Applications of GIS in assessing Coastal Change Rachel Hehre November 30, 2004 NRS 509 OVERVIEW

Size: px
Start display at page:

Download "Applications of GIS in assessing Coastal Change Rachel Hehre November 30, 2004 NRS 509 OVERVIEW"

Transcription

1 Applications of GIS in assessing Coastal Change Rachel Hehre November 30, 2004 NRS 509 OVERVIEW ITRODUCTION Due to the dynamic nature of coastal systems, representing coastal change with precision and accuracy presents a challenge to coastal scientists. Traditional methods used to quantify coastal change, include time-consuming ground surveys, coupled with topographic mapping, or at best standard aerial photography. As newer technologies, such as digital photogrammetry, and light detection and ranging (LIDAR) are becoming more readily available, traditional methods are being supplemented and in some cases replaced. The application of Geographic Information Systems allow for the integration of traditional and modern data such that they may both be represented in geographically correct space, and interpretations of change through time may be assessed. GROUND SURVEYS Traditional surveying of coastal features employed profiling dune normal transects, or establishing grids to survey points. Dune normal transects monitor profile changes over time. The relative ease with which a transect can be collected, allows for a characterization of changes in the beach system, due to storm activity or events on a small time scale. However, there is no topology within transects, as the two dimensional representation cannot account for features or changes that exist in the alongshore direction. By establishing a grid over the area of interest, points may be surveyed and interpreted as a three-dimensional surface. This method is more time consuming than the transect method, requiring careful measure of grid points and orientation. However, once a grid is established, placing markers may allow for repeated measurement at known locations. Modern methods of field surveying have developed survey instruments that can determine geographic positioning in x, y, and z coordinates. These total stations no longer require a fixed or manually gridded set up, allowing for the inclusion of all topographic features of interest. (Andrews et al. 2002) The limitations of ground survey methods for coastal change include, tide constraints, inability to collect near shore data, and the human interpretation of features for survey (not all points of potential interest may be selected). Because of the selective nature of ground survey, there exists a need for extensive coverage of coastal areas that enable careful interpretation of coastal features. AERIAL PHOTOGRAPHY The use of aerial photographs to describe and interpret coastal data provides the best complete record of historical coastal change. In the 1920 s aerial photographs were available from a wide variety of sources including Federal agencies, state and local governments. Although they provide a long record of coastal change, the photographs themselves have inherent distortions and displacements. (Hapke, C.J.) In addition, because many aerial photographs were taken, not for use by coastal scientists, but for agencies with alternative needs, the captured image of the shoreline is not the focus of the photograph, and inherent distortions, sun reflection, and lack of tide information are

2 expected. To correct for some of the distortions, a process known as orthorectification has been developed. ORTHOPHOTOGRAPHY Aerial images that have been oriented and registered to contain plannometrically correct points are called orthophotographs. Although full rectification of aerial photos is time consuming and expensive, once established, coastal features can be delineated, and measured with the use of a GIS software, to make accurate interpretations of coastal features. Because historical images can be corrected and aligned to correspond to modern images, coastal change through time can not only be interpreted but also accurately assessed and measured. Data, such as high water lines, can be interpreted from orthophotos as a wet/dry line that runs along the coast. Such interpretations can aid coastal geologists in determining the change in high water, and the occurrence of erosion through time. DIGITAL PHOTOGRAMMETRY Photogrammetry can be defined as the process of deriving information about an object through photo measurements. The goal of photogrammetry is to establish the geometric relationship between an object and an image and derive information about the object strictly from the image. After finding corresponding points by image matching, a Digital elevation model (DEM) can be generated. In digital photogrammetry, aerial films are converted into digital image data with high resolution. A DEM is automatically generated with stereo matching using digital photogrammetric workstation. It is still very expensive but only a method for automated mapping. There is a need for further research if the patterns of terrain features are to be identified automatically. LIDAR DATA LIDAR stands for light detection and ranging. Interpreting the travel time of laser pulses, a distance from a receiver can be calculated. Coupled with a GPS system to monitor the flight path, and height of the source, an exact location of ground elevation and coordinates can be determined for any given point. Improved technologies have supported the development of laser scanning systems, and have improved accuracy of geometric results, in terms of position, distance, altitude and coordinates. LIDAR data must undergo processing steps to distill the extremely dense elevation data sets into a form that is readily usable for interpretation in GIS. With all the processing, and cost to generate usable data, LIDAR is expensive to produce and thus to use. A software package called Laser Map supports the creation of point elevation data, enables the gridding of entire surveys into compact files, an allows the assembly of large elevation image maps over selected regions. LaserMap would limit the processing steps by the user, by creating LIDAR products that can be directly inserted into a Geographic Information System (Brock et al.) Of particular interest in coastal change, LIDAR data provides optimal reception of air-water detection. Laser surveying has proven to be an excellent method for regional mapping of geomorphic change, the prediction and assessment of cliffed coasts, loss of land due to coastal erosion, and even predicting storm impact, and inundation mapping. CONCLUSIONS: Geographic Information Systems are an integral part of modern coastal change assessment. The acquisition of modern high quality data and the integration of historic

3 data within GIS allow for complex understanding of coastal change through time. Once data is incorporated into GIS any number of spatial and temporal analysis can be generated. Standard GIS tools, and simple data capture methods can be used to produce relatively high quality terrain representations. Data sets, once collected can be used over and to perform any number of calculations including erosion rates, dune migration, sediment transport, as well as smaller scale features of a beach such as, berm crests, beach cusps, and near shore bars. The use of LIDAR to interpret underwater environments allows for a non-invasive approach to monitoring habitat or the migration of dredged material in a system. As coastal environments are dynamic, and event driven, there is a need for current, and consistent monitoring through time. In the future, as more data are amassed for the study of coastal areas, the capacity to interpret and predict future coastal changes will increase considerably. References: (1) Tao, V.C.; Digital Photogrammetry The Future of Spatial Data Collection (2) Digital Mapping by Aerial Photogrammetry APPLICATIONS OF GIS IN ASSESING COASTAL CHANGE ANNOTATED BIBLIOGRAPHY Hapke, C.J. ;The Measurement and Interpretation of Coastal Cliff and Bluff Retreat; U.S. Geological Survey Professional Paper 1693, p This paper illustrates the variety of techniques for measuring coastal erosion along rocky or bluffed coasts, providing a general overview of traditional, as well as detailed explanations of modern technologies and techniques to determine coastal erosion. As newer technologies, such as digital photogrammetry, and light detection and ranging (LIDAR) are becoming more readily available, traditional methods, such as field surveying, profiling, and standard aerial photographic techniques are being supplemented and in some cases replaced. This paper addresses the compatibility of newer technologies with the need for accurate spatial data in a dynamic, storm driven coastal environment. Ackermann, F.; Airborne laser scanning present status and future expectations; ISPRS Journal of Photogrammetry & Remote Sensing; vol.54 p ; This paper introduces airborne laser scanning systems from their developed in the 1970s and 1980s, with early systems by NASA. Improved technologies have supported the development of laser scanning systems, and have improved accuracy of geometric results, in terms of position, distance, altitude and coordinates. The principle application of laser scanning concerns the generation of high quality topographic Digital Terrain

