models (DEM) / DTM Uses in remote sensing: queries and analysis, 3D visualisation, classification input Fogo Island, Cape Verde Republic ASTER DEM / image Banks Peninsula, Christchurch,

More information

Global Assessment of the New ASTER Global Digital Elevation Model

Global Assessment of the New ASTER Global Digital Elevation Model Global Assessment of the New ASTER Global Digital Elevation Model James A. Slater, Barry Heady, George Kroenung, William Curtis, Jeffrey Haase, Daryl Hoegemann, Casey Shockley, and Kevin Tracy Abstract

More information

ACCURACY ANALYSIS OF SRTM HEIGHT MODELS INTRODUCTION

ACCURACY ANALYSIS OF SRTM HEIGHT MODELS INTRODUCTION ACCURACY ANALYSIS OF SRTM HEIGHT MODELS Ricardo Passini(*), Karsten Jacobsen(**) (*)BAE SYSTEMS 124 Gaither Dr.,Suite 100, Mount Laurel, NJ 08054, USA ricardo.passini@baesystems.com (**)Institute of Photogrammetry

More information

SPOT DEM Precision Product description

SPOT DEM Precision Product description SPOT DEM Precision Product description Version1.0 - April 1st, 2006 This edition supersedes previous versions Acronyms DIMAP DTED DXF HRS JPEG, JPG Mb DTM DEM SRTM SVG TIFF - GeoTIFF XML Digital Image

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki March 17, 2014 Lecture 08: Terrain Analysis Outline: Terrain Analysis Earth Surface Representation Contour TIN Mass Points Digital Elevation Models Slope

More information

Title Generation of DEM for Urban Vietnam Transfo Author(s) Yonezawa, Go Citation Kyoto Working Papers on Area Studie 60: 1-10 Issue Date 2009-03 URL http://hdl.handle.net/2433/155764 Right 2009 Center

More information

Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey

Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey A Geoid model of northern Chile from airborne and surface gravity Geographic Description of Chile. Total Surface: 2,006,096 Km 2.

More information

GEOMATICS. Shaping our world. A company of

GEOMATICS. Shaping our world. A company of GEOMATICS Shaping our world A company of OUR EXPERTISE Geomatics Geomatics plays a mayor role in hydropower, land and water resources, urban development, transport & mobility, renewable energy, and infrastructure

More information

AN EVALUATION OF SRTM, ASTER, AND CONTOUR BASED DEMS IN THE CARIBBEAN REGION

AN EVALUATION OF SRTM, ASTER, AND CONTOUR BASED DEMS IN THE CARIBBEAN REGION Peter G. Chirico Geographer USGS, Earth Surface Processes Team 12201 Sunrise Valley Drive National Center, MS926A Reston VA, 20192 pchirico@usgs.gov AN EVALUATION OF SRTM, ASTER, AND CONTOUR BASED DEMS

More information

ACCURACY ASSESSMENT OF GLOBAL TOPOGRAPHIC DATA (SRTM & ASTER GDEM) IN COMPARISON WITH LIDAR FOR TROPICAL MONTANE FOREST

ACCURACY ASSESSMENT OF GLOBAL TOPOGRAPHIC DATA (SRTM & ASTER GDEM) IN COMPARISON WITH LIDAR FOR TROPICAL MONTANE FOREST ACCURACY ASSESSMENT OF GLOBAL TOPOGRAPHIC DATA (SRTM & ASTER GDEM) IN COMPARISON WITH LIDAR FOR TROPICAL MONTANE FOREST Wilson V. C. Wong 1,2a*, Satoshi Tsuyuki 1b, Keiko Ioki 1c, Mui-How Phua 2d 1 Graduate

More information

Accuracy Assessment of SRTM Data Case Study: New Cairo, Hurghada and Toshka in Egypt

Accuracy Assessment of SRTM Data Case Study: New Cairo, Hurghada and Toshka in Egypt Australian Journal of Basic and Applied Sciences, 4(12): 6269-6275, 2010 ISSN 1991-8178 Accuracy Assessment of SRTM Data Case Study: New Cairo, Hurghada and Toshka in Egypt 1 Assoc. Prof. Dr. A.K. Abdel-Gawad,

