9/13/10. Each spectral line is characteristic of an individual energy transition

Size: px
Start display at page:

Download "9/13/10. Each spectral line is characteristic of an individual energy transition"

Transcription

1 Sensitive and selective determination of (primarily) metals at low concentrations Each spectral line is characteristic of an individual energy transition 1

2 Atomic Line Widths Why do atomic spectra have finite width to them? Atomic Line Widths cont d Line broadening from the uncertainty effect Doppler broadening Line Spectra and Continuum Spectra 2

3 [M +,X - ] aq [M +,X - ] aq solution mist [M 0 emission ] gas ground state [M*] gas excited state [MX] solid excitation or absorption (via heat or light) vaporization [M 0 ] gas atomization [MX] gas atomization [X 0 ] gas [M + ] gas [X - ] gas Atomic spectroscopic methods are categorized based on the type of atomization Sample Introduction the Achilles Heel of Atomic Spectroscopy Flame Atomic Absorption Spectrometry Only a small percentage of the aqueous sample is atomized much of the sample goes to waste 3

4 Electrothermal or Graphite Furnace Atomizer Temperature profiles for a natural gas-air flame Atomization occurs in an electrically heated graphite tube The graphite tube is flushed with an inert gas (Ar) to prevent the formation of (non-absorbing) metal oxides Flame absorption profiles graphite tube Hydride Generation Atomic Absorption Spectrometry Atomization process Dry (remove water) Ash or Char (destroy organics) Atomize Small sample size Typically µl Enhanced sensitivity over flame atomization The entire sample is analyzed Much of the background matrix can be eliminated Reaction mechanism for As with NaBH 4 as reducing agent BH H 2 O + H + H 3 BO H + 2As H + 2AsH H + 2AsH 3 2As + 3H 2 4

5 Instrumentation for Atomic Absorption Spectroscopy Challenge: atomic absorption lines are narrow - too narrow for goodquality monochromators! Solve the problem by using line sources with bandwidths even narrower than the absorption line width Two Types Spectral when the absorption or emission spectra of an interfering species overlaps or lies close to that of the analyte Chemical species in the sample matrix interfere with the atomization of the analyte Enhances or decreases the volatility of the analyte 5

6 Example: Determination of Ba in the presence of Ca Both Ca and Ba atomize simultaneously Ca (g) + oxidant ----> CaOH (g) CaOH (g) exhibits broad band molecular absorption The observed absorbance is in error due to the non-atomic signal coming from CaOH (g) Monitor a wavelength nearby the atomic line of interest using a continuous light source to generate the nearby wavelength Abs Total Abs Back = Abs Atomic Solution: a. use a higher flame temperature b. use D 2 lamp correction c. use a different line (if overlapping spectral lines is the problem) Example: Determination of Calcium in the presence of phosphate Most chemical interferences result from a change in the atomization behavior of the analyte Usually the atomization signal is depressed The interference usually comes from analysis of an analyte in low concentration in a complex matrix (e.g. seawater) An equilibrium exists in aqueous solutions between calcium and calcium phosphate Ca 2+ + PO 4-3 <-----> CaPO 4-1 CaPO 4-1 is less volatile (i.e. more difficult to atomize) than Ca 2+ This equilibrium tells us that as [PO 4-3 ] increases, [CaPO 4-1 ] increases and [Ca 2+ ] decreases Net result, the absorbance of atomic calcium decreases as phosphate content in the sample increases Solutions: 1) use a hotter flame 2) use a releasing agent (cation that reacts preferentially with interfering ion) 3) use a protecting agent (EDTA, 8HQ) 4) ionization? Add an ion suppressor 5) Calibration using the method of standard additions 6

7 Analytical Figures of Merit and AAS Accuracy: Flame AAS 1-2% RSD ETA 5-10% RSD Scope: > 60 metals or metalloids Typically requires aqueous samples Inductively Coupled Plasma - ICP Much higher temperatures than flame AAS Higher number of atoms in the excited state Stronger signal! ICP Burner Head Temperature regions in a typical Ar ICP RF induction coil ~ 2 kw of power at 27 or 41 MHz See Figure 10-1 See Figure

8 Optical Diagram for a spectrometer with a CID 8

very high temperature for excitation not necessary generally no plasma/arc/spark AAS

very high temperature for excitation not necessary generally no plasma/arc/spark AAS Atomic Absorption Spectrometry (Chapter 9) AAS intrinsically more sensitive than AES similar atomization techniques to AES addition of radiation source high temperature for atomization necessary flame

