CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS

Size: px
Start display at page:

Download "CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS"

Transcription

1 Back to Basics Section D: Ion Optics CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS TABLE OF CONTENTS QuickGuide Summary Introduction The physical basis of orthogonal TOF Pulsedmainbeamsofions Rate of application of the pulsed field gradient. 421 Microchannel plate ion collector Resolutionbym/zvalue MS/MSoperation Advantages of orthogonal TOF arrangements. 425 Conclusion Micromass UK Limited Page 411

2 This page is intentionally blank. Micromass UK Limited Page 412

3 Quick Guide Orthogonal TOF is the name commonly given to orthogonally accelerated Time-of-Flight mass spectrometry. It is sometimes referred to by the acronym oatof, especially in official publications, but it is more usual for it to be referred to simply as orthogonal TOF; this abbreviation is used here. In this Quick Guide, and purely for the purposes of illustration, orthogonal TOF optics are compared with those from magnetic sector instruments. Greater details of orthogonal TOF analysers hybridized with other kinds of ion optics are given in the relevant sections of Back-to-Basics In conventional mass spectrometry with electric and magnetic sectors arranged in-line (see Back-to-Basics, Ion Optics), an ion beam consists of a stream of ions of all m/z values, which is separated into individual m/z values by the magnetic sector before being collected by single-point or multipoint detectors (see Back-to-Basics, Point Ion Collectors and Array Collectors). In time-of-flight mass spectrometry, ions of different m/z values are detected as a function of their velocities along a flight tube (see Back-to-Basics, Time of Flight Instruments). Thus, it can be said that conventional magnetic sectors separate ions into individual m/z values by dispersion in space (spatially) and not according to their flight times. Contrarily, TOF analysers separate ions of different m/z values according to their velocities (temporally) but not spatially. These two types of analyser are frequently used alone but can be used in tandem, with ions from a first magnetic analyser passing through a region, in which there is applied an electric field at right angles to the direction of the ion beam. This orthogonal electric field is pulsed at very short time intervals. Ions accelerated from the first analyser have a velocity, which is proportional to the initial accelerating voltage in the ion source. On reaching the orthogonal zone, the pulsed electric field gives these ions a further velocity but now in a direction at right angles to their original velocity. The resultant velocity is given by the vector sum of the initial and second velocities. Micromass UK Limited Page 413

4 This page is intentionally blank. Micromass UK Limited Page 414

5 After the pulsed electric field has been applied, a pulse of ions is directed into a TOF analyser placed an angle to the original ion beam. When the pulse is off, the ions have only their original velocities and continue into a different ion collector. The pulsed ions start their journeys down the TOF flight tube all at the same time; they separate in the TOF analyser according to their velocities and arrive at the TOF ion collector at different times (temporally separated). Therefore the orthogonal TOF mass spectrum is a snapshot of all the ions in the sampled ion beam at any one moment in time. The arrangement has advantages over either magnetic sectors alone or TOF instruments alone (see Back-to-Basics, Orthogonal TOF Hybrid Instruments, for further discussion). An orthogonal acceleration time-of-flight mass spectrometer can be used with continuous ion sources with a high sampling efficiency (typically 20-30%). Consequently the orthogonal TOF has a much higher duty cycle than a scanning instrument, which may have a duty cycle of only 0.1-1% when used to record a mass spectrum. This means that the sensitivity will be much higher for the orthogonal TOF mass spectrometer. Pulses of ions can be directed into the TOF analyser at the rate of about 30 KHz and therefore, more than 30,000 spectra per second can be collected and summed. There are significant improvements in signal-to-noise ratios and speed of acquisition of data. Summary In combined sector/tof analysers a beam of ions accelerated from an ion source by an electric field and sent into a sector instrument is further subjected to a second pulsed electric field applied at right angles to its initial direction. The resultant pulse of ions sets off along the flight tube of a TOF analyser, where the ions separate into m/z values and are recorded (along with their respective abundances) as a mass spectrum. The combined sector/tof analysers have several significant advantages, not least for MS/MS studies and improved signal-to-noise ratios. Micromass UK Limited Page 415

6 This page is intentionally blank. Micromass UK Limited Page 416

7 ORTHOGONAL TIME-OF-FLIGHT OPTICS Introduction Ions produced in an ion source may be separated into their m/z values by a variety of analysers. The resultant set of m/z values, along with the numbers (abundances) of ions forms the mass spectrum. The separation of ions into their individual m/z values has been effected by analysers utilizing magnetic fields or RF electric fields. For example, the mass analysis of ions by instruments using a magnetic field is well-known, as are instruments having quadrupole RF electric fields (quadrupole, ion trap). Ions may also be dispersed in time, so that their m/z values are measured according to their flight times in a time-of-flight instrument. These individual pieces of equipment have their own characteristics and are commonly used in mass spectrometry. In addition, combinations of sectors have given rise to hybrid instruments. The earliest of these was the double-focusing mass spectrometer having an electric sector to focus ions according to their energies and then a magnetic sector to separate the individual m/z values. There is now a whole series of hybrid types, each with some advantage over non-hybrids. Ion collectors have seen a similar improvement in performance and any of the above analysers may be used with ion detectors based on single electron multipliers or in the case of magnetic sectors, on arrays of multipliers or, in the case of ICR, on electric field frequencies. Thus, there is a bewildering variety of instruments potentially available. However, except for very highly specialized purposes, most of the possible hybrids are not used in general mass spectrometry and only a few types are in common use. One of these is the so-called orthogonal TOF instrument. The purpose of the present Back-to-Basics guide is to describe the orthogonal arrangement and to discuss some of its advantages. Actual operation of hybrid orthogonal TOF instruments is discussed under their own headings in other sections of Back-to-Basics. Micromass UK Limited Page 417