More information

INTEGRATION OF HIGH RESOLUTION QUICKBIRD IMAGES TO GOOGLEEARTH

INTEGRATION OF HIGH RESOLUTION QUICKBIRD IMAGES TO GOOGLEEARTH INTEGRATION OF HIGH RESOLUTION QUICKBIRD IMAGES TO GOOGLEEARTH M. Alkan a, *, U.G. Sefercik a, M. Oruç a a ZKU, Engineering Faculty, 67100 Zonguldak, Turkey - (mehmetalkan44@yahoo.com) Interactive Sessions,

More information

Updating of the Finnish Drainage Basin System and Register Case VALUE

Updating of the Finnish Drainage Basin System and Register Case VALUE Updating of the Finnish Drainage Basin System and Register Case VALUE Juha Oksanen 1, Matti Joukola 2, Riitta Teiniranta 2, Jaakko Suikkanen 2, Tapani Sarjakoski 1 1 Department of Geoinformatics and Cartography,

More information

AN EVALUATION ON THE DATA QUALITY OF SRTM DEM AT THE ALPINE AND PLATEAU AREA, NORTH-WESTERN OF CHINA

AN EVALUATION ON THE DATA QUALITY OF SRTM DEM AT THE ALPINE AND PLATEAU AREA, NORTH-WESTERN OF CHINA AN EVALUATION ON THE DATA QUALITY OF SRTM DEM AT THE ALPINE AND PLATEAU AREA, NORTH-WESTERN OF CHINA Y. Liu School of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000 -liuy@lzu.edu.cn

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki November 17, 2017 Lecture 11: Terrain Analysis Outline: Terrain Analysis Earth Surface Representation Contour TIN Mass Points Digital Elevation Models Slope

More information

Digital Elevation Models (DEM)

Digital Elevation Models (DEM) Digital Elevation Models (DEM) Digital representation of the terrain surface enable 2.5 / 3D views Rule #1: they are models, not reality Rule #2: they always include some errors (subject to scale and data

More information

Projections & GIS Data Collection: An Overview

Projections & GIS Data Collection: An Overview Projections & GIS Data Collection: An Overview Projections Primary data capture Secondary data capture Data transfer Capturing attribute data Managing a data capture project Geodesy Basics for Geospatial

More information

CHAPTER EXIT CHAPTER. Models of Earth. 3.1 Modeling the Planet. 3.2 Mapmaking and Technology. 3.3 Topographic Maps CHAPTER OUTLINE

CHAPTER EXIT CHAPTER. Models of Earth. 3.1 Modeling the Planet. 3.2 Mapmaking and Technology. 3.3 Topographic Maps CHAPTER OUTLINE EXIT CHAPTER.1 Modeling the Planet.2 Mapmaking and Technology. Topographic Maps CHAPTER OUTLINE CHAPTER.1 Modeling the Planet A flat of Earth is a convenient tool, but it can distort the shape, distance,

More information

Proceedings of the First International Conference on Civil Engineering, Assiut University, Volume 2, pp , October 7-8.

Proceedings of the First International Conference on Civil Engineering, Assiut University, Volume 2, pp , October 7-8. Proceedings of the First International Conference on Civil Engineering, Assiut University, Volume 2, pp. 246-253, October 7-8. PRODUCTIVE GPS TOPOGRAPHIC MAPPING FOR NATIONAL DEVELOPMENT PROJECTS IN EGYPT

More information

Satellite ASTER Global Geoscience Maps

Satellite ASTER Global Geoscience Maps Satellite ASTER Global Geoscience Maps Michael Abrams Jet Propulsion Laboratory, California Institute of Technology, Pasadena USA (c) 2017 California Institute of Technology. Government sponsorship acknowledged.

More information

ASTER Global Digital Elevation Model Version 2 Summary of Validation Results. August 31, 2011

ASTER Global Digital Elevation Model Version 2 Summary of Validation Results. August 31, 2011 ASTER Global Digital Elevation Model Version 2 Summary of Validation Results August 31, 2011 by the ASTER GDEM Validation Team, with contributions by: Tetsushi Tachikawa 1, Manabu Kaku 2, Akira Iwasaki

More information

The first high-precision gravimetric geoid of Hungary: HGG2013

The first high-precision gravimetric geoid of Hungary: HGG2013 Server on Geodesy, Seismology and Environmental Sciences Published Online 2013 (http://airy.ual.es/) The first high-precision gravimetric geoid of Hungary: HGG2013 Abstract V. Corchete Higher Polytechnic

More information

Lab 1: Importing Data, Rectification, Datums, Projections, and Coordinate Systems

Lab 1: Importing Data, Rectification, Datums, Projections, and Coordinate Systems Lab 1: Importing Data, Rectification, Datums, Projections, and Coordinate Systems Topics covered in this lab: i. Importing spatial data to TAS ii. Rectification iii. Conversion from latitude/longitude

More information

The following figures (Figs. DR-2 DR-6) show plots by location and formation in the Gar Basin. See Figure DR-7 for clast counts sites.