4 Models. (DTMs) Compared to traditional methods of DTM generation, the appeal of airborne laser is in its versatility, and virtually automatic methods for obtaining terrain information. Limitations include failure to capture detail, through a pre-fixed rigid pattern. The prospects for development and potential integration with imaging sensors are expected to accelerate airborne data acquisition to a new level of performance. For applications in coastal geomorphology, the need for accurate elevation models is integral to the understanding of dune, beach, and cliff retreat. Andrews, B.D., Gares, P.A., Colby, J.D.; Techniques for GIS modeling of coastal dunes; Geomorphology; vol. 48 p ; The prediction of coastal dune change by repeated measurement of topography over time is supported by the advent of GIS technology. This paper introduces the variety of data sources, high-resolution satellites, aerial photographs, Light Detection and Ranging (LIDAR) and ground surveys by hand, that may be used and manipulated in GIS in order to analyze spatial characteristics in geographically correct space. While the alternative techniques are mentioned, this paper focuses on the use of GIS to manage ground survey data sets in the form of dune normal transects, a gridded dune area, and the total station applications. This paper devotes much time to the determination of effective point densities and sampling routines for ground survey. Once these are established, data is acquired, processed, and analyzed to elevation change maps. The development of GIS software, and the generation of DEMs enable coastal researchers to visualize coastal features in a more intuitive (3D) way, as opposed to the traditional two-dimensional profiles. Livingstone, D., Raper, J., McCarthy, T.; Integrating aerial videography and digital photography with terrain modeling: an application for coastal geomorphology; Geomorphology; vol. 29 p ; The use of GIS technologies to integrate airborne and digital camera imagery with terrain data from ground survey is key to low-budget small-scale geomorphological investigations. This paper explores the benefits and consequences of utilizing cheap, available data, while at the same time preserving accuracy and resolution. Alternative forms of geomorphologic investigation are explained, including satellite sensors, aerial photography and archived photography. Digital resources have a distinct advantage in all forms, as they require fewer processing steps, and therefore a reduced production cost. The emphasis for this paper suggests that standard GIS tools, and simple data capture methods can be used to produce relatively high quality terrain representations. When studying and modeling dynamic coastal environments, there is a need for consistent monitoring and modeling. The high quality data, that is available, and inexpensive presents an opportunity for coastal geomorphologists to amass a wealth of geospatial data. Brock, J.C., Wright, C.W., Sallenger, A.H., Krabill, W.B., Swift, R.N.; Basis and Methods of NASA Airborne Topographic Mapper LIDAR surveys for Coastal Studies; Journal of Coastal Research; vol. 18 No.1, 2002.

5 Airborne laser surveying has a wide range of applications for coastal scientific investigations. This paper describes the methods use in the acquisition and processing of Airborne Topographic Mapper (ATM) data. In general, airborne laser surveying, or ALS, has proved to be an excellent method for mapping of the geomorphic change along coastlines to monitor coastal change and depict coastal hazards. There is some technical complexity to the article, including equations for laser data acquisition, and processing steps, which are difficult for the average reader to process. While the article explains this complexity, it also introduces a software package called LaserMap that would limit the processing steps by the user, by creating LIDAR products that can be directly inserted into a Geographic Information System. These products may be used by coastal scientists for a multitude of coastal studies. White, S.A., Wang, Y.; Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline; Remote Sensing of Environment; vol. 85 p ; This article provides an overview of the applications of digital elevation models to investigate morphologic change of five North Carolina barrier islands. The support for this technology in the form of annual surveys has enabled researchers to visually quantify barrier islands response to storm activity, and other coastal processes that occur on small time scale. This research found that beaches differed statistically if different management practices were applied to them, which is the basis behind managing beaches, and beach replenishment programs. What is interesting is that the differences were minimized, or disappeared if sequential hurricanes or storms affected the beaches. This has tremendous applications in coastal management, as beach replenishment projects can be costly, and have adverse environmental effects. Irish, J.L., Lillycrop, W.J.; Scanning laser mapping of the coastal zone: SHOALS system; ISPRS Journal of Photogrammetry & Remote Sensing; vol. 54 p ; The SHOALS system stands for Scanning Hydrographic Operational Airborne Lidar Survey. Developed for the US Army Corp of Engineers, the SHOALS system uses Lidar data to collect accurate, high-density measurements of bathymetry and topography in coastal regions. Airborne lidar bathymetry is capable of measuring water depths in very shallow, or environmentally sensitive waters that are unreachable by conventional survey method. This article explains the technical complexity of the SHOALS laser transmitter and set up, for optimal reception of air-water detection. In addition to its speed and accuracy, the SHOALS has a down-look video camera that is georeferenced to provide a visual record of the survey area. This is extremely useful when mapping coastal features, and reduces the need for field checks, or anomalous data found during post flight processing. Because coastal geomorphology includes areas of the coast that are submerged, the SHOALS system is extremely beneficial for studying the migration of offshore material, and features. Moore, L.J., Griggs, G.B.; Long-term cliff retreat and erosion hotspots along the central shores of the Monterey Bay National Marine Sanctuary; Marine Geology; vol.181 p ; 2002.

6 This paper provides background information regarding the need for increased monitoring and understanding of shoreline behavior. Coastlines experience dynamic conditions occurring at all time scales, and the need for quantification of landward movement in a system that is dominated by episodic and storm driven events is necessary. This paper presents a methodology to characterize cliff behavior, using mean erosion rates combined with an understanding of regional marine and terrestrial processes.