8 a v 2 = 2z ev 2 /m v 1 = 2z ev 1 /m v= (v 1 2 +v 2 2 )= 2ze(V 1 +V 2 )/m tan a = v 2 /v 1 = V 2 /V 1 Figure 1 An ion beam is produced by accelerating ions of charge ze from an ion source through an accelerating voltage of V 1 volts so that they have kinetic energy corresponding to zev 1 and a velocity v 1 = (2zeV 1 /m). In an orthogonal acceleration chamber, the ions are subjected to a pulsed electric field with accelerating voltage of V 2 volts, which gives them additional kinetic energy zev 2 with a velocity v 2 = (2zeV 2 /m) at right angles to their original direction. The ion beam has a resultant energy of ze(v 1 +V 2 ), and a resultant velocity component v = (2ze(V 2 +V 1 )/m), in a direction α degrees from the initial direction, where tan α = (V 2 /V 1 ). Micromass UK Limited Page 418

9 The physical basis of orthogonal TOF Consider a stream of ions emitted from an ion source as a beam. The ions are produced continuously and are first accelerated through an electric field of V 1 volts. If the number of charges on an ion is z and e is the charge on the electron then the energy acquired by an ion after acceleration through a field of V 1 volts is zev 1. This energy must be equal to the kinetic energy (mv 2 /2) gained by the ion, where m is the mass of the ion and v is its final velocity. Thus, v = (2zeV 1 /m) andits momentum, mv = (2zemV 1 ). Therefore, the beam consists of a range of ions having momenta proportional to the charge, mass and accelerating voltage. As the beam is produced continuously, there is no separation of ions in time (no temporal separation). This is the beam shown as an arrow with velocity (2zeV 1 /m) infigure1. A magnetic sector, for example would separate the ions in space because the effect of the magnetic field is to bend the flight path in proportion to mass, charge and accelerating voltage (see Back-to-Basics, Ion Optics). Now consider ions emitted from an ion source not as a beam but as a pulse, so that all ions are accelerated through the potential V 1, applied as a pulse. Thus all ions start out from the ion source at exactly the same time and then pass along a flight tube of length d.the times taken for the ions to reach a collector is given by t = d/v,where v = (2zeV 1 /m), as above. This is the basis of the time-of-flight instrument (TOF), in which ions of different m/z values are separated according to t. Let there be an electrode placed so that its (pulsed) electric field gradient (direction) is at right angles to the continuous beam. If the electric potential at this point is V 2 volts, then a pulse of ions will be given additional energy zev 2,andavelocity (2zeV 2 /m) inadirection at right angles to the main beam. The vectorial resultant velocity of the ions and direction of travel of the pulsed set are shown in Figure 1. It can be seen that, effectively, a section of the main ion beam is selected and pulsed away (Figure 2). Ions in this pulsed set all start at the same instant and can be timed by a TOF instrument. The flight times give m/z values and the numbers of ions give the abundances; the two are combined to give a mass spectrum. Micromass UK Limited Page 419

10 Pulsing electrode, off Continuous ion beam Pulsing electrode, on Direction of field gradient Continuous ion beam Pulse of ions TOF drift tube zev 1 zev 1 (a) (b) Microchannel ion collector plate Figure 2 In (a), the pulsing electrode is switched off and a continuous ion beam of energy, zev 1,passesbyit. In (b), the electrode has been pulsed for a few microseconds, with a field gradient at right angles to the main beam. This has caused a section of the ion beam to travel in the direction shown, the direction being determined by the magnitudes of the voltages V 1 and V 2 (see Figure 1). The detached segment of the main beam enters the flight tube of a TOF instrument. The m/z values are determined from the times taken for the ions to reach the microchannel plate ion collector after initiation of the pulse. Micromass UK Limited Page 420

11 Pulsed main beams of ions Although the above has considered only the use of a continuous main ion beam, which is then pulsed, it is not necessary for the initial beam to be continuous; it too can be pulsed. For example, laser desorption uses pulses of laser light to effect ionization and the main ion beam already consists of pulses of ions passing the orthogonal pulsing electrode. As shown below, this is of no consequence because these pulses of ions can again be directed into a TOF flight tube just as though they had formed part of a continuous ion beam. Rate of application of the pulsed field gradient Clearly, the pulsing electrode may be turned on and off at any frequency chosen but there are some constraints on the frequencies actually used. At the fastest, there is little point in pulsing the electrode at such a rate that one lot of ions has not had time to travel the length of the flight tube before the next lot is on its way. With the physical dimensions of typical flight tubes and the magnitudes of accelerating voltages commonly used in mass spectrometers, an upper limit of about 30 kilohertz is found. The slowest rate of pulsing the electrode is almost anything! At 30 KHz, the TOF instrument can measure one mass spectrum every 33 microseconds or, put another way, in one second the TOF instrument can accumulate and sum 30,000 spectra. Little wonder that the acquisition of a spectrum appears to be instantaneous on the human time scale. Microchannel plate ion collector A fuller description of the microchannel plate forms part of a separate Back-to-Basics guide, Multipoint Collectors. Briefly, ions travelling down the flight tube of a TOF instrument are separated in time. As each m/z collection of ions arrives at the collector, it may be spread over a small area of space (Figure 3). Therefore, so as not to lose ions, rather than have a single point ion collector, the collector is composed of an array of miniature electron multipliers (microchannels), which are all connected to one electrified plate so that, no matter where an ion of any one m/z value hits the front of the array, its arrival is recorded. The microchannel plate collector could be crudely compared to a satellite TV dish receiver in that radio waves of the same frequency but spread over an area are all collected and recorded at the same time; of course, the multichannel plate records the arrival of ions not radio waves. Micromass UK Limited Page 421