More information

Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry

Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry 9.1 9A. Atomization Most fundamental for both techniques. Typical types 1. flame - burner type 2. Electrothermal graphite furnace 3. Specialized

More information

Atomic Absorption & Atomic Fluorescence Spectrometry

Atomic Absorption & Atomic Fluorescence Spectrometry Atomic Absorption & Atomic Fluorescence Spectrometry Sample Atomization Atomic Absorption (AA) Atomic Fluorescence (AF) - Both AA and AF require a light source - Like Molecular Absorption & Fluorescence,

More information

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chemistry Instrumental Analysis Lecture 18. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 18 Instrumentation Radiation sources Hollow cathode lamp Most common source Consist of W anode and a cathode sealed in a glass tube filled with Ne or Ar. Hollow

More information

high temp ( K) Chapter 20: Atomic Spectroscopy

high temp ( K) Chapter 20: Atomic Spectroscopy high temp (2000-6000K) Chapter 20: Atomic Spectroscopy 20-1. An Overview Most compounds Atoms in gas phase high temp (2000-6000K) (AES) (AAS) (AFS) sample Mass-to-charge (ICP-MS) Atomic Absorption experiment

More information

ATOMIC SPECROSCOPY (AS)

ATOMIC SPECROSCOPY (AS) ATOMIC ABSORPTION ANALYTICAL CHEMISTRY ATOMIC SPECROSCOPY (AS) Atomic Absorption Spectroscopy 1- Flame Atomic Absorption Spectreoscopy (FAAS) 2- Electrothermal ( Flame-less ) Atomic Absorption Spectroscopy

More information

CH. 21 Atomic Spectroscopy

CH. 21 Atomic Spectroscopy CH. 21 Atomic Spectroscopy 21.1 Anthropology Puzzle? What did ancient people eat for a living? Laser Ablation-plasma ionization-mass spectrometry CH. 21 Atomic Spectroscopy 21.2 plasma In Atomic Spectroscopy

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Atomic line widths: Narrow line widths reduce the possibility of spectral overlap and thus interferences. The band width at half height is used to indicate width. This is also sometimes called the effective

More information

Emission spectrum of H

Emission spectrum of H Atomic Spectroscopy Atomic spectroscopy measures the spectra of elements in their atomic/ionized states. Atomic spectrometry, exploits quantized electronic transitions characteristic of each individual

More information

2101 Atomic Spectroscopy

2101 Atomic Spectroscopy 2101 Atomic Spectroscopy Atomic identification Atomic spectroscopy refers to the absorption and emission of ultraviolet to visible light by atoms and monoatomic ions. It is best used to analyze metals.

More information

PRINCIPLES OF AAS atomization flame furnace atomization absorption

PRINCIPLES OF AAS atomization flame furnace atomization absorption INTRODUCTION Atomic absorption spectroscopy (AAS) currently is the most widely used of atomic spectroscopic techniques. AAS is a quantitative method of elemental analysis that is applicable to many metals

More information

Optical Atomic Spectroscopy

Optical Atomic Spectroscopy Optical Atomic Spectroscopy Methods to measure conentrations of primarily metallic elements at < ppm levels with high selectivity! Two main optical methodologies- -Atomic Absorption--need ground state

More information

Ch. 8 Introduction to Optical Atomic Spectroscopy

Ch. 8 Introduction to Optical Atomic Spectroscopy Ch. 8 Introduction to Optical Atomic Spectroscopy 8.1 3 major types of Spectrometry elemental Optical Spectrometry Ch 9, 10 Mass Spectrometry Ch 11 X-ray Spectrometry Ch 12 In this chapter theories on

More information

Chapter 8: An Introduction to Optical Atomic Spectrometry

Chapter 8: An Introduction to Optical Atomic Spectrometry Chapter 8: An Introduction to Optical Atomic Spectrometry Sample is atomized (gaseous atoms/ions) absorption or emission measured Optical Atomic Spectra Atomization Methods Sample Introduction Methods

More information

INTRODUCTION TO OPTICAL ATOMIC SPECTROSCOPY (Chapter 8)