Modeling Coastal Change Using GIS Technology

Modeling Coastal Change Using GIS Technology Emily Scott NRS 509 Final Report December 5, 2013 Modeling Coastal Change Using GIS Technology In the past few decades, coastal communities around the world are being threatened by accelerating rates of

More information

MONITORING AND MODELING NATURAL AND ANTHROPOGENIC TERRAIN CHANGE

MONITORING AND MODELING NATURAL AND ANTHROPOGENIC TERRAIN CHANGE MONITORING AND MODELING NATURAL AND ANTHROPOGENIC TERRAIN CHANGE Spatial analysis and simulations of impact on landscape processess Helena MITASOVA, Russell S. HARMON, David BERNSTEIN, Jaroslav HOFIERKA,

More information

GIS compilation of coastline variability spanning 60 years in the Mackenzie Delta and Tuktoyaktuk in the Beaufort Sea

GIS compilation of coastline variability spanning 60 years in the Mackenzie Delta and Tuktoyaktuk in the Beaufort Sea GEOLOGICAL SURVEY OF CANADA OPEN FILE 7685 GIS compilation of coastline variability spanning 60 years in the Mackenzie Delta and Tuktoyaktuk in the Beaufort Sea S. Hynes, S.M. Solomon, and D. Whalen 2014

More information

Donald K. Stauble and Bill Birkemeier Coastal and Hydraulics Laboratory US Army Corps of Engineers

Donald K. Stauble and Bill Birkemeier Coastal and Hydraulics Laboratory US Army Corps of Engineers Donald K. Stauble and Bill Birkemeier Coastal and Hydraulics Laboratory US Army Corps of Engineers Define the Problem Navigation Shore Protection Environmental Political So what is the problem? Management

More information

Quantifying Coastal Evolution using Remote Sensing Approaches

Quantifying Coastal Evolution using Remote Sensing Approaches Quantifying Coastal Evolution using Remote Sensing Approaches Sojan Mathew, Linh Truong Hong, Xavier Pellicer*, Colman Gallagher University College Dublin Geological Survey of Ireland* INFOMAR SEMINAR,

More information

Use of Elevation Data in NOAA Coastal Mapping Shoreline Products. Coastal GeoTools April 1, 2015

Use of Elevation Data in NOAA Coastal Mapping Shoreline Products. Coastal GeoTools April 1, 2015 Use of Elevation Data in NOAA Coastal Mapping Shoreline Products Coastal GeoTools April 1, 2015 - NOAA s Coastal Mapping Program & CUSP - Shoreline Uses, Delineation Issues, Definitions - Current Extraction

More information

Great Lakes Update. Geospatial Technologies for Great Lakes Water Management. Volume 149 October 4, US Army Corps of Engineers Detroit District

Great Lakes Update. Geospatial Technologies for Great Lakes Water Management. Volume 149 October 4, US Army Corps of Engineers Detroit District Volume 149 October 4, 2002 US Army Corps of Engineers Detroit District Great Lakes Update Geospatial Technologies for Great Lakes Water Management The U.S. Army Corps of Engineers (USACE) serves an important

More information

The Use of Geographic Information Systems to Assess Change in Salt Marsh Ecosystems Under Rising Sea Level Scenarios.

The Use of Geographic Information Systems to Assess Change in Salt Marsh Ecosystems Under Rising Sea Level Scenarios. The Use of Geographic Information Systems to Assess Change in Salt Marsh Ecosystems Under Rising Sea Level Scenarios Robert Hancock The ecological challenges presented by global climate change are vast,

More information

Coastal Inlets Research Program US Army Corps of Engineers Engineering Research and Development Center

Coastal Inlets Research Program US Army Corps of Engineers Engineering Research and Development Center Coastal Inlets Research Program US Army Corps of Engineers Engineering Research and Development Center Site of Moriches Inlet Nov. 1951 Julie Dean Rosati and Nicholas C. Kraus, CIRP Program Manager Shinnecock

More information

GEOMATICS. Shaping our world. A company of

GEOMATICS. Shaping our world. A company of GEOMATICS Shaping our world A company of OUR EXPERTISE Geomatics Geomatics plays a mayor role in hydropower, land and water resources, urban development, transport & mobility, renewable energy, and infrastructure

More information

Mapping Coastal Change Using LiDAR and Multispectral Imagery

Mapping Coastal Change Using LiDAR and Multispectral Imagery Mapping Coastal Change Using LiDAR and Multispectral Imagery Contributor: Patrick Collins, Technical Solutions Engineer Presented by TABLE OF CONTENTS Introduction... 1 Coastal Change... 1 Mapping Coastal

More information

DATA SOURCES AND INPUT IN GIS. By Prof. A. Balasubramanian Centre for Advanced Studies in Earth Science, University of Mysore, Mysore

DATA SOURCES AND INPUT IN GIS. By Prof. A. Balasubramanian Centre for Advanced Studies in Earth Science, University of Mysore, Mysore DATA SOURCES AND INPUT IN GIS By Prof. A. Balasubramanian Centre for Advanced Studies in Earth Science, University of Mysore, Mysore 1 1. GIS stands for 'Geographic Information System'. It is a computer-based

More information

GIS and Remote Sensing

GIS and Remote Sensing Spring School Land use and the vulnerability of socio-ecosystems to climate change: remote sensing and modelling techniques GIS and Remote Sensing Katerina Tzavella Project Researcher PhD candidate Technology

More information

Current and Future Technology Applications for Coastal Zone Management. Bruce K. Carlisle, Acting Director Office of Coastal Zone Management

Current and Future Technology Applications for Coastal Zone Management. Bruce K. Carlisle, Acting Director Office of Coastal Zone Management Current and Future Technology Applications for Coastal Zone Management Bruce K. Carlisle, Acting Director Office of Coastal Zone Management The Massachusetts Coastal Zone Management Program Approved in

More information

Applications of GIS and Remote Sensing for Beach Morphology Analysis. Overview

Applications of GIS and Remote Sensing for Beach Morphology Analysis. Overview Brian Maggi NRS 509 Concepts in GIS & Remote Sensing University of Rhode Island 15 December 2016 Applications of GIS and Remote Sensing for Beach Morphology Analysis Overview Worldwide there is an increased

More information

Technical Drafting, Geographic Information Systems and Computer- Based Cartography

Technical Drafting, Geographic Information Systems and Computer- Based Cartography Technical Drafting, Geographic Information Systems and Computer- Based Cartography Project-Specific and Regional Resource Mapping Services Geographic Information Systems - Spatial Analysis Terrestrial

More information

JALBTCX AND THE USACE NATIONAL COASTAL MAPPING PROGRAM

JALBTCX AND THE USACE NATIONAL COASTAL MAPPING PROGRAM JALBTCX AND THE USACE NATIONAL COASTAL MAPPING PROGRAM 237 237 237 217 217 217 200 200 200 80 119 27 252 174.59 1 255 255 255 0 0 0 163 163 163 131 132 122 239 65 53 110 135 120 112 92 56 62 102 130 102

More information

Extreme Changes to Barrier Islands Along the Central Gulf of Mexico Coast During Hurricane Katrina

Extreme Changes to Barrier Islands Along the Central Gulf of Mexico Coast During Hurricane Katrina Extreme Changes to Barrier Islands Along the Central Gulf of Mexico Coast During Hurricane Katrina By Asbury Sallenger, Wayne Wright, Jeff Lillycrop, Peter Howd, Hilary Stockdon, Kristy Guy, and Karen