12 Microchannel collector block Plate electron collector Current out m/z b m/z c m/z a Pulsed ion flow Microchannel ion collectors Figure 3 The diagram represents a flow of ions of m/z a, b, c, etc., travelling in bunches towards the front face of a microchannel array. After each ion strikes the inside of any one microchannel, a cascade of electrons is produced and moves towards the back end of the microchannel, where they are collected on a metal plate. This flow of electrons from the microchannel plate constitutes the current produced by the incoming ions (often called the ion current but actually a flow of electrons). The ions of m/z a, b, c, etc., are separated in time and reach the front of the microchannel collector array one set after another. The time at which the resulting electron current flows is proportional to (m/z) and the strength of the current represents the abundance of ions striking the microchannel plate collector. Micromass UK Limited Page 422

13 Resolution by m/z value Since the microchannel plate collector records the arrival times of all ions the resolution depends on the resolution of the TOF instrument and on the response time of the microchannel plate. A microchannel plate with a pore size of 10 µm or less has a very fast response time of less than 2 nanoseconds. The TOF instrument with microchannel plate detector is capable of unit mass resolution to beyond m/z MS/MS operation Figure 4 shows a diagrammatic representation of a typical MS/MS experiment, in which a main ion beam selected for ions (precursor ions) of mass m and having kinetic energy, zev, has been directed into a collision cell so as to cause fragmentation into two new species (products) of mass m 1 and m 2 with charges z 1 and z 2 respectively (z 1 or z 2 may be zero). The kinetic energies of the product ions can be written as z 1 ev' and z 2 ev" respectively. Without setting a pulsed electric field gradient orthogonal to the main beam, these fragment ions continue straight on. Application of a pulsed voltage to the electrode gives the ions a velocity component at right angles to their original direction. The vectorial resultant velocities form angles α 1 and α 2 to the original direction of the beam (see Figure 1). Although now directed along different paths (Figure 4), both beams of fragment ions strike the wide microchannel plate. The times of arrival at the plate are proportional to the (m/z) values of the masses involved and a mass spectrum of the product ions resulting from collisional activation is produced. It should be recalled that, after a single collision, the momenta and kinetic energies of product ions are different from the momenta or kinetic energies of the precursor ions but the velocities of the product ions are equal and equal to that of the initial precursor ions. There is no change in velocities of ions on fragmentation, only of momentum and kinetic energy. The TOF section can measure this mass spectrum in the normal fashion but, of course, it is a mass spectrum of the product ions resulting from fragmentation of precursor ions in the collision cell. Micromass UK Limited Page 423

14 Initial k inetic energy = zev Ion beam before collisional activation C ollisional ac tivation region Af ter collision, two com ponents, hav ing kinetic energy z 1 ev' and z 2 ev'' Puls ing elec trode α 1 α 2 Directions of f ragm ent ions on pulsing m 1 Direction of beam without pulsing m 2 Microchannel plate collector Figure 4 The diagram shows a mass-selected main ion beam (precursor ions) of kinetic energy, zev, entering a collisional activation region and being fragmented to produce two fragment (product) ions, having kinetic energies equal to z 1 ev and z 2 ev". If no electric field is pulsed onto the electrode, the ions continue straight on. If a pulsed electric field is applied, ions of energy z 1 ev will be deflected through an angle α 1 and the ions of energy z 2 ev" will be deflected through an angle α 2 and into a TOF analyser tube. Both deflected beams are detected at the microchannel plate collector. Micromass UK Limited Page 424

15 Advantages of orthogonal TOF arrangements As indicated above, specific orthogonal TOF instruments are covered in greater detail in the section on hybrid instruments. However, it may be noted that the orthogonal TOF instrument provides significant advantages for MS/MS operation in the examination of trace quantities of materials and as an adjunct to instruments in which the ion sources do not yield a steady ion current but rather pulsed sets of ions (laser desorption, radioactive desorption, sputtering). Even for continuous ion sources, vagaries of the ion current are smoothed out through the accumulation of, say, 30,000 spectra at 33 microsecond time intervals in a space of one second. The summed spectra are printed out as one mass spectrum. There is often a significant gain in signal-to-noise ratio for the orthogonal TOF system. Conclusion Snapshots of a beam of ions may be taken by accelerating in pulses, sections of the beam, away from the main stream. The accelerating voltage to do this is applied as electric field pulses on an electrode. The pulsed field gradient is at right angles (orthogonal) to the direction of the main beam. The pulsed ions are analysed in a time-of-flight tube and collected by a microchannel plate detector. The orthogonal TOF arrangement may be used in connection with a variety of other kinds of mass spectrometer to produce useful hybrid instruments. There are distinct advantages to these hybrids, compared with the separate instruments alone. Micromass UK Limited Page 425

16 This page is intentionally blank. Micromass UK Limited Page 426

CHAPTER D3 TOF ION OPTICS

CHAPTER D3 TOF ION OPTICS Back to Basics Section D: Ion Optics CHAPTER D3 TOF ION OPTICS TABLE OF CONTENTS QuickGuide...399 Summary...401 Background...403 EquationsofMotionofIons...403 Resolution...405 Reflectron...407 Comparison

More information

Chemistry Instrumental Analysis Lecture 35. Chem 4631

Chemistry Instrumental Analysis Lecture 35. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 35 Principle components: Inlet Ion source Mass analyzer Ion transducer Pumps Signal processor Mass analyzers Quadrupole Time of Flight Double Focusing Ion

More information

(Refer Slide Time 00:09) (Refer Slide Time 00:13)

(Refer Slide Time 00:09) (Refer Slide Time 00:13) (Refer Slide Time 00:09) Mass Spectrometry Based Proteomics Professor Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay Mod 02 Lecture Number 09 (Refer

More information

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein.