The following figures (Figs. DR-2 DR-6) show plots by location and formation in the Gar Basin. See Figure DR-7 for clast counts sites. DR91 Tertiary stratiaphy composition plots The following figures (Figs. DR- DR-) ow plots by location and formation in the Gar Basin. See Figure DR-7 for clast counts sites. Abbreviations used in clast

More information

PGM2016: A new geoid model for the. Philippines

PGM2016: A new geoid model for the. Philippines PGM2016: A new geoid model for the Philippines United Nations/Nepal Workshop on the Applications of Global Navigation Satellite Systems Kathmandu, Nepal December 12-16, 2016 Ronaldo Gatchalian, Chief Geodesy

More information

12/26/2012. Geographic Information Systems * * * * GIS (... yrezaei

12/26/2012. Geographic Information Systems * * * * GIS (... yrezaei ( - Geographic Information Systems ( ( 1 2 3 Information System Data base DB IS IS DB (Knowledge ( ( (System (Information System - (Georefrence Analysis Data + Knowledge ======== Information 4 5 ( < 10%

More information

Implementation of CLIMAP and GIS for Mapping the Climatic Dataset of Northern Iraq

Implementation of CLIMAP and GIS for Mapping the Climatic Dataset of Northern Iraq Implementation of CLIMAP and GIS for Mapping the Climatic Dataset of Northern Iraq Sabah Hussein Ali University of Mosul/Remote sensing Center KEYWORDS: CLIMAP, GIS, DEM, Climatic, IRAQ ABSTRACT The main

More information

Generation and analysis of Digital Elevation Model (DEM) using Worldview-2 stereo-pair images of Gurgaon district: A geospatial approach

Generation and analysis of Digital Elevation Model (DEM) using Worldview-2 stereo-pair images of Gurgaon district: A geospatial approach 186 Generation and analysis of Digital Elevation Model (DEM) using Worldview-2 stereo-pair images of Gurgaon district: A geospatial approach Arsad Khan 1, Sultan Singh 2 and Kaptan Singh 2 1 Department

More information

Discussion on the 3D visualizing of 1: geological map

Discussion on the 3D visualizing of 1: geological map IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Discussion on the 3D visualizing of 1:200 000 geological map To cite this article: Xiaopeng Wang 2018 IOP Conf. Ser.: Earth Environ.

More information

History & Scope of Remote Sensing FOUNDATIONS

History & Scope of Remote Sensing FOUNDATIONS History & Scope of Remote Sensing FOUNDATIONS Lecture Overview Introduction Overview of visual information Power of imagery Definition What is remote sensing? Definition standard for class History of Remote

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 0 CIVIL ENGINEERING TUTORIAL QUESTION BANK Course Name : Remote Sensing and GIS Course Code : A00 Class : IV B. Tech I Semester

More information

Part : General Situation of Surveying and Mapping. The Development of Surveying and Mapping in China. The contents

Part : General Situation of Surveying and Mapping. The Development of Surveying and Mapping in China. The contents The Development of Surveying and Mapping in China Dr. Ping Xiao China.P.R The contents Part : General Situation of Surveying and Mapping 1. The legal systems of surveying and mapping 2. The technologies

More information

INSAR DEM CALIBRATION FOR TOPOGRAPHIC MAPPING IN EASTERN UGANDA

INSAR DEM CALIBRATION FOR TOPOGRAPHIC MAPPING IN EASTERN UGANDA INSAR DEM CALIBRATION FOR TOPOGRAPHIC MAPPING IN EASTERN UGANDA Siefko SLOB *, François KERVYN **, Johan LAVREAU **, John ODIDA *** and David KYAGULANYI *** * International Institute for Aerospace Survey

More information

RADAR Remote Sensing Application Examples

RADAR Remote Sensing Application Examples RADAR Remote Sensing Application Examples! All-weather capability: Microwave penetrates clouds! Construction of short-interval time series through cloud cover - crop-growth cycle! Roughness - Land cover,

More information

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 1. Introduction Precipitation is one of most important environmental parameters.