INTRODUCTION TO OPTICAL ATOMIC SPECTROSCOPY (Chapter 8) INTRODUCTION TO OPTICAL ATOMIC SPECTROSCOPY (Chapter 8) Atomic spectroscopy techniques: Optical spectrometry Mass spectrometry X-Ray spectrometry Optical spectrometry: Elements in the sample are atomized

More information

CHAPTER 8 Introduction to Optical Atomic Spectrometry

CHAPTER 8 Introduction to Optical Atomic Spectrometry CHAPTER 8 Introduction to Optical Atomic Spectrometry From: Principles of Instrumental Analysis, 6 th Edition, Holler, Skoog and Crouch. CMY 383: Dr Tim Laurens Introduction. Three major types of spectrometric

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light

ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light by these elements in order to measure their concentration.

More information

Lecture 7: Atomic Spectroscopy

Lecture 7: Atomic Spectroscopy Lecture 7: Atomic Spectroscopy 1 Atomic spectroscopy The wavelengths of absorbance and emission from atoms in the gas phase are characteristic of atomic orbitals. 2 In the lowest energy transition, the

More information

atomic absorption spectroscopy general can be portable and used in-situ preserves sample simpler and less expensive

atomic absorption spectroscopy general can be portable and used in-situ preserves sample simpler and less expensive Chapter 9: End-of-Chapter Solutions 1. The following comparison provides general trends, but both atomic absorption spectroscopy (AAS) and atomic absorption spectroscopy (AES) will have analyte-specific

More information

UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2004/2005. March KAA 502 Atomic Spectroscopy.

UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2004/2005. March KAA 502 Atomic Spectroscopy. UNIVERSITI SAINS MALAYSIA Second Semester Examination Academic Session 2004/2005 March 2005 KAA 502 Atomic Spectroscopy Time: 3 hours Please make sure this paper consists of FIVE typed pages before answering

More information

INTRODUCTION Atomic fluorescence spectroscopy ( AFS ) depends on the measurement of the emission ( fluorescence ) emitted from gasphase analyte atoms

INTRODUCTION Atomic fluorescence spectroscopy ( AFS ) depends on the measurement of the emission ( fluorescence ) emitted from gasphase analyte atoms INTRODUCTION Atomic fluorescence spectroscopy ( AFS ) depends on the measurement of the emission ( fluorescence ) emitted from gasphase analyte atoms that have been excited to higher energy levels by absorption

More information

Atomic Emission Spectroscopy

Atomic Emission Spectroscopy Atomic Emission Spectroscopy Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia Building:

More information

Atomic Absorption Spectroscopy

Atomic Absorption Spectroscopy CH 2252 Instrumental Methods of Analysis Unit IV Atomic Absorption Spectroscopy Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering

More information

a. An emission line as close as possible to the analyte resonance line

a. An emission line as close as possible to the analyte resonance line Practice Problem Set 5 Atomic Emission Spectroscopy 10-1 What is an internal standard and why is it used? An internal standard is a substance added to samples, blank, and standards. The ratio of the signal

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

PRINCIPLE OF ICP- AES

PRINCIPLE OF ICP- AES INTRODUCTION Non- flame atomic emission techniques, which use electrothermal means to atomize and excite the analyte, include inductively coupled plasma and arc spark. It has been 30 years since Inductively

More information

Chem 155 Quiz 3 Review Topics: Quiz 3 outline

Chem 155 Quiz 3 Review Topics: Quiz 3 outline Quiz 3 outline 1. Atomic absorption spectrometry a. Principles of FAAS where selectivity and sensitivity arise b. Spectrometer design c. Atomization processes d. Sensitvitiy and atomization: protecting

More information

II. Spectrophotometry (Chapters 17, 19, 20)

II. Spectrophotometry (Chapters 17, 19, 20) II. Spectrophotometry (Chapters 17, 19, 20) FUNDAMENTALS (Chapter 17) Spectrophotometry: any technique that uses light to measure concentrations (here: U and visible - ~190 800 nm) c = 2.99792 x 10 8 m/s

More information

Atomic Absorption Spectroscopy (AAS)

Atomic Absorption Spectroscopy (AAS) Atomic Absorption Spectroscopy (AAS) Alex Miller ABC s of Electrochemistry 3/8/2012 Contents What is Atomic Absorption Spectroscopy? Basic Anatomy of an AAS system Theory of Operation Practical Operation

More information

Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT.

Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. CHEM 322 Name Exam 3 Spring 2013 Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. Warm-up (3 points each). 1. In Raman Spectroscopy, molecules are promoted

More information

Atomization. In Flame Emission

Atomization. In Flame Emission FLAME SPECTROSCOPY The concentration of an element in a solution is determined by measuring the absorption, emission or fluorescence of electromagnetic by its monatomic particles in gaseous state in the

More information

COMPARISON OF ATOMIZERS

COMPARISON OF ATOMIZERS COMPARISON OF ATOMIZERS FOR ATOMIC ABSORPTION SPECTROSCOPY Introduction Atomic spectroscopic methods are all based on the interaction of light and analyte atoms in the gas phase. Thus, a common component

More information

Atomic Spectroscopy AA/ICP/ICPMS:

Atomic Spectroscopy AA/ICP/ICPMS: Atomic Spectroscopy AA/ICP/ICPMS: A Comparison of Techniques VA AWWA/VWEA Lab Practices Conference July 25, 2016 Dan Davis Shimadzu Scientific Instruments AA/ICP/ICPMS: A Comparison of Techniques Topics

More information

Partial Energy Level Diagrams

Partial Energy Level Diagrams Partial Energy Level Diagrams 460 nm 323 nm 610 nm 330 nm 819 nm 404 nm 694 nm 671 nm 589 / 590 nm 767 / 769 nm Lithium Sodium Potassium Gas Mixtures Maximum Temperatures, C Air-Coal Gas 1825 Air-Propane

More information

Chapter 9. Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques

Chapter 9. Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques Chapter 9 Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques Emission Spectroscopy Flame and Plasma Emission Spectroscopy are based upon those particles that are

More information

A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry

A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry http://www.e-journals.net ISSN: 0973-4945; CODEN ECJHAO E- Chemistry 2010, 7(S1), S127-S130 A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry

More information

Chem 434 Instrumental Analysis Test 1

Chem 434 Instrumental Analysis Test 1 Chem 434 Instrumental Analysis Test 1 Name: 1. (15 points) In Chapter 5 we discussed four sources of instrumental noise: Thermal Noise, Shot Noise, Flicker Noise, and Environmental noise. Discuss the differences

More information

Atomic absorption spectroscopy

Atomic absorption spectroscopy Atomic absorption spectroscopy Modern atomic absorption spectrometers Atomic absorption spectroscopy (AAS) is a spectroanalytical procedure for the quantitative determination of chemical elements using

More information

Atomic Absorption Spectrometer ZEEnit P series

Atomic Absorption Spectrometer ZEEnit P series Atomic Absorption Spectrometer ZEEnit P series Technical Data ZEEnit series Update 07/2014 OBue 1/ 5 ZEEnit P series Variable high-end AA Spectrometer with Deuterium and Zeeman Background Correction with

More information

FLAME PHOTOMETRY AIM INTRODUCTION

FLAME PHOTOMETRY AIM INTRODUCTION FLAME PHOTOMETRY AIM INTRODUCTION Atomic spectroscopy is based on the absorption, emission or fluorescence process of light by atoms or elementary ions. Information for atomic scale is obtained in two

More information

Spectroscopy Problem Set February 22, 2018

Spectroscopy Problem Set February 22, 2018 Spectroscopy Problem Set February, 018 4 3 5 1 6 7 8 1. In the diagram above which of the following represent vibrational relaxations? 1. Which of the following represent an absorbance? 3. Which of following

More information

DEPARTMENT OF CHEMISTRY UNIVERSITY OF SWAZILAND

DEPARTMENT OF CHEMISTRY UNIVERSITY OF SWAZILAND o DEPARTMENT OF CHEMISTRY UNIVERSITY OF SWAZILAND C612 SPECTRO CHEMICAL ANALYSIS DECEMBER 2015 FINAL EXAMINATION Time Allowed: Three (3) Hours Instructions: 1. This examination has six (6) questions and

More information

AN INTRODUCTION TO ATOMIC SPECTROSCOPY

AN INTRODUCTION TO ATOMIC SPECTROSCOPY AN INTRODUCTION TO ATOMIC SPECTROSCOPY Atomic spectroscopy deals with the absorption, emission, or fluorescence by atom or elementary ions. Two regions of the spectrum yield atomic information- the UV-visible

More information

Hydride Generation for the Determination of As, Sb, Se and Bi Using the Teledyne Leeman Lab s Prodigy 7 ICP-OES