More information

Shoreline Change as a Proxy for Subaerial Beach Volume Change

Shoreline Change as a Proxy for Subaerial Beach Volume Change Journal of Coastal Research 23 3 740 748 West Palm Beach, Florida May 2007 Shoreline Change as a Proxy for Subaerial Beach Volume Change Amy S. Farris and Jeffrey H. List US Geological Survey Woods Hole

More information

Shoreline Evolution: Richmond County, Virginia Rappahannock River Shorelines

Shoreline Evolution: Richmond County, Virginia Rappahannock River Shorelines Shoreline Evolution: Richmond County, Virginia Rappahannock River Shorelines Virginia Institute of Marine Science College of William & Mary Gloucester Point, Virginia September 2011 Shoreline Evolution:

More information

Shoreline Evolution: Prince William County, Virginia Potomac River, Occoquan Bay, and Occoquan River Shorelines

Shoreline Evolution: Prince William County, Virginia Potomac River, Occoquan Bay, and Occoquan River Shorelines Shoreline Evolution: Prince William County, Virginia Potomac River, Occoquan Bay, and Occoquan River Shorelines Virginia Institute of Marine Science College of William & Mary Gloucester Point, Virginia

More information

MID-TERM CONFERENCE CREST

MID-TERM CONFERENCE CREST MID-TERM CONFERENCE CREST 23 November 2017 Innovation in Coastal Monitoring Alain De Wulf (Ugent, Geography Dept.) Innovation in coastal monitoring Outline Why? How? What (tools do we use to assess)? Conclusion

More information

Shoreline Evolution: City of Hampton, Virginia Chesapeake Bay, Back River, and Hampton River Shorelines

Shoreline Evolution: City of Hampton, Virginia Chesapeake Bay, Back River, and Hampton River Shorelines Shoreline Evolution: City of Hampton, Virginia Chesapeake Bay, Back River, and Hampton River Shorelines Virginia Insitute of Marine Science College of William & Mary Gloucester Point, Virginia September

More information

Mapping, monitoring, and modeling: USGS Coastal and Marine Geology activities along the Northeast coast

Mapping, monitoring, and modeling: USGS Coastal and Marine Geology activities along the Northeast coast Mapping, monitoring, and modeling: USGS Coastal and Marine Geology activities along the Northeast coast Coastal and Marine Geology Program Woods Hole Coastal and Marine Science Center St. Petersburg Coastal

More information

CE 59700: Digital Photogrammetric Systems

CE 59700: Digital Photogrammetric Systems CE 59700: Digital Photogrammetric Systems Fall 2016 1 Instructor: Contact Information Office: HAMP 4108 Tel: (765) 496-0173 E-mail: ahabib@purdue.edu Lectures (HAMP 2102): Monday, Wednesday & Friday (12:30

More information

Africa Partnership Station: Coastal Processes

Africa Partnership Station: Coastal Processes DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Africa Partnership Station: Coastal Processes Cheryl Hapke U.S. Geological Survey 600 Fourth St. South St. Petersburg,

More information

Laserscanning for DEM generation Uwe Lohr TopoSys GmbH, Freiherr-vom-Stein-Str. 7, D Ravensburg,

Laserscanning for DEM generation Uwe Lohr TopoSys GmbH, Freiherr-vom-Stein-Str. 7, D Ravensburg, Laserscanning for DEM generation Uwe Lohr TopoSys GmbH, Freiherr-vom-Stein-Str. 7, D-88212 Ravensburg, Germany Email: toposys@w-4.de Abstract During the last years laserscanning has been accepted as a

More information

Topographical Change Monitoring for Susceptible Landslide Area Determination by Using Multi-Date Digital Terrain Models and LiDAR

Topographical Change Monitoring for Susceptible Landslide Area Determination by Using Multi-Date Digital Terrain Models and LiDAR Topographical Change Monitoring for Susceptible Landslide Area Determination by Using Multi-Date Digital Terrain Models and Chanist PRASERTBURANAKUL 1, Parkorn SUWANICH 2, Kanchana NAKHAPAKORN 3, and Sukit

More information

Summary Visualizations for Coastal Spatial Temporal Dynamics

Summary Visualizations for Coastal Spatial Temporal Dynamics Summary Visualizations for Coastal Spatial Temporal Dynamics October 24 2011 Providence, RI Sidharth Thakur 1, Laura Tateosian 2, Helena Mitasova, Eric Hardin, and Margery Overton 1. sthakur@renci.org,

More information

Lecture 9: Reference Maps & Aerial Photography

Lecture 9: Reference Maps & Aerial Photography Lecture 9: Reference Maps & Aerial Photography I. Overview of Reference and Topographic Maps There are two basic types of maps? Reference Maps - General purpose maps & Thematic Maps - maps made for a specific

More information

Shoreline Evolution: Lancaster County, Virginia Rappahannock River and Chesapeake Bay Shorelines

Shoreline Evolution: Lancaster County, Virginia Rappahannock River and Chesapeake Bay Shorelines Shoreline Evolution: Lancaster County, Virginia Rappahannock River and Chesapeake Bay Shorelines Virginia Institute of Marine Science College of William & Mary Gloucester Point, Virginia March 2012 Shoreline

More information

PHOTOGRAMMETRY AND GIS TECHNOL 1 OGIES FOR MONITORING COASTAL EROSION ALONG DAR ES SALAAM COASTLINE. By: Z.Y Masele, S.D Mayunga1.

PHOTOGRAMMETRY AND GIS TECHNOL 1 OGIES FOR MONITORING COASTAL EROSION ALONG DAR ES SALAAM COASTLINE. By: Z.Y Masele, S.D Mayunga1. PHOTOGRAMMETRY AND GIS TECHNOL 1 OGIES FOR MONITORING COASTAL EROSION ALONG DAR ES SALAAM COASTLINE. By: Z.Y Masele, S.D Mayunga1 Abstract Dar Es salaam coastline is seriously suffering from coastal soil

More information

3 SHORELINE CLASSIFICATION METHODOLOGY

3 SHORELINE CLASSIFICATION METHODOLOGY 3 SHORELINE CLASSIFICATION METHODOLOGY Introduction The ESI scale, as described in Section 2, categorizes coastal habitats in terms of their susceptibility to spilled oil, taking into consideration a number

More information

GSA DATA REPOSITORY

GSA DATA REPOSITORY GSA DATA REPOSITORY 2009206 Miner et al. Supplemental Material Bathymetric Survey Methods The bathymetric data for the area were gathered using a single-beam bathymetric survey rig mounted aboard a 21-foot

More information

Impacts of Hurricane Rita on the Beaches of Western Louisiana

Impacts of Hurricane Rita on the Beaches of Western Louisiana Impacts of Hurricane Rita on the Beaches of Western Louisiana By Hilary F. Stockdon, Laura A. Fauver, Asbury H. Sallenger, Jr., and C. Wayne Wright Hurricane Rita made landfall as a category 3 storm in