More information

1/28/16. EGM101 Skills Toolbox. Oblate spheroid. The shape of the earth Co-ordinate systems Map projections. Geoid

1/28/16. EGM101 Skills Toolbox. Oblate spheroid. The shape of the earth Co-ordinate systems Map projections. Geoid EGM101 Skills Toolbox Oblate spheroid The shape of the earth Co-ordinate systems Map projections The geoid is the shape that the surface of the oceans would take under the influence of Earth's gravitation

More information

Evaluation of GPS in Orthometric Heights Determination in Khartoum State (Sudan)

Evaluation of GPS in Orthometric Heights Determination in Khartoum State (Sudan) Evaluation of GPS in Orthometric Heights Determination in Khartoum State (Sudan) Dr. Nagi Zomrawi Mohammed 1, Dr. Abd Elrahim Elgizouli Mohammed 2 and Engineer Osman Bakry 3 1 Sudan University of Science

More information

Stellenbosch University Digital Elevation Model (SUDEM) 2013 Edition

Stellenbosch University Digital Elevation Model (SUDEM) 2013 Edition Stellenbosch University Digital Elevation Model (SUDEM) 2013 Edition Adriaan van Niekerk Centre for Geographical Analysis Stellenbosch University 25 April 2014 CONTENTS CONTENTS... ii TABLES... iii FIGURES...

More information

Catchment Delineation Workflow

Catchment Delineation Workflow Catchment Delineation Workflow Slide 1 Given is a GPS point (Lat./Long.) for an outlet location. The outlet could be a proposed Dam site, a storm water drainage culvert on a rural highway, or any other

More information

ERDAS ER Mapper Software

ERDAS ER Mapper Software ERDAS ER Mapper Software ER Mapper professional software is widely used in exploration industry and geologist worldwide for satellite image exploitation. It is known for its:- Powerful image processing

More information

USING IFSAR AND SRTM ELEVATION DATA FOR WATERSHED DELINEATION OF A COASTAL WATERSHED INTRODUCTION

USING IFSAR AND SRTM ELEVATION DATA FOR WATERSHED DELINEATION OF A COASTAL WATERSHED INTRODUCTION USING AND SRTM ELEVATION DATA FOR WATERSHED DELINEATION OF A COASTAL WATERSHED Vladimir J. Alarcon, Research Associate Chuck O Hara, Research Professor GeoResources Institute Mississippi State University

More information

Data Origin. Ron van Lammeren CGI-GIRS 0910

Data Origin. Ron van Lammeren CGI-GIRS 0910 Data Origin Ron van Lammeren CGI-GIRS 0910 How to obtain geodata? Geo data initiative Executive Order 12906, "Coordinating Geographic Data Acquisition and Access: The National Spatial Data Infrastructure,"

More information

VISUALIZATION URBAN SPATIAL GROWTH OF DESERT CITIES FROM SATELLITE IMAGERY: A PRELIMINARY STUDY

VISUALIZATION URBAN SPATIAL GROWTH OF DESERT CITIES FROM SATELLITE IMAGERY: A PRELIMINARY STUDY CO-439 VISUALIZATION URBAN SPATIAL GROWTH OF DESERT CITIES FROM SATELLITE IMAGERY: A PRELIMINARY STUDY YANG X. Florida State University, TALLAHASSEE, FLORIDA, UNITED STATES ABSTRACT Desert cities, particularly

More information

GEOIDS FAQ. November

GEOIDS FAQ. November GEOIDS FAQ 1. What is a geoid? A geoid is a representation of the equipotential surface of the Earth s gravity field. It can be thought of as a surface coinciding with the undisturbed mean sea level extended

More information

An experience with ILWIS in connection with National Geochemical Mapping by Geological Survey of India

An experience with ILWIS in connection with National Geochemical Mapping by Geological Survey of India An experience with ILWIS in connection with National Geochemical Mapping by Geological Survey of India 1 S. Ramamurthy Geodata Division, Eastern Region, Geological Survey of India, Dk-6, Sector-2, Kolkata-91(ramasoma@yahoo.com)