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein. Mass Analyzers After the production of ions in ion sources, the next critical step in mass spectrometry is to separate these gas phase ions according to their mass-to-charge ratio (m/z). Ions are extracted

More information

Mass Spectrometry. What is Mass Spectrometry?

Mass Spectrometry. What is Mass Spectrometry? Mass Spectrometry What is Mass Spectrometry? Mass Spectrometry (MS): The generation of gaseous ions from a sample, separation of these ions by mass-to-charge ratio, and measurement of relative abundance

More information

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps ION ANALYZERS MASS ANALYSER sample Vacuum pumps Mass analysers - separate the ions according to their mass-to-charge ratio MASS ANALYSER Separate the ions according to their mass-to-charge ratio in space

More information

CEE 772 Lecture #27 12/10/2014. CEE 772: Instrumental Methods in Environmental Analysis

CEE 772 Lecture #27 12/10/2014. CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #21 Mass Spectrometry: Mass Filters & Spectrometers (Skoog, Chapt. 20, pp.511 524) (Harris, Chapt.

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #21 Mass Spectrometry: Mass Filters & Spectrometers (Skoog, Chapt. 20, pp.511-524) (Harris, Chapt.

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene experiment CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can we get from MS spectrum?

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can be obtained from a MS spectrum?

More information

Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University

Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University matthias.trost@ncl.ac.uk Previously: Resolution and other basics MALDI Electrospray 40 Lecture 2 Mass analysers Detectors

More information

TANDEM MASS SPECTROSCOPY

TANDEM MASS SPECTROSCOPY TANDEM MASS SPECTROSCOPY 1 MASS SPECTROMETER TYPES OF MASS SPECTROMETER PRINCIPLE TANDEM MASS SPECTROMETER INSTRUMENTATION QUADRAPOLE MASS ANALYZER TRIPLE QUADRAPOLE MASS ANALYZER TIME OF FLIGHT MASS ANALYSER

More information

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics Mass spectrometry (MS) is the technique for protein identification and analysis by production of charged molecular species in vacuum, and their separation by magnetic and electric fields based on mass

More information

Harris: Quantitative Chemical Analysis, Eight Edition

Harris: Quantitative Chemical Analysis, Eight Edition Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 21: MASS SPECTROMETRY CHAPTER 21: Opener 21.0 Mass Spectrometry Mass Spectrometry provides information about 1) The elemental composition of

More information

GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 2

GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 2 DEPARTMENTS OF CHEMISTRY AND BIOCHEMISTRY GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 2 Mass Analysers Shabaz Mohammed October 20, 2015 High Vacuum System Turbo pumps Diffusion pumps Rough pumps Rotary

More information

ICPMS Doherty Lecture 1

ICPMS Doherty Lecture 1 ICPMS Doherty Lecture 1 Mass Spectrometry This material provides some background on how to measure isotope abundances by means of mass spectrometry. Mass spectrometers create and separate ionized atoms

More information

Time-of-Flight Mass Analyzers

Time-of-Flight Mass Analyzers Time-of-Flight Mass Analyzers Jonathan Karty C613 lecture 1 March 6, 8 (Section 4. in Gross, pages 115-18) TOF Overview Time-of-flight (TOF) is the least complex mass analyzer in terms of its theory Ions

More information

MASS SPECTROMETRY. Topics

MASS SPECTROMETRY. Topics MASS SPECTROMETRY MALDI-TOF AND ESI-MS Topics Principle of Mass Spectrometry MALDI-TOF Determination of Mw of Proteins Structural Information by MS: Primary Sequence of a Protein 1 A. Principles Ionization:

More information

Types of Analyzers: Quadrupole: mass filter -part1

Types of Analyzers: Quadrupole: mass filter -part1 16 Types of Analyzers: Sector or double focusing: magnetic and electric Time-of-flight (TOF) Quadrupole (mass filter) Linear ion trap Quadrupole Ion Trap (3D trap) FTICR fourier transform ion cyclotron

More information

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai 303351 Instrumental Analysis Mass Spectrometry Lecturer:! Somsak Sirichai Mass Spectrometry What is Mass spectrometry (MS)? An analytic method that employs ionization and mass analysis of compounds in

More information

Mass Spectrometry in MCAL

Mass Spectrometry in MCAL Mass Spectrometry in MCAL Two systems: GC-MS, LC-MS GC seperates small, volatile, non-polar material MS is detection devise (Agilent 320-MS TQ Mass Spectrometer) Full scan monitoring SIM single ion monitoring

More information

Mass Analyzers. mass measurement accuracy/reproducibility. % of ions allowed through the analyzer. Highest m/z that can be analyzed

Mass Analyzers. mass measurement accuracy/reproducibility. % of ions allowed through the analyzer. Highest m/z that can be analyzed Mass Analyzers Double Focusing Magnetic Sector Quadrupole Mass Filter Quadrupole Ion Trap Linear Time-of-Flight (TOF) Reflectron TOF Fourier Transform Ion Cyclotron Resonance (FT-ICR-MS) Mass Analyzers

More information

This is the total charge on an ion divided by the elementary charge (e).