More information

GIS & Remote Sensing in Mapping Sea-Level Rise (SLR)

GIS & Remote Sensing in Mapping Sea-Level Rise (SLR) Joe McGuire NRS-509 Concepts in GIS & Remote Sensing Professors August & Wang Due 12/10/2015 11:30am GIS & Remote Sensing in Mapping Sea-Level Rise (SLR) The ever-present threat of global warming and a

More information

Phillip Island Nature Parks Coastal Process Study 8 October 2014

Phillip Island Nature Parks Coastal Process Study 8 October 2014 Phillip Island Nature Parks Coastal Process Study 8 October 2014 Project Overview Coastal Geology Basaltic and fragmented lavas, granite at Pyramid Rock and Cape Woolamai Weathered basalt (>10m thick)

More information

WP4: COASTAL PROCESSES

WP4: COASTAL PROCESSES WP4: COASTAL PROCESSES Coordinator: G. EBERHARDS Faculty of Geography and Earth Sciences, University of Latvia Daugavpils, 2008 Goal: The objective of this study is analysis of coastal changes and forecast

More information

Bathymetry Data and Models: Best Practices

Bathymetry Data and Models: Best Practices Bathymetry Data and Models: Best Practices Barry Eakins & Lisa Taylor The NOAA National Geophysical Data Center Over 600 data types - from the core of the Earth to the surface of the Sun NGDC Bathymetry

More information

Change detection at the recently erupted Te Maari crater, Tongariro, from stereo aerial photographs

Change detection at the recently erupted Te Maari crater, Tongariro, from stereo aerial photographs Change detection at the recently erupted Te Maari crater, Tongariro, from stereo aerial photographs Strong, D.T., Jones, K.E., Ashraf, S. and Lee, J. Outline Geographic context Setting and eruption Science

More information

Angelica Murdukhayeva NRS509 Report Fall 2010 GIS and Coastal Environments

Angelica Murdukhayeva NRS509 Report Fall 2010 GIS and Coastal Environments Angelica Murdukhayeva NRS509 Report Fall 2010 GIS and Coastal Environments The coastal zone contains unique natural resources that are critical to biological and economic productivity. It is also subject

More information

COASTAL EVOLUTION AND CLIMATE CHANGE: CHALLENGES OF MULTI-SCALE SPATIAL AND TEMPORAL VARIABILITY

COASTAL EVOLUTION AND CLIMATE CHANGE: CHALLENGES OF MULTI-SCALE SPATIAL AND TEMPORAL VARIABILITY COASTAL EVOLUTION AND CLIMATE CHANGE: CHALLENGES OF MULTI-SCALE SPATIAL AND TEMPORAL VARIABILITY Dr. Jennifer L. Miselis Naval Research Laboratory Stennis Space Center, MS jmiselis@nrlssc.navy.mil 1 PRIMARY

More information

USING GIS CARTOGRAPHIC MODELING TO ANALYSIS SPATIAL DISTRIBUTION OF LANDSLIDE SENSITIVE AREAS IN YANGMINGSHAN NATIONAL PARK, TAIWAN

USING GIS CARTOGRAPHIC MODELING TO ANALYSIS SPATIAL DISTRIBUTION OF LANDSLIDE SENSITIVE AREAS IN YANGMINGSHAN NATIONAL PARK, TAIWAN CO-145 USING GIS CARTOGRAPHIC MODELING TO ANALYSIS SPATIAL DISTRIBUTION OF LANDSLIDE SENSITIVE AREAS IN YANGMINGSHAN NATIONAL PARK, TAIWAN DING Y.C. Chinese Culture University., TAIPEI, TAIWAN, PROVINCE

More information

Watershed Delineation in GIS Environment Rasheed Saleem Abed Lecturer, Remote Sensing Centre, University of Mosul, Iraq

Watershed Delineation in GIS Environment Rasheed Saleem Abed Lecturer, Remote Sensing Centre, University of Mosul, Iraq Watershed Delineation in GIS Environment Rasheed Saleem Abed Lecturer, Remote Sensing Centre, University of Mosul, Iraq Abstract: The management and protection of watershed areas is a major issue for human

More information

Metadata for 2005 Orthophotography Products

Metadata for 2005 Orthophotography Products Metadata for 2005 Orthophotography Products What does this data set describe? 1. How should this data set be cited? 2. What geographic area does the data set cover? 3. What does it look like? 4. Does the

More information

Remote Sensing Techniques for Renewable Energy Projects. Dr Stuart Clough APEM Ltd

Remote Sensing Techniques for Renewable Energy Projects. Dr Stuart Clough APEM Ltd Remote Sensing Techniques for Renewable Energy Projects Dr Stuart Clough APEM Ltd What is Remote Sensing? The use of aerial sensors to detect and classify objects on Earth Remote sensing for ecological

More information

INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEM By Reshma H. Patil

INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEM By Reshma H. Patil INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEM By Reshma H. Patil ABSTRACT:- The geographical information system (GIS) is Computer system for capturing, storing, querying analyzing, and displaying geospatial

More information

Farah Nusrat NRS 509: Concepts in GIS & Remote Sensing Due Date: December 15, 2016

Farah Nusrat NRS 509: Concepts in GIS & Remote Sensing Due Date: December 15, 2016 Farah Nusrat NRS 509: Concepts in GIS & Remote Sensing Due Date: December 15, 2016 Use of Geographic Information System (GIS) & Remote Sensing for the Assessment of Sea Level Rise Impact Sea level rise

More information

Hurricane Harvey: Texas Coastal Erosion Hot Spot Analysis

Hurricane Harvey: Texas Coastal Erosion Hot Spot Analysis Hurricane Harvey: Texas Coastal Erosion Hot Spot Analysis Texas ASBPA Symposium April 24, 2018 Alan Johnson, FEMA Chris Levitz, Compass Agenda Introduction Hurricane Harvey Erosion Hot Spot Analysis Purpose

More information

SHORELINE MANAGEMENT PLAN FOR OWEN ANCHORAGE AND COCKBURN SOUND SHORELINE MONITORING PLAN

SHORELINE MANAGEMENT PLAN FOR OWEN ANCHORAGE AND COCKBURN SOUND SHORELINE MONITORING PLAN SHORELINE MANAGEMENT PLAN FOR OWEN ANCHORAGE AND COCKBURN SOUND SHORELINE MONITORING PLAN CHAPTER EIGHT OF DOCUMENT: LONG-TERM SHELLSAND DREDGING, OWEN ANCHORAGE ENVIRONMENTAL MANAGEMENT PROGRAMME JUNE