More information

Bathymetry Data and Models: Best Practices

Bathymetry Data and Models: Best Practices Bathymetry Data and Models: Best Practices Barry Eakins & Lisa Taylor The NOAA National Geophysical Data Center Over 600 data types - from the core of the Earth to the surface of the Sun NGDC Bathymetry

More information

Lab 1: Importing Data, Rectification, Datums, Projections, and Output (Mapping)

Lab 1: Importing Data, Rectification, Datums, Projections, and Output (Mapping) Lab 1: Importing Data, Rectification, Datums, Projections, and Output (Mapping) Topics covered in this lab: i. Importing spatial data to TAS ii. Rectification iii. Conversion from latitude/longitude to

More information

Uncertainty modeling of glacier surface mapping from GPS: An example from Pedersenbreen, Arctic

Uncertainty modeling of glacier surface mapping from GPS: An example from Pedersenbreen, Arctic Uncertainty modeling of glacier surface mapping from GPS: An example from Pedersenbreen, Arctic Xi Zhao, Songtao Ai 1 Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079,

More information

Hydrology and Floodplain Analysis, Chapter 10

Hydrology and Floodplain Analysis, Chapter 10 Hydrology and Floodplain Analysis, Chapter 10 Hydrology and Floodplain Analysis, Chapter 10.1 Introduction to GIS GIS Geographical Information System Spatial Data Data linked with geographical location

More information

Scott A. True Project Scientist Geodesy & Geophysics Division Basic and Applied Research Office InnoVision Directorate

Scott A. True Project Scientist Geodesy & Geophysics Division Basic and Applied Research Office InnoVision Directorate EGM96 Variable Resolution Geoid Implementation Error in GEOTRANS 2.3 Scott A. True Project Scientist Geodesy & Geophysics Division Basic and Applied Research Office InnoVision Directorate Introduction

More information

Contribution to global Earth observation from satellites

Contribution to global Earth observation from satellites Contribution to global Earth observation from satellites - JAXA s Earth Observation strategy - April 16, 2008 Makoto Kajii Japan Aerospace Exploration Agency Earth Observation Summits and GEOSS 1 st EO

More information

How to Construct Urban Three Dimensional GIS Model based on ArcView 3D Analysis

How to Construct Urban Three Dimensional GIS Model based on ArcView 3D Analysis How to Construct Urban Three Dimensional GIS Model based on ArcView 3D Analysis Ko Ko Lwin Division of Spatial Information Science Graduate School of Life and Environmental Sciences University of Tsukuba

More information

Different types of maps and how to read them.

Different types of maps and how to read them. Different types of maps and how to read them. A map is a picture or representation of the Earth's surface, showing how things are related to each other by distance, direction, and size. Maps have been

More information

ASSESSING THE ACCURACY OF SRTM DEM AND ASTER GDEM DATASETS FOR THE COASTAL ZONE OF SHANDONG PROVINCE, EASTERN CHINA

ASSESSING THE ACCURACY OF SRTM DEM AND ASTER GDEM DATASETS FOR THE COASTAL ZONE OF SHANDONG PROVINCE, EASTERN CHINA POLISH MARITIME RESEARCH Special Issue 2015 S1 (86) 2015 Vol. 22; pp. 15-20 10.1515/pomr-2015-0026 ASSESSING THE ACCURACY OF SRTM DEM AND ASTER GDEM DATASETS FOR THE COASTAL ZONE OF SHANDONG PROVINCE,

More information

This week s topics. Week 6. FE 257. GIS and Forest Engineering Applications. Week 6

This week s topics. Week 6. FE 257. GIS and Forest Engineering Applications. Week 6 FE 257. GIS and Forest Engineering Applications Week 6 Week 6 Last week Chapter 8 Combining and splitting landscape features and merging GIS databases Chapter 11 Overlay processes Questions? Next week

More information

Background Unified Mapping Project of NAMRIA Mapping of Typhoon-Affected Areas Final Output Conclusion

Background Unified Mapping Project of NAMRIA Mapping of Typhoon-Affected Areas Final Output Conclusion www.namria.gov.ph Background Unified Mapping Project of NAMRIA Mapping of Typhoon-Affected Areas Final Output Conclusion Typhoon Haiyan (local name Yolanda) the deadliest most destructive typhoon in recorded