This is the total charge on an ion divided by the elementary charge (e). 12.2 Fundamentals and general terms Accelerator mass spectrometry An ultra-sensitive technique using tandem accelerators employed mainly for the study of long-lived radioisotopes, and stable isotopes at

More information

MS Goals and Applications. MS Goals and Applications

MS Goals and Applications. MS Goals and Applications MS Goals and Applications 3 Several variations on a theme, three common steps Form gas-phase ions choice of ionization method depends on sample identity and information required Separate ions on basis

More information

Chemistry 311: Topic 3 - Mass Spectrometry

Chemistry 311: Topic 3 - Mass Spectrometry Mass Spectroscopy: A technique used to measure the mass-to-charge ratio of molecules and atoms. Often characteristic ions produced by an induced unimolecular dissociation of a molecule are measured. These

More information

RECOMMENDATIONS FOR NOMENCLATURE OF MASS SPECTROMETRY

RECOMMENDATIONS FOR NOMENCLATURE OF MASS SPECTROMETRY international UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION ON ANALYTICAL NOMENCLATURE RECOMMENDATIONS FOR NOMENCLATURE OF MASS SPECTROMETRY RULES APPROVED 1973 LONDON BUTTER

More information

MS Goals and Applications. MS Goals and Applications

MS Goals and Applications. MS Goals and Applications MS Goals and Applications 1 Several variations on a theme, three common steps Form gas-phase ions choice of ionization method depends on sample identity and information required Separate ions on basis

More information

MS/MS .LQGVRI0606([SHULPHQWV

MS/MS .LQGVRI0606([SHULPHQWV 0DVV6SHFWURPHWHUV Tandem Mass Spectrometry (MS/MS) :KDWLV0606" Mass spectrometers are commonly combined with separation devices such as gas chromatographs (GC) and liquid chromatographs (LC). The GC or

More information

CHAPTER A2 LASER DESORPTION IONIZATION AND MALDI

CHAPTER A2 LASER DESORPTION IONIZATION AND MALDI Back to Basics Section A: Ionization Processes CHAPTER A2 LASER DESORPTION IONIZATION AND MALDI TABLE OF CONTENTS Quick Guide...27 Summary...29 The Ionization Process...31 Other Considerations on Laser

More information

(Total for Question = 5 marks) PhysicsAndMathsTutor.com

(Total for Question = 5 marks) PhysicsAndMathsTutor.com 1 Rutherford designed an experiment to see what happened when alpha particles were directed at a piece of gold foil. Summarise the observations and state the conclusions Rutherford reached about the structure

More information

Introduction to GC/MS

Introduction to GC/MS Why Mass Spectrometry? Introduction to GC/MS A powerful analytical technique used to: 1.Identify unknown compounds 2. Quantify known materials down to trace levels 3. Elucidate the structure of molecules

More information

Mass Analyzers. Ion Trap, FTICR, Orbitrap. CU- Boulder CHEM 5181: Mass Spectrometry & Chromatography. Prof. Jose-Luis Jimenez

Mass Analyzers. Ion Trap, FTICR, Orbitrap. CU- Boulder CHEM 5181: Mass Spectrometry & Chromatography. Prof. Jose-Luis Jimenez Mass Analyzers Ion Trap, FTICR, Orbitrap CU- Boulder CHEM 5181: Mass Spectrometry & Chromatography Prof. Jose-Luis Jimenez Last Update: Oct. 014 Some slides from Dr. Joel Kimmel (007) MS Interpretation

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

AQA Chemistry A-Level : Atomic Structure

AQA Chemistry A-Level : Atomic Structure AQA Chemistry A-Level 3.1.1: Atomic Structure Detailed Notes 3.1.1.1 - Fundamental Particles The model for atomic structure has evolved over time as knowledge and scientific understanding changes. Plum

More information

1. The range of frequencies that a measurement is sensitive to is called the frequency

1. The range of frequencies that a measurement is sensitive to is called the frequency CHEM 3 Name Exam 1 Fall 014 Complete these problems on separate paper and staple it to this sheet when you are finished. Please initial each sheet as well. Clearly mark your answers. YOU MUST SHOW YOUR

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

Analysis of Polar Metabolites using Mass Spectrometry

Analysis of Polar Metabolites using Mass Spectrometry Analysis of Polar Metabolites using Mass Spectrometry TransMed Course: Basics in Clinical Proteomics and Metabolomics. Oct 10-19, 2012 dd.mm.yyyy Vidya Velagapudi, Ph.D, Adjunct Professor Head of the Metabolomics

More information

Introduction to LC-MS

Introduction to LC-MS Wednesday April 5, 2017 10am Introduction to LC-MS Amy Patton, MS Laboratory Manager, Pinpoint Testing, LLC Little Rock, AR DESCRIPTION: Amy Patton, laboratory manager for Pinpoint Testing, will begin

More information

Introduction to the Q Trap LC/MS/MS System

Introduction to the Q Trap LC/MS/MS System www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +1.847.913.0777 for Refurbished & Certified Lab Equipment ABI Q Trap LC/MS/MS Introduction to the Q Trap LC/MS/MS System The Q Trap

More information

Trapping in 2-D The Radio Frequency Quadrupole

Trapping in 2-D The Radio Frequency Quadrupole Trapping in -D The Radio Frequency Quadrupole The Radio Frequency Quadrupole (RFQ) uses time dependent electric fields with alternating polarity to trap ions in two dimensions. These devices are generally

More information

Quadrupole Time-of-Flight Liquid Chromatograph Mass Spectrometer LCMS-9030 C146-E365

Quadrupole Time-of-Flight Liquid Chromatograph Mass Spectrometer LCMS-9030 C146-E365 Quadrupole Time-of-Flight Liquid Chromatograph Mass Spectrometer LCMS-9030 C146-E365 Effortless Performance The LCMS-9030 quadrupole time-of-flight (Q-TOF) mass spectrometer integrates the world s fastest