More information

Coastal Barrier Island Network (CBIN): Management strategies for the future

Coastal Barrier Island Network (CBIN): Management strategies for the future Coastal Barrier Island Network (CBIN): Management strategies for the future Heather Joesting*, Amy Williams**, Rusty Feagin**, and William K. Smith* *Department of Biology, Wake Forest University, Winston

More information

Regional-scale understanding of the geologic character and sand resources of the Atlantic inner continental shelf, Maine to Virginia

Regional-scale understanding of the geologic character and sand resources of the Atlantic inner continental shelf, Maine to Virginia Regional-scale understanding of the geologic character and sand resources of the Atlantic inner continental shelf, Maine to Virginia Workshop on Dredging, Beach Nourishment and Bird Conservation Atlantic

More information

Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline

Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline Remote Sensing of Environment 85 (2003) 39 47 www.elsevier.com/locate/rse Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline Stephen A. White, Yong Wang*

More information

History & Scope of Remote Sensing FOUNDATIONS

History & Scope of Remote Sensing FOUNDATIONS History & Scope of Remote Sensing FOUNDATIONS Lecture Overview Introduction Overview of visual information Power of imagery Definition What is remote sensing? Definition standard for class History of Remote

More information

Application of GIS Technology in Reach- Scale Channel Migration Zone Mapping: Yellowstone River, Montana

Application of GIS Technology in Reach- Scale Channel Migration Zone Mapping: Yellowstone River, Montana Application of GIS Technology in Reach- Scale Channel Migration Zone Mapping: Yellowstone River, Montana Karin Boyd Applied Geomorphology, Inc. Bozeman, MT Tony Thatcher DTM Consulting, Inc Bozeman, MT

More information

Using Remote Piloted Aircraft for Seawall Condition Assessment

Using Remote Piloted Aircraft for Seawall Condition Assessment Using Remote Piloted Aircraft for Seawall Condition Assessment Moreton Bay Regional Council Shamim Yazdani Senior Engineer - Stormwater Planning DJI Industries Phantom FC-40 remotely-piloted aircraft 1

More information

Shoreline Changes during the last 60 years in Arecibo, Puerto Rico

Shoreline Changes during the last 60 years in Arecibo, Puerto Rico UNIVERSITY OF PUERTO RICO MAYAGUEZ COLLEGE CAMPUS FACULTY OF ARTS AND SCIENCES DEPARTAMENT OF GEOLOGY Shoreline Changes during the last 60 years in Arecibo, Puerto Rico Héctor M. Crespo Jones GEOL 4049:

More information

DIVISION OF COASTAL MANAGEMENT TO STUDY CURRENT LONG-TERM EROSION RATES ADJACENT TO TERMINAL GROINS

DIVISION OF COASTAL MANAGEMENT TO STUDY CURRENT LONG-TERM EROSION RATES ADJACENT TO TERMINAL GROINS DIVISION OF COASTAL MANAGEMENT TO STUDY CURRENT LONG-TERM EROSION RATES ADJACENT TO TERMINAL GROINS North Carolina Department of Environmental Quality Division of Coastal Management February 22, 2018 N.

More information

A Proposed Approach for Characterizing Large Military Ranges

A Proposed Approach for Characterizing Large Military Ranges A Proposed Approach for Characterizing Large Military Ranges Jay Clausen Physical Research Scientist Hanover, NH July 25, 2013 US Army Corps of Engineers Large Ranges Characterization Issues Lack of a

More information

REGIONAL SEDIMENT MANAGEMENT: A GIS APPROACH TO SPATIAL DATA ANALYSIS. Lynn Copeland Hardegree, Jennifer M. Wozencraft 1, Rose Dopsovic 2 INTRODUCTION

REGIONAL SEDIMENT MANAGEMENT: A GIS APPROACH TO SPATIAL DATA ANALYSIS. Lynn Copeland Hardegree, Jennifer M. Wozencraft 1, Rose Dopsovic 2 INTRODUCTION REGIONAL SEDIMENT MANAGEMENT: A GIS APPROACH TO SPATIAL DATA ANALYSIS Lynn Copeland Hardegree, Jennifer M. Wozencraft 1, Rose Dopsovic 2 ABSTRACT: Regional sediment management (RSM) requires the capability

More information

Protecting the Storm Damage Prevention and Flood Control Interests of Coastal Resource Areas

Protecting the Storm Damage Prevention and Flood Control Interests of Coastal Resource Areas Protecting the Storm Damage Prevention and Flood Control Interests of Coastal Resource Areas Presented by: Massachusetts Department of Environmental Protection & Massachusetts Office of Coastal Zone Management

More information

Characterization of the Nigerian Shoreline using Publicly-Available Satellite Imagery

Characterization of the Nigerian Shoreline using Publicly-Available Satellite Imagery University of New Hampshire University of New Hampshire Scholars' Repository Center for Coastal and Ocean Mapping Center for Coastal and Ocean Mapping 1-2014 Characterization of the Nigerian Shoreline

More information

Coastal Zone Mapping and Imaging Lidar (CZMIL)

Coastal Zone Mapping and Imaging Lidar (CZMIL) Coastal Zone Mapping (CZMIL) Shallow Survey 2012 Wellington, New Zealand Christopher L. Macon U.S. Army Corps of Engineers, Mobile District Joint Airborne Lidar Bathymetry Technical Center of expertise

More information

Themes for Geomatics Conference. Geodesy Themes

Themes for Geomatics Conference. Geodesy Themes Themes for Geomatics Conference Geodesy Themes Geodynamics o Modeling the Deformation of the Earth s Crust o Recent Advances in Geometric Approaches to Deformation Analysis o Monitoring Systems (Sensors

More information

Tatsuo Sekiguchi* and Hiroshi Sato*

Tatsuo Sekiguchi* and Hiroshi Sato* by Tatsuo Sekiguchi* and Hiroshi Sato* ABSTRACT Landslides induced by heavy rainfall and earthquakes may result in disaster by destroying homes and buildings. High-fluidity landslides caused by liquefied

More information

Supplement of Scenario-based numerical modelling and the palaeo-historic record of tsunamis in Wallis and Futuna, Southwest Pacific

Supplement of Scenario-based numerical modelling and the palaeo-historic record of tsunamis in Wallis and Futuna, Southwest Pacific Supplement of Nat. Hazards Earth Syst. Sci., 15, 1763 1784, 2015 http://www.nat-hazards-earth-syst-sci.net/15/1763/2015/ doi:10.5194/nhess-15-1763-2015-supplement Author(s) 2015. CC Attribution 3.0 License.

More information

Mapping of Future Coastal Hazards. for Southern California. January 7th, David Revell, Ph.D. E.