Hydride Generation for the Determination of As, Sb, Se and Bi Using the Teledyne Leeman Lab s Prodigy 7 ICP-OES Application Note - AN1508 Hydride Generation for the Determination of As, Sb, Se and Bi Using the Teledyne Leeman Lab s Prodigy 7 ICP-OES Introduction Page 1 The combination of hydride generation with

More information

Chapter 8: Introduction to Atomic Spectrometry

Chapter 8: Introduction to Atomic Spectrometry Chapter 8: Introduction to Atomic Spectrometry Read: pp. 215 228 Problems: 2,4,5,6,9 Why choose atomic spectrometry? Three major types of spectrometric methods for identifying elements present in matter:

More information

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES Chemistry 524--Final Exam--Keiderling May 4, 2011 3:30 -?? pm -- 4286 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted. No open books or

More information

A Spectrophotometric Analysis of Calcium in Cereal

A Spectrophotometric Analysis of Calcium in Cereal CHEM 311L Quantitative Analysis Laboratory Revision 1.2 A Spectrophotometric Analysis of Calcium in Cereal In this laboratory exercise, we will determine the amount of Calium in a serving of cereal. We

More information

Prof. Dr. Biljana Škrbić, Jelena Živančev

Prof. Dr. Biljana Škrbić, Jelena Živančev 5 th CEFSER Training Course Analysis of chemical contaminants in food and the environment Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia 7-11 May 2012 Analysis of heavy elements

More information

Chemistry Instrumental Analysis Lecture 17. Chem 4631

Chemistry Instrumental Analysis Lecture 17. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 17 Introduction to Optical Atomic Spectrometry From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry

More information

HEAVY METALS IN LAKE NAKURU ATOMIC SPECTROSCOPY

HEAVY METALS IN LAKE NAKURU ATOMIC SPECTROSCOPY HEAVY METALS IN LAKE NAKURU ATOMIC SPECTROSCOPY PURPOSE This section will provide an introduction to atomic spectroscopy. The basic concepts of flame atomic absorption spectroscopy (FLAA), graphite furnace

More information

Ch 313 FINAL EXAM OUTLINE Spring 2010

Ch 313 FINAL EXAM OUTLINE Spring 2010 Ch 313 FINAL EXAM OUTLINE Spring 2010 NOTE: Use this outline at your own risk sometimes a topic is omitted that you are still responsible for. It is meant to be a study aid and is not meant to be a replacement

More information

ENVG FALL ICP-MS (Inductively Coupled Plasma Mass Spectrometry) Analytical Techniques

ENVG FALL ICP-MS (Inductively Coupled Plasma Mass Spectrometry) Analytical Techniques ENVG 60500 FALL 2013 ICP-MS (Inductively Coupled Plasma Mass Spectrometry) Analytical Techniques HISTORY In the 1940s, arc and high-voltage spark spectrometry became widely utilized for metal analysis

More information

FTIR measurement of NH 3, HCN, SO 2, H 2 S and COS in pulverized lignite oxy-fuel flames Daniel Fleig, Stefan Hjärtstam and Daniel Kühnemuth

FTIR measurement of NH 3, HCN, SO 2, H 2 S and COS in pulverized lignite oxy-fuel flames Daniel Fleig, Stefan Hjärtstam and Daniel Kühnemuth FTIR measurement of NH 3, HCN, SO 2, H 2 S and COS in pulverized lignite oxy-fuel flames Daniel Fleig, Stefan Hjärtstam and Daniel Kühnemuth Abstract Nitrogen and sulphur compounds are investigated in

More information

Atomic Absorption Spectrophotometry. Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon

Atomic Absorption Spectrophotometry. Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon Atomic Absorption Spectrophotometry Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon Defination In analytical chemistry, Atomic absorption spectroscopy is a

More information

SELİN CANSU ÖZTÜRK ŞEYMA ATAKUL SEZİN GÜNER

SELİN CANSU ÖZTÜRK ŞEYMA ATAKUL SEZİN GÜNER SELİN CANSU ÖZTÜRK ŞEYMA ATAKUL SEZİN GÜNER ATOMIC ABSORPTION SPECTROMETER Introduction Invention Working Principle of AAS Instrumentation Interferences & Correlation Methods Applications INVENTION Introduced