More information

Time of Flight Mass Spectrometry of Ions Generated by Molecules in Intense Laser Fields

Time of Flight Mass Spectrometry of Ions Generated by Molecules in Intense Laser Fields Time of Flight Mass Spectrometry of Ions Generated by Molecules in Intense Laser Fields Mingtong Han 5 th August, 013 Abstract Photoionization of acetylene, dimethylacetylene and methylacetylene in an

More information

CHM 424 EXAM 4 CRIB - COVER PAGE FALL

CHM 424 EXAM 4 CRIB - COVER PAGE FALL CHM 44 EXAM 4 CRIB - COVER PAGE FALL 007 There are six numbered pages with five questions. Answer the questions on the exam. Exams done in ink are eligible for regrade, those done in pencil will not be

More information

Secondaryionmassspectrometry

Secondaryionmassspectrometry Secondaryionmassspectrometry (SIMS) 1 Incident Ion Techniques for Surface Composition Analysis Mass spectrometric technique 1. Ionization -Electron ionization (EI) -Chemical ionization (CI) -Field ionization

More information

Courtesy of ESS and TheRGA web pages part of a series of application and theory notes for public use which are provided free of charge by ESS.

Courtesy of ESS and TheRGA web pages part of a series of application and theory notes for public use which are provided free of charge by ESS. ESS The RGA freenotes Theory page 1 of 14 RGA Theory Notes Courtesy of ESS and TheRGA web pages part of a series of application and theory notes for public use which are provided free of charge by ESS.

More information

Chem 550, Spring, 2012 Part I: OVERVIEW OF MASS SPECTROMETRY:

Chem 550, Spring, 2012 Part I: OVERVIEW OF MASS SPECTROMETRY: Chem 550, Spring, 2012 Part I: OVERVIEW OF MASS SPECTROMETRY: I. BASIC ELEMENTS OF A MASS SPECTROMETER Inlet System or Chromatograph Ion Source Mass Analyzer Detector Computer II. ION SOURCES A. Electron

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS Mass Spectrometry Hyphenated Techniques GC-MS LC-MS and MS-MS Reasons for Using Chromatography with MS Mixture analysis by MS alone is difficult Fragmentation from ionization (EI or CI) Fragments from

More information

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION Columbia Physics: Lab -6 (ver. 10) 1 EXPERMENT -6 e/m OF THE ELECTRON GENERAL DSCUSSON The "discovery" of the electron by J. J. Thomson in 1897 refers to the experiment in which it was shown that "cathode

More information

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky 1 Secondary Ion Mass Spectrometry (SIMS) Thomas Sky Depth (µm) 2 Characterization of solar cells 0,0 1E16 1E17 1E18 1E19 1E20 0,2 0,4 0,6 0,8 1,0 1,2 P Concentration (cm -3 ) Characterization Optimization

More information

Interface (backside) & Extraction Lens

Interface (backside) & Extraction Lens Plasma Interface Interface (backside) & Extraction Lens Extraction Lens (-2000 volts) ION OPTICS Tip of the sampler cone is positioned to be in the region of maximum ionization Ions no longer under control

More information

Proudly serving laboratories worldwide since 1979 CALL for Refurbished & Certified Lab Equipment

Proudly serving laboratories worldwide since 1979 CALL for Refurbished & Certified Lab Equipment www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +1.847.913.0777 for Refurbished & Certified Lab Equipment Applied Biosystems QStar Pulsar i Features of the API QSTAR Pulsar i The

More information

Questions on Electric Fields

Questions on Electric Fields Questions on Electric Fields 1. The diagram shows a positively charged oil drop held at rest between two parallel conducting plates A and B. Oil drop A B 2.50 cm The oil drop has a mass 9.79 x 10 15 kg.

More information

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS)

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) The first steps along the way to FT- ICR-MS date back to the 1930s, when Ernest Lawrence, at the University of California - Berkeley,

More information

The Analyzer. We will deal mainly with magnetic sector instruments here although we will talk briefly about other separation methods later.

The Analyzer. We will deal mainly with magnetic sector instruments here although we will talk briefly about other separation methods later. The Analyzer The analyzer is where the beam of ions generated in the ion source is separated into multiple beams each representing a single charge to mass ratio (ideally). We will deal mainly with magnetic

More information

Time of Flight Mass Spectroscopy and Velocity Map Imaging

Time of Flight Mass Spectroscopy and Velocity Map Imaging Time of Flight Mass Spectroscopy and Velocity Map Imaging Geet Ghanshyam January 26, 2013 Velocity map imaging (VMI) is used to study the dynamics of various dissociative electron attachment (DEA) processes

More information

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS)

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS) 5.16 Incident Ion Techniques for Surface Composition Analysis 5.16.1 Ion Scattering Spectroscopy (ISS) At moderate kinetic energies (few hundred ev to few kev) ion scattered from a surface in simple kinematic

More information

Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap

Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap 1 Last Time Mass Analyzers; CAD and TOF mass analyzers: 2 Fourier Transforms A transform is when you change your analytical space without

More information

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl Neutron Transport Calculations Using Monte-Carlo Methods Sean Lourette Fairport High School Advisor: Christian Stoeckl Laboratory for Laser Energetics University of Rochester Summer High School Research

More information

History of Mass spectroscopy. Mass Spectroscopy. Introduction... Uses of Mass Spec. Where are Mass Spectrometers Used? Mass Spectroscopy Units

History of Mass spectroscopy. Mass Spectroscopy. Introduction... Uses of Mass Spec. Where are Mass Spectrometers Used? Mass Spectroscopy Units History of Mass spectroscopy Mass Spectroscopy CHEM 466 Upali Siriwardane Marilyn Cox Jim Plamer http://www.chemistry.ohiostate.edu/~allen/587%20w04/587%20w0 4%20130-136%20std.pdf http://www.cem.msu.edu/~cem333/week1