Mapping of Future Coastal Hazards. for Southern California. January 7th, David Revell, Ph.D. E. Mapping of Future Coastal Hazards for Southern California January 7th, 2014 David Revell, Ph.D. drevell@esassoc.com E. Vandebroek, 2012 Outline Coastal erosion hazard zones Flood hazard zones: Coastal

More information

Developing Coastal Erosion Hazard Area Maps for Lakes Ontario and Erie New York State Department of Environmental Conservation (DEC)

Developing Coastal Erosion Hazard Area Maps for Lakes Ontario and Erie New York State Department of Environmental Conservation (DEC) ASFPM 2012 Annual Conference Developing Coastal Erosion Hazard Area Maps for Lakes Ontario and Erie New York State Department of Environmental Conservation (DEC) Jeff Burm, CFM Elena Drei-Horgan, PhD,

More information

Assessment of Golspie Beach sand feeding performance using high resolution digital terrain models

Assessment of Golspie Beach sand feeding performance using high resolution digital terrain models Sky Journal of Soil Science and Environmental Management Vol. 4(2), pp. 020-026, May, 2015 Available online http://www.skyjournals.org/sjssem ISSN 2315-8794 2015 Sky Journals Full Length Research Paper

More information

By Paul M. (Mitch) Harris 1 and James Ellis 2. Search and Discovery Article #50080 Posted June 5, Abstract

By Paul M. (Mitch) Harris 1 and James Ellis 2. Search and Discovery Article #50080 Posted June 5, Abstract PS Satellite Imagery and Visualization of the Caicos Platform* By Paul M. (Mitch) Harris 1 and James Ellis 2 Search and Discovery Article #50080 Posted June 5, 2008 *Adapted from poster presentation at

More information

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Güz Dönemi Yabancı Dil III (YDL285) Introduction to Geomatics Yrd. Doç. Dr. Saygın ABDİKAN 2017-2018 Öğretim Yılı Güz Dönemi 1 géomatique Geo (Earth) + informatics Geodesy + Geoinformatics Geomatics: The mathematics

More information

Geomorphologic Mapping by Airborne Laser Scanning in Southern Victoria Land

Geomorphologic Mapping by Airborne Laser Scanning in Southern Victoria Land Geomorphologic Mapping by Airborne Laser Scanning in Southern Victoria Land Bea Csatho, Terry Wilson, Tony Schenk, Garry McKenzie, Byrd Polar Research Center, The Ohio State University, Columbus, OH William

More information

EROSIONAL RATES IN THE POINT AUX CHENES BAY AREA, MISSISSIPPI: Kathleen P. Wacker G. Alan Criss INTRODUCTION

EROSIONAL RATES IN THE POINT AUX CHENES BAY AREA, MISSISSIPPI: Kathleen P. Wacker G. Alan Criss INTRODUCTION Summary of a Paper Presented at the: Sixtieth Annual Meeting of the Mississippi Academy of Sciences in Jackson, Mississippi February 22, 1996 ===============================================================

More information

GenCade. Combining and Extending the GENESIS and Cascade Models for Planning and Design in a Regional Sediment Management Framework

GenCade. Combining and Extending the GENESIS and Cascade Models for Planning and Design in a Regional Sediment Management Framework GenCade Combining and Extending the GENESIS and Cascade Models for Planning and Design in a Regional Sediment Management Framework G Presented by Nicholas C. Kraus For the GenCade Development Team Ken

More information

COASTLINE CHANGE MEASUREMENT AND GENERATING RISK MAP FOR THE COAST USING GEOGRAPHIC INFORMATION SYSTEM

COASTLINE CHANGE MEASUREMENT AND GENERATING RISK MAP FOR THE COAST USING GEOGRAPHIC INFORMATION SYSTEM COASTLINE CHANGE MEASUREMENT AND GENERATING RISK MAP FOR THE COAST USING GEOGRAPHIC INFORMATION SYSTEM Presentation by : Durairaju Kumaran Raju, Research Fellow Kanakappan Santosh, Research Engineer Chandrasekar

More information

Analysis of Shoreline Change in Connecticut 100 Years of Erosion and Accretion

Analysis of Shoreline Change in Connecticut 100 Years of Erosion and Accretion Analysis of Shoreline Change in Connecticut 100 Years of Erosion and Accretion Joel Stocker UConn Extension Kevin O Brien CT DEEP OLISP Juliana Barrett Connecticut Sea Grant Bruce Hyde UConn Extension

More information

GIS Changing the World GIS Day November 15, 2017

GIS Changing the World GIS Day November 15, 2017 + GIS Changing the World GIS Day November 15, 2017 + Growing Up On The Farm 3 Geographic Information in DNR A 75 year history of mapping and GIS. Forest type map from 1944. State of Washington - Division

More information

Imagery and the Location-enabled Platform in State and Local Government

Imagery and the Location-enabled Platform in State and Local Government Imagery and the Location-enabled Platform in State and Local Government Fred Limp, Director, CAST Jim Farley, Vice President, Leica Geosystems Oracle Spatial Users Group Denver, March 10, 2005 TM TM Discussion

More information

Display data in a map-like format so that geographic patterns and interrelationships are visible

Display data in a map-like format so that geographic patterns and interrelationships are visible Vilmaliz Rodríguez Guzmán M.S. Student, Department of Geology University of Puerto Rico at Mayagüez Remote Sensing and Geographic Information Systems (GIS) Reference: James B. Campbell. Introduction to

More information

Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations

Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations Rajesh VijayKumar Kherde *1, Dr. Priyadarshi. H. Sawant #2 * Department of Civil Engineering,

More information

MONITORING SHORELINE AND BEACH MORPHOLOGIC CHANGE AT KENNEDY SPACE CENTER, CAPE CANAVERAL, FLORIDA

MONITORING SHORELINE AND BEACH MORPHOLOGIC CHANGE AT KENNEDY SPACE CENTER, CAPE CANAVERAL, FLORIDA MONITORING SHORELINE AND BEACH MORPHOLOGIC CHANGE AT KENNEDY SPACE CENTER, CAPE CANAVERAL, FLORIDA Annual Report Phase 3, Oct. 2011- Sept. 2012 Dr. Peter N. Adams Dr. John Jaeger Dr. Richard MacKenzie

More information

Fugro Geospatial: Turning Spatial Data into Knowledge

Fugro Geospatial: Turning Spatial Data into Knowledge Fugro Geospatial: Turning Spatial Data into Knowledge 2016 Fugro Geospatial, GIS and Consultants Locations Variety of Collection Platforms Traditional Mapping Traditional Mapping Imagery Photogrammetric