More information

Determination the elemental composition of soil samples

Determination the elemental composition of soil samples 4. Experiment Determination the elemental composition of soil samples Objectives On this practice you will determine the elemental composition of soil samples by Inductively Coupled Plasma Optical Emission

More information

1. Cyclic voltammetry involves the measurement of a diffusion controlled at an electrode in which the is controlled. (4 points)

1. Cyclic voltammetry involves the measurement of a diffusion controlled at an electrode in which the is controlled. (4 points) Chem 454 First Exam Feb. 20, 2002 1. Cyclic voltammetry involves the measurement of a diffusion controlled at an electrode in which the is controlled. (4 points) 2. (5 points) A. Sketch a cyclic voltammogram

More information

Chemistry 311: Topic 2 - Atomic Spectroscopy Topic 2: Spectroscopy:

Chemistry 311: Topic 2 - Atomic Spectroscopy Topic 2: Spectroscopy: Topic 2: Spectroscopy: Introductory Theory Basic Components Qualitative and Quantitative applications Atomic Spectroscopy Molecular Spectroscopy Electromagnetic Radiation : Wave-Particle Duality Light

More information

DETERMINATIONS OF THE POLLUTION LEVEL OF THE ENVIRONMENT WITH HEAVY METALS

DETERMINATIONS OF THE POLLUTION LEVEL OF THE ENVIRONMENT WITH HEAVY METALS 7 th INTERNATIONAL MULTIDISCIPLINARY CONFERENCE Baia Mare, Romania, May 17-18, 2007 ISSN-1224-3264 DETERMINATIONS OF THE POLLUTION LEVEL OF THE ENVIRONMENT WITH HEAVY METALS Mariana Dobra, Vasile Viman,

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

Sources of Errors in Trace Element and Speciation Analysis

Sources of Errors in Trace Element and Speciation Analysis Sources of Errors in Trace Element and Speciation Analysis Zoltan Mester, National Research Council of Canada, Institute for National Measurement Standards Outline Definitions Sources of errors in the

More information

CHAPTER 4: ANALYTICAL INSTRUMENTATION

CHAPTER 4: ANALYTICAL INSTRUMENTATION CHAPTER 4: ANALYTICAL INSTRUMENTATION 4.1 INTRODUCTION In this section, a review of the analytical instrumentation used during sample preparation and analysis is presented which includes an overview of

More information

2B Technologies, Inc. An InDevR Company

2B Technologies, Inc. An InDevR Company 2B Technologies, Inc. An InDevR Company Technical Note No. 40 UV-Absorbing Interferences in Ozone Monitors Date: 22 April 2015 Author: John Birks Background Ozone measurements by absorbance of the 253.7-nm

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

GTEK Laboratory Atomic Absorption Spectrometer AAS6000 Brochure

GTEK Laboratory Atomic Absorption Spectrometer AAS6000 Brochure GTEK Laboratory Atomic Absorption Spectrometer AAS6000 Brochure Description AAS6000 Series are Single Beam Atomic Absorption Spectrometers controlled and data processed by external computer and internal

More information

Sample Analysis Design Polyatomic Interferences

Sample Analysis Design Polyatomic Interferences Sample Analysis Design Polyatomic Interferences More serious than isobaric interferences Result from possible, short-lived combination of atomic species in the plasma or during ion transfer Common recombinants

More information

MASTERING THE VCE 2014 UNIT 3 CHEMISTRY STUDENT SOLUTIONS

MASTERING THE VCE 2014 UNIT 3 CHEMISTRY STUDENT SOLUTIONS MASTERING THE VCE 2014 UNIT 3 CHEMISTRY STUDENT SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/VCE-UPDATES QUESTION 45 QUESTION 46 Answer is A QUESTION 47 The number of protons in the element.