More information

Calibration of Particle Instruments in Space Physics

Calibration of Particle Instruments in Space Physics SR-007 September 2007 Calibration of Particle Instruments in Space Physics Editors Martin Wüest INFICON Ltd, Balzers, Principality of Liechtenstein David S. Evans Space Environment Center, NOAA, Boulder

More information

Mass Spectrometry. Fundamental LC-MS. Mass Analysers

Mass Spectrometry. Fundamental LC-MS. Mass Analysers Mass Spectrometry Fundamental LC-MS Mass Analysers i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference

More information

Translational Biomarker Core

Translational Biomarker Core Translational Biomarker Core Instrumentation Thermo Scientific TSQ Quantum Triple Quadrupole Mass Spectrometers. There are two TSQ Quantum Ultra AM instruments available in the TBC. The TSQ Quantum Ultra

More information

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Chemistry Instrumental Analysis Lecture 34. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 34 From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry

More information

Simulation of External Ion Injection, Cooling and Extraction Processes with SIMION 6.0 for the Ion Trap/Reflectron Time-of-flight Mass Spectrometer

Simulation of External Ion Injection, Cooling and Extraction Processes with SIMION 6.0 for the Ion Trap/Reflectron Time-of-flight Mass Spectrometer RAPID COMMUNICATIONS IN MASS SPECTROMETRY, VOL. 11, 1467 1477 (1997) Simulation of External Ion Injection, Cooling and Extraction Processes with SIMION 6.0 for the Ion Trap/Reflectron Time-of-flight Mass

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) Lasse Vines 1 Secondary ion mass spectrometry O Zn 10000 O 2 Counts/sec 1000 100 Li Na K Cr ZnO 10 ZnO 2 1 0 20 40 60 80 100 Mass (AMU) 10 21 10 20 Si 07 Ge 0.3 Atomic

More information

Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration

Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration L. Torrisi, G. Costa, and G. Ceccio Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D Alcontres

More information

Homework 2: Forces on Charged Particles

Homework 2: Forces on Charged Particles Homework 2: Forces on Charged Particles 1. In the arrangement shown below, 2 C of positive charge is moved from plate S, which is at a potential of 250 V, to plate T, which is at a potential of 750 V.

More information

Force Due to Magnetic Field You will use

Force Due to Magnetic Field You will use Force Due to Magnetic Field You will use Units: 1 N = 1C(m/s) (T) A magnetic field of one tesla is very powerful magnetic field. Sometimes it may be convenient to use the gauss, which is equal to 1/10,000

More information

Beam Shape and Halo Monitor Study

Beam Shape and Halo Monitor Study EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH CERN A&B DEPARTMENT AB-Note-2006-047 ABP Beam Shape and Halo Monitor Study J-B. Lallement, E.Z. Sargsyan, M. Hori Abstract The Beam Shape and Halo Monitor, designed

More information

Deflection of Electrons

Deflection of Electrons Deflection of Electrons Every statement in physics has to state relations between observable quantities. E. Mach (1838-1916) OBJECTIVES To determine the effect of electric and magnetic fields on a beam

More information

[ instrument specifications ]

[ instrument specifications ] Designed for leading researchers working at the limits of conventional mass spectrometry capabilities who need to further characterize and define their samples the Waters SYNAPT High Definition MS (HDMS

More information

The Aerosol Ion Trap Mass Spectrometer (AIMS): Instrument development and first experimental results

The Aerosol Ion Trap Mass Spectrometer (AIMS): Instrument development and first experimental results The Aerosol Ion Trap Mass Spectrometer (AIMS): Instrument development and first experimental results A. Kürten 1, J. Curtius 1 and S. Borrmann 1,2 1 Johannes Gutenberg-University Mainz, Germany 2 Max Planck

More information

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced I. Mass spectrometry: capable of providing both quantitative and qualitative information about samples as small as 100 pg (!) and with molar masses in the 10 4-10 5 kdalton range A. The mass spectrometer

More information

Mass Analysers for LC MS

Mass Analysers for LC MS Mass Analysers for LC MS Filip Lemière, Dept of Chemistry, University of Antwerp, Belgium. Image courtesy of Bruker Daltonik GmbH Introduction The major technical challenge in LC MS is interfacing the

More information

CHROMATOGRAPHY AND MASS SPECTROMETER

CHROMATOGRAPHY AND MASS SPECTROMETER 22 CHROMATOGRAPHY AND MASS SPECTROMETER 22.1 INTRODUCTION We know that the biochemistry or biological chemistry deals with the study of molecules present in organisms. These molecules are called as biomolecules

More information

Mass spectrometry gas phase transfer and instrumentation

Mass spectrometry gas phase transfer and instrumentation Objectives of the Lecture spectrometry gas phase transfer and instrumentation Matt Renfrow January 15, 2014 1. Make ions 2. Separate/Analyze 3. Detect ions 4. What is mass resolution and mass accuracy?

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

Discovered by German scientist Johann Hittorf in 1869 and in 1876 named by Eugen Goldstein.

Discovered by German scientist Johann Hittorf in 1869 and in 1876 named by Eugen Goldstein. DO PHYSICS ONLINE CATHODE RAYS CATHODE RAYS (electron beams) Streams of electrons (negatively charged particles) observed in vacuum tubes - evacuated glass tubes that are equipped with at least two metal

More information

Differential Cross Section Measurements in Ion-molecule Collisions

Differential Cross Section Measurements in Ion-molecule Collisions Differential Cross Section Measurements in Ion-molecule Collisions Song Cheng Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 A 14 m long beam line dedicated to study very

More information

Motion of a charged particle in an Electric Field

Motion of a charged particle in an Electric Field Motion of a charged particle in an Electric Field The electric force F that acts on a positive charge is parallel to the electric field E and causes the particle s trajectory to bend in a horizontal plane.