More information

Topographic Mapping at the 1: Scale in Quebec: Two Techniques; One Product

Topographic Mapping at the 1: Scale in Quebec: Two Techniques; One Product ISPRS SIPT IGU UCI CIG ACSG Table of contents Table des matières Authors index Index des auteurs Search Recherches Exit Sortir Topographic Mapping at the 1:100 000 Scale in Quebec: Two Techniques; One

More information

Quick Response Report #126 Hurricane Floyd Flood Mapping Integrating Landsat 7 TM Satellite Imagery and DEM Data

Quick Response Report #126 Hurricane Floyd Flood Mapping Integrating Landsat 7 TM Satellite Imagery and DEM Data Quick Response Report #126 Hurricane Floyd Flood Mapping Integrating Landsat 7 TM Satellite Imagery and DEM Data Jeffrey D. Colby Yong Wang Karen Mulcahy Department of Geography East Carolina University

More information

Integrating new coastline information and geographically coordinated coastal geomorphology data

Integrating new coastline information and geographically coordinated coastal geomorphology data Integrating new coastline information and geographically coordinated coastal geomorphology data NOAA Contemporary Shoreline DOE Coastal Geomorphology Cynthia Miller Corbett Jeff Simley 1 National Hydrography

More information

Manitoba s Elevation (LiDAR) & Imagery Datasets. Acquisition Plans & Opportunities for Collaboration

Manitoba s Elevation (LiDAR) & Imagery Datasets. Acquisition Plans & Opportunities for Collaboration Manitoba s Elevation (LiDAR) & Imagery Datasets Acquisition Plans & Opportunities for Collaboration Manitoba Planning Conference May 2017 Presentation Outline Manitoba s Elevation (LiDAR) and Imagery Datasets

More information

Integrating LiDAR data into the workflow of cartographic representation.

Integrating LiDAR data into the workflow of cartographic representation. Integrating LiDAR data into the workflow of cartographic representation. Cartographic Workflow I. 1 2 3 4 5 Surveying Vector (Nat. GDB) GPS, Laser Range Finder Yes/ No Scanning old maps LiDARflights Capture

More information

Chapter 5 LiDAR Survey and Analysis in

Chapter 5 LiDAR Survey and Analysis in Chapter 5 LiDAR Survey and Analysis in 2010-2011 Christopher Fennell A surveyor s plat and town plan filed in 1836 set out an intended grid of blocks, lots, alleys, and streets for New Philadelphia. Geophysical,

More information

Frank Hegyi President, Ferihill Technologies Ltd Victoria, B.C.

Frank Hegyi President, Ferihill Technologies Ltd Victoria, B.C. REMOTE SENSING TECHNIQUES IN ENVIRONMENTAL MONITORING By Frank Hegyi President, Ferihill Technologies Ltd Victoria, B.C. ABSTRACT Increasing public awareness about environmental concerns is creating pressures

More information

IMPLEMENTAION OF GIS TECHNOLOGY IN THE NILE AND ITS WADIS ABSTRACT

IMPLEMENTAION OF GIS TECHNOLOGY IN THE NILE AND ITS WADIS ABSTRACT IMPLEMENTAION OF GIS TECHNOLOGY IN THE NILE AND ITS WADIS Eng. NADIA M. ABD EI- SALAM 1 Dr. ABDEL AZIZ TAREK M. 2 ABSTRACT Traditional methods have been used for several years for map production of the

More information

COASTAL QUATERNARY GEOLOGY MAPPING FOR NSW: EXAMPLES AND APPLICATIONS

COASTAL QUATERNARY GEOLOGY MAPPING FOR NSW: EXAMPLES AND APPLICATIONS COASTAL QUATERNARY GEOLOGY MAPPING FOR NSW: EXAMPLES AND APPLICATIONS A Troedson Geological Survey of New South Wales Abstract Detailed geological mapping of the coastal plains of regional NSW was undertaken

More information

What are the issues?

What are the issues? Water Quality along Lake Huron What are the issues? Lake Huron Water Quality Algal fouling Irregular, less frequent, less widespread, but some significant local events Influences Tributaries contribute;

More information

Airborne Corridor-Mapping. Planning and documentation of company infrastructure: precise, rapid, and cost effective

Airborne Corridor-Mapping. Planning and documentation of company infrastructure: precise, rapid, and cost effective Airborne Corridor-Mapping Planning and documentation of company infrastructure: precise, rapid, and cost effective Technology Airborne Laser-Scanning, digital orthophotos and thermal imaging: one flight

More information

Conference Proceedings Paper An Automated Model to Classify Barrier Island Geomorphology using Lidar Data

Conference Proceedings Paper An Automated Model to Classify Barrier Island Geomorphology using Lidar Data 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Conference Proceedings Paper An Automated Model to Classify Barrier Island Geomorphology

More information

What is GIS? Introduction to data. Introduction to data modeling

What is GIS? Introduction to data. Introduction to data modeling What is GIS? Introduction to data Introduction to data modeling 2 A GIS is similar, layering mapped information in a computer to help us view our world as a system A Geographic Information System is a

More information

Presentation Outline. Project Overview. Sea Level Rise Assessment & Decision Tools. Community Engagement. Tina Whitman, Friends of the San Juans

Presentation Outline. Project Overview. Sea Level Rise Assessment & Decision Tools. Community Engagement. Tina Whitman, Friends of the San Juans Healthy Beaches for People & Fish Sea Level Rise Adaptation Tools for San Juan County, WA Tina Whitman & Andrea MacLennan December 10, 2015 Presentation Outline Project Overview Tina Whitman, Friends of

More information

GLY Coastal Geomorphology Notes

GLY Coastal Geomorphology Notes GLY 4734 - Coastal Geomorphology Notes Dr. Peter N. Adams Spring 2011 2 Coastal Classification In this lecture, we discuss some successful classification schemes of the coastal landscape, and pay particular

More information

Shoreline Mapping & Erosion Patterns. Julia Knisel Julia Knisel Coastal Shoreline & Floodplain Manager

Shoreline Mapping & Erosion Patterns. Julia Knisel Julia Knisel Coastal Shoreline & Floodplain Manager Shoreline Mapping & Erosion Patterns Along the Massachusetts Coast Julia Knisel Julia Knisel Coastal Shoreline & Floodplain Manager CZM Shoreline Change Project Timeline 1989: produced coast wide maps

More information

Land Administration and Cadastre

Land Administration and Cadastre Geomatics play a major role in hydropower, land and water resources and other infrastructure projects. Lahmeyer International s (LI) worldwide projects require a wide range of approaches to the integration

More information

Airborne Remote Sensing for Ocean and Coastal Applications

Airborne Remote Sensing for Ocean and Coastal Applications Airborne Remote Sensing for Ocean and Coastal Applications Ben Reineman, Luc Lenain, Nick Statom, David Castel, Ken Melville Scripps Institution of Oceanography 17 October, 2011 Address for correspondence:

More information