More information

HIMALAYAN AIRBORNE GRAVITY AND GEOID OF NEPAL

HIMALAYAN AIRBORNE GRAVITY AND GEOID OF NEPAL Mt. Everest HIMALAYAN AIRBORNE GRAVITY AND GEOID OF NEPAL -Niraj Manandhar Head, Geodetic Survey Branch Survey Department, Geodetic Survey Branch Project Background Air Borne Gravity Survey Project was

More information

Themes for Geomatics Conference. Geodesy Themes

Themes for Geomatics Conference. Geodesy Themes Themes for Geomatics Conference Geodesy Themes Geodynamics o Modeling the Deformation of the Earth s Crust o Recent Advances in Geometric Approaches to Deformation Analysis o Monitoring Systems (Sensors

More information

Evaluation of the Earth Gravity Model EGM2008 in Algeria

Evaluation of the Earth Gravity Model EGM2008 in Algeria Evaluation of the Earth Gravity Model EGM2008 in Algeria BENAHMED DAHO S. A. National Centre of Space Techniques, Geodetic Laboratory - BP 13 Arzew - 31200 - Algeria. E-mail: d_benahmed@hotmaii.com /Fax:

More information

RESEARCH METHODOLOGY

RESEARCH METHODOLOGY III. RESEARCH METHODOLOGY 3.1 Time and Location This research has been conducted in period March until October 2010. Location of research is over Sumatra terrain. Figure 3.1 show the area of interest of

More information

D DAVID PUBLISHING. Towards a New Geoid Model of Tanzania Using Precise Gravity Data. 1. Introduction. Selassie David Mayunga

D DAVID PUBLISHING. Towards a New Geoid Model of Tanzania Using Precise Gravity Data. 1. Introduction. Selassie David Mayunga Journal of Environmental Science and Engineering A 5 (2016) 267-276 doi:10.17265/2162-5298/2016.05.005 D DAVID PUBLISHING Towards a New Geoid Model of Tanzania Using Precise Gravity Data Selassie David

More information

LEADS. The Essential Elements of a 3-D Geographic Coordinate

LEADS. The Essential Elements of a 3-D Geographic Coordinate The Essential Elements of a 3-D Geographic Coordinate John W. Dix 13 September 2005 ESRI Homeland Security GIS Summit - Denver, CO John.W.Dix@nga.mil NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY Overview is

More information

GeoWEPP Tutorial Appendix

GeoWEPP Tutorial Appendix GeoWEPP Tutorial Appendix Chris S. Renschler University at Buffalo - The State University of New York Department of Geography, 116 Wilkeson Quad Buffalo, New York 14261, USA Prepared for use at the WEPP/GeoWEPP

More information

Introduction. Elevation Data Strategy. Status and Next Steps

Introduction. Elevation Data Strategy. Status and Next Steps 1 2 Introduction Elevation Data Strategy Status and Next Steps 3 Canada is the 2nd largest country in the world - 9.9 million sq km Surrounded by 3 oceans with 202 000 km of coastline Population over 35

More information

Version 1.1 GIS Syllabus

Version 1.1 GIS Syllabus GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION Version 1.1 GIS Syllabus Endorsed 1 Version 1 January 2007 GIS Certification Programme 1. Target The GIS certification is aimed at: Those who wish to demonstrate

More information

PROJECT FOR THE PRODUCTION OF 1/1000 SCALE BASE MAPS FROM COLOUR IMAGES USING DIGITAL CAMERAS IN BURSA METROPOLITAN AREA (BMA) IN TURKEY

PROJECT FOR THE PRODUCTION OF 1/1000 SCALE BASE MAPS FROM COLOUR IMAGES USING DIGITAL CAMERAS IN BURSA METROPOLITAN AREA (BMA) IN TURKEY PROJECT FOR THE PRODUCTION OF 1/1000 SCALE BASE MAPS FROM COLOUR IMAGES USING DIGITAL CAMERAS IN BURSA METROPOLITAN AREA (BMA) IN TURKEY Şenol KUŞCU, M.Sait AYIK, Eray CAN, Hasan Yasar ARKAYIN, Turkey

More information

Pan-Arctic Digital Elevation Map (Pan-Arctic DEM)