More information

1) Introduction. 2) Types of Mass Analyzers - Overview. Assigned Reading: Nier mass spectrometry paper Extra Reading:

1) Introduction. 2) Types of Mass Analyzers - Overview. Assigned Reading: Nier mass spectrometry paper Extra Reading: Assigned Reading: Nier mass spectrometry paper Extra Reading: 1) Introduction a) We are now on to the heart of the mass spectrometer. How do you separate ions of different mass, so that you can detect/quantify

More information

for the Novice Mass Spectrometry (^>, John Greaves and John Roboz yc**' CRC Press J Taylor & Francis Group Boca Raton London New York

for the Novice Mass Spectrometry (^>, John Greaves and John Roboz yc**' CRC Press J Taylor & Francis Group Boca Raton London New York Mass Spectrometry for the Novice John Greaves and John Roboz (^>, yc**' CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy Experiment VI Gamma Ray Spectroscopy 1. GAMMA RAY INTERACTIONS WITH MATTER In order for gammas to be detected, they must lose energy in the detector. Since gammas are electromagnetic radiation, we must

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *1785823706* PHYSICS 0625/42 Paper 4 Theory (Extended) October/November 2016 1 hour 15 minutes Candidates

More information

MEASURING THE LIFETIME OF THE MUON

MEASURING THE LIFETIME OF THE MUON B6-1 MEASURING THE LIFETIME OF THE MUON Last Revised September 19, 2006 QUESTION TO BE INVESTIGATED What is the lifetime τ of a muon? INTRODUCTION AND THEORY Muons are a member of a group of particles

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES SPECTRA PRODUCED BY DISCHARGE TUBES CATHODE RAYS (electron beams) Streams of electrons (negatively charged particles) observed in vacuum

More information

Thermo Scientific LTQ Orbitrap Velos Hybrid FT Mass Spectrometer

Thermo Scientific LTQ Orbitrap Velos Hybrid FT Mass Spectrometer IET International Equipment Trading Ltd. www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +847.913.0777 for Refurbished & Certified Lab Equipment Thermo Scientific LTQ Orbitrap Velos

More information

LECTURE-11. Hybrid MS Configurations HANDOUT. As discussed in our previous lecture, mass spectrometry is by far the most versatile

LECTURE-11. Hybrid MS Configurations HANDOUT. As discussed in our previous lecture, mass spectrometry is by far the most versatile LECTURE-11 Hybrid MS Configurations HANDOUT PREAMBLE As discussed in our previous lecture, mass spectrometry is by far the most versatile technique used in proteomics. We had also discussed some of the

More information

Particle physics experiments

Particle physics experiments Particle physics experiments Particle physics experiments: collide particles to produce new particles reveal their internal structure and laws of their interactions by observing regularities, measuring

More information

1.1 Atomic structure

1.1 Atomic structure 1.1 Atomic structure History of the atom The model of the atom has changed as our observations of its behavior and properties have increased. A model is used to explain observations. The model changes

More information

Extrel Application Note

Extrel Application Note Extrel Application Note Real-Time Plasma Monitoring and Detection of Trace H 2 O and HF Species in an Argon Based Plasma Jian Wei, 575 Epsilon Drive, Pittsburgh, PA 15238. (Presented at the 191st Electrochemical

More information

1. Prepare the MALDI sample plate by spotting an angiotensin standard and the test sample(s).

1. Prepare the MALDI sample plate by spotting an angiotensin standard and the test sample(s). Analysis of a Peptide Sequence from a Proteolytic Digest by MALDI-TOF Post-Source Decay (PSD) and Collision-Induced Dissociation (CID) Standard Operating Procedure Purpose: The following procedure may

More information

Laser Dissociation of Protonated PAHs

Laser Dissociation of Protonated PAHs 100 Chapter 5 Laser Dissociation of Protonated PAHs 5.1 Experiments The photodissociation experiments were performed with protonated PAHs using different laser sources. The calculations from Chapter 3

More information

Chapter Six: X-Rays. 6.1 Discovery of X-rays

Chapter Six: X-Rays. 6.1 Discovery of X-rays Chapter Six: X-Rays 6.1 Discovery of X-rays In late 1895, a German physicist, W. C. Roentgen was working with a cathode ray tube in his laboratory. He was working with tubes similar to our fluorescent

More information

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law PHYSICS 1B Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law Electricity & Magnetism A Charged Particle in a Magnetic

More information

Phys 0175 Practice Midterm Exam II Feb 25, 2009

Phys 0175 Practice Midterm Exam II Feb 25, 2009 Phys 0175 Practice Midterm Exam II Feb 25, 2009 Note: THIS IS A REPRESENTATION OF THE ACTUAL TEST. It is a sample and does not include questions on every topic covered since the start of the semester.

More information

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i Gel Permeation Chromatography (GPC) : Size Exclusion Chromatography GPC : 1. Chromatogram (V R vs H) H i Detector response Baseline N i M i 130 135 140 145 150 155 160 165 Elution volume (V R ) (counts)

More information

Photoelectron Spectroscopy using High Order Harmonic Generation

Photoelectron Spectroscopy using High Order Harmonic Generation Photoelectron Spectroscopy using High Order Harmonic Generation Alana Ogata Yamanouchi Lab, University of Tokyo ABSTRACT The analysis of photochemical processes has been previously limited by the short

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information