More information

OES - Optical Emission Spectrometer 2000

OES - Optical Emission Spectrometer 2000 OES - Optical Emission Spectrometer 2000 OES-2000 is used to detect the presence of trace metals in an analyte. The analyte sample is introduced into the OES-2000 as an aerosol that is carried into the

More information

Course Details. Analytical Techniques Based on Optical Spectroscopy. Course Details. Textbook. SCCH 211: Analytical Chemistry I

Course Details. Analytical Techniques Based on Optical Spectroscopy. Course Details. Textbook. SCCH 211: Analytical Chemistry I SCCH 211: Analytical Chemistry I Analytical Techniques Based on Optical Spectroscopy Course Details September 22 October 10 September 22 November 7 November 17 December 1 Topic Period Introduction to Spectrometric

More information

Lecture No. 4. i 0 TETA I RY:

Lecture No. 4. i 0 TETA I RY: Lecture No. 4 i 0 TETA I RY: ATOMIC ABSORPTION SPECTROMETRY - PRESENT AND FUTURE Dr. Chandra Sekhar K Scientist Analytical Chemistry Division National Metallurgical Laboratory Jamshedpur 831007 INTRODUCTION

More information

Classification of spectroscopic methods

Classification of spectroscopic methods Introduction Spectroscopy is the study of the interaction between the electromagnetic radiation and the matter. Spectrophotometry is the measurement of these interactions i.e. the measurement of the intensity

More information

Ar Ar + e - INDUCTIVELY+COUPLED+ PLASMA+SPECTROMETRY+ What+is+Plasma?+ FuncDon+of+Plasma+

Ar Ar + e - INDUCTIVELY+COUPLED+ PLASMA+SPECTROMETRY+ What+is+Plasma?+ FuncDon+of+Plasma+ INDUCTIVELY+COUPLED+ PLASMA+SPECTROMETRY+ Applied'Analy+cal'and'Inorganic'Chemistry'Program' Department'of'Chemistry,'Faculty'of'Science' Mahidol'University' What+is+Plasma?+ Ar Ar + e - Plasma is an ionized

More information

Overcoming Interferences with the Thermo Scientific icap 7000 Plus Series ICP-OES

Overcoming Interferences with the Thermo Scientific icap 7000 Plus Series ICP-OES Overcoming Interferences with the Thermo Scientific icap 7000 Plus Series ICP-OES Technical Note 43332 Key Words Overcoming Interferences, Element Finder plug-in Introduction Interferences are common in

More information

Atomic Absorption Spectrometer (AAS) PerkinElmer Aanalyst 100

Atomic Absorption Spectrometer (AAS) PerkinElmer Aanalyst 100 Atomic Absorption Spectrometer (AAS) PerkinElmer Aanalyst 100 January 5 th -6 th, 2015 Instrument Center Science and Technology Faculty Prince of Songkla University Pattani Campus Contents Schedule Trainee

More information

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at 2001 Spectrometers Instrument Machinery Movies from this presentation can be access at http://www.shsu.edu/~chm_tgc/sounds/sound.html Chp20: 1 Optical Instruments Instrument Components Components of various

More information

novaa 800 D Atomic Absorption Spectrometer

novaa 800 D Atomic Absorption Spectrometer Technical Data Atomic Absorption Spectrometer Cpt : +27 (0) 21 905 0476 Jhb : +27 (0) 11 794 Dbn : +27 (0) 31 266 2454 1/7 General The is a compact atomic absorption spectrometer with deuterium background

More information

CHEM 221 Instrumental Analysis FINAL EXAM May 10, 2016

CHEM 221 Instrumental Analysis FINAL EXAM May 10, 2016 CHEM 221 Instrumental Analysis FINAL EXAM May 10, 2016 Name: INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show all of

More information

Transition Metals Webinar Qs

Transition Metals Webinar Qs 1. This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light. (a) Give the equation that relates the energy change ΔE to the Planck constant

More information

Optimizing Analytical Performance in ICP-OES Applications

Optimizing Analytical Performance in ICP-OES Applications application note Optimizing Analytical Performance in ICP-OES Applications Introduction To obtain the best possible performance from an analytical instrument, it is necessary to optimize the operating

More information

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out.

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out. Next, consider an optically thick source: Already shown that in the interior, radiation will be described by the Planck function. Radiation escaping from the source will be modified because the temperature

More information

Determination of the inorganic ion composition of standing surface water

Determination of the inorganic ion composition of standing surface water 2. Experiment Determination of the inorganic ion composition of standing surface water Objectives All the biologically important inorganic chemical parameters of standing surface water are called halobity.

More information

Atomic Spectra for Atoms and Ions. Light is made up of different wavelengths

Atomic Spectra for Atoms and Ions. Light is made up of different wavelengths Atomic Spectra for Atoms and Ions What will you be doing in lab next week? Recording the line spectra of several different substances in discharge tubes. Recording the line spectra of several ions from

More information

Lecture 16 Instrumentation for ICP AES-VIII-Instruments

Lecture 16 Instrumentation for ICP AES-VIII-Instruments Inductive Couple Plasma Atomic Emission Spectrometry (ICP-AES) for Pollution Monitoring Dr. J R Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture 16 Instrumentation

More information

SmartNotes. What is meant by the term interference?

SmartNotes. What is meant by the term interference? Interference Removal on ICP-OES icap 7000 Plus Series ICP-OES SmartNotes What is meant by the term interference? In ICP-OES we speak of interference when a result is biased either by other components in

More information

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS.

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS. School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS DURATION: 3 HOURS TOTAL MARKS: 100 Internal Examiners: Professor A Kindness Dr T Msagati

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Elemental analysis of river sediment using the Agilent 4200 MP-AES

Elemental analysis of river sediment using the Agilent 4200 MP-AES Elemental analysis of river sediment using the Agilent 4200 MP-AES Application note Environmental: Soils, sludges & sediments Authors Neli Drvodelic Agilent Technologies, Melbourne, Australia Introduction

More information

The Main Point. How do light and matter interact? Lecture #7: Radiation and Spectra II. How is light absorbed and emitted?

The Main Point. How do light and matter interact? Lecture #7: Radiation and Spectra II. How is light absorbed and emitted? Lecture #7: Radiation and Spectra II How is light absorbed and emitted? Models of Atomic Structure. Formation of Spectral Lines. Doppler Shift. Applications in Solar System Studies Detecting gaseous phases

More information

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Debjani Banerjee Department of Chemical Engineering IIT Kanpur

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Debjani Banerjee Department of Chemical Engineering IIT Kanpur Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Debjani Banerjee Department of Chemical Engineering IIT Kanpur Introduction What is ICP-MS? Inductively Coupled Plasma Mass Spectrometry Mass spectrometry

More information

Chapter 12 Spectroscopic techniques for the measurement of elemental species

Chapter 12 Spectroscopic techniques for the measurement of elemental species Analytical Science A course (in 15 Chapters) developed as an Open Educational Resource, designed for use at 2 nd year UK & Wales undergraduate level and as a CPD training resource https://edocs.hull.ac.uk/muradora/objectview.action?parentid=hull%3a2199&type=1&start=10&pid=hull%3a2351

More information

Characterization of Catalysts and Surfaces. Elemental Analysis (ICP, AAS etc.) Fall Semester 2016 Bodo Hattendorf HCI G105

Characterization of Catalysts and Surfaces. Elemental Analysis (ICP, AAS etc.) Fall Semester 2016 Bodo Hattendorf HCI G105 Outline Characterization of Catalysts and Surfaces Elemental Analysis (ICP, AAS etc.) Fall Semester 2016 Bodo Hattendorf HCI G105 bodo@inorg.chem.ethz.ch Instrumental Methods for Determination of the Elements

More information

Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I

Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I Purpose Investigate Kirchhoff s Laws for continuous, emission and absorption spectra Analyze the solar spectrum and identify unknown lines

More information

Basic Digestion Principles

Basic Digestion Principles Basic Digestion Principles 1 From Samples to Solutions Direct Analytical Method Solid Sample Problems: Mech. Sample Preparation (Grinding, Sieving, Weighing, Pressing, Polishing,...) Solid Sample Autosampler

More information

Bright line spectrum questions

Bright line spectrum questions Base your answers to questions 1 and 2 on the information below and on your knowledge of chemistry. The bright-line spectra for four elements and a mixture of elements are shown in the diagram below. 1.

More information

COOKBOOK Book One AI Atomic Absorption Spectrometer

COOKBOOK Book One AI Atomic Absorption Spectrometer COOKBOOK Book One AI 12 Atomic Absorption Spectrometer Updated: Jan 22 AI 12 Cookbook Table of Contents AI 12 COOKBOOK Table of Contents BOOK ONE- FAAS Chapter 1: Theory of AAS Introduction 2 Flame Atomic

More information

Advanced Analytical Chemistry

Advanced Analytical Chemistry 84.514 Advanced Analytical Chemistry Part III Molecular Spectroscopy (continued) Website http://faculty.uml.edu/david_ryan/84.514 http://www.cem.msu.edu/~reusch/virtualtext/ Spectrpy/UV-Vis/spectrum.htm

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

Final Exam. Physical Constants and Conversion Factors. Equations

Final Exam. Physical Constants and