Pan-Arctic Digital Elevation Map (Pan-Arctic DEM) Memorandum to CAFF Board 07/28/2017 BACKGROUND: Pan-Arctic Digital Elevation Map (Pan-Arctic DEM) ArcticDEM is a National Geospatial-Intelligence Agency (NGA)-National Science Foundation (NSF) publicprivate

More information

CONTROLLED TOPOGRAPHIC IMAGE MOSAICS FROM COMBINATION OF VIKING ORBITER IMAGES AND MARS ORBITER LASER ALTIMETER DATA. Working Group IV/5

CONTROLLED TOPOGRAPHIC IMAGE MOSAICS FROM COMBINATION OF VIKING ORBITER IMAGES AND MARS ORBITER LASER ALTIMETER DATA. Working Group IV/5 CONTROLLED TOPOGRAPHIC IMAGE MOSAICS FROM COMBINATION OF VIKING ORBITER IMAGES AND MARS ORBITER LASER ALTIMETER DATA Ernst HAUBER, Jürgen OBERST, Wolfgang ZEITLER, Monika KUSCHEL, Marita WÄHLISCH, Ralf

More information

MAPPING POTENTIAL LAND DEGRADATION IN BHUTAN

MAPPING POTENTIAL LAND DEGRADATION IN BHUTAN MAPPING POTENTIAL LAND DEGRADATION IN BHUTAN Moe Myint, Geoinformatics Consultant Rue du Midi-8, CH-1196, Gland, Switzerland moemyint@bluewin.ch Pema Thinley, GIS Analyst Renewable Natural Resources Research

More information

Data Origin. How to obtain geodata? Ron van Lammeren CGI-GIRS 0910

Data Origin. How to obtain geodata? Ron van Lammeren CGI-GIRS 0910 Data Origin How to obtain geodata? Ron van Lammeren CGI-GIRS 0910 Spatial Data interest Improvement of policy making. ± 90% of all information used by government has spatial characteristics SPATIAL INFORMATION

More information

Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations

Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations Rajesh VijayKumar Kherde *1, Dr. Priyadarshi. H. Sawant #2 * Department of Civil Engineering,

More information

Terms GIS GPS Vector Data Model Raster Data Model Feature Attribute Table Point Line Polygon Pixel RGB Overlay Function

Terms GIS GPS Vector Data Model Raster Data Model Feature Attribute Table Point Line Polygon Pixel RGB Overlay Function FINAL REVIEW FOR GIS (2016) PRACTICAL COMPONENT The first 40 mins of the exam will be open book and will require you to make a map using all the techniques learned over the semester. This map will be e-mailed

More information

PRINCIPLES OF REMOTE SENSING. Electromagnetic Energy and Spectral Signatures

PRINCIPLES OF REMOTE SENSING. Electromagnetic Energy and Spectral Signatures PRINCIPLES OF REMOTE SENSING Electromagnetic Energy and Spectral Signatures Remote sensing is the science and art of acquiring and analyzing information about objects or phenomena from a distance. As humans,

More information

IAEG-SDGs WGGI Task Team Dec. 7, 2017, New York

IAEG-SDGs WGGI Task Team Dec. 7, 2017, New York IAEG-SDGs WGGI Task Team Dec. 7, 2017, New York Contents What are G/A data? Role of G/A data Utilization Recommendations Outlook National Geospatial Data for SDGs Official data products generated by authoritative

More information

Digital Elevation Models (DEM) / DTM

Digital Elevation Models (DEM) / DTM Digital Elevation Models (DEM) / DTM Uses in remote sensing: queries and analysis, 3D visualisation, layers in classification Fogo Island, Cape Verde Republic ASTER DEM / image Banks Peninsula, Christchurch,

More information

Radar Topographic Mission (SRTM) & Photogrammetry Techniques

Radar Topographic Mission (SRTM) & Photogrammetry Techniques Investigating the Difference of Digital Elevation Models between Shuttle Radar Topographic Mission (SRTM) & Photogrammetry Techniques Ka-Chuen Kenny Wai A thesis project presented to the Department of

More information

NASA Flood Monitoring and Mapping Tools

NASA Flood Monitoring and Mapping Tools National Aeronautics and Space Administration ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov @NASAARSET NASA Flood Monitoring and Mapping Tools www.nasa.gov Outline Overview of Flood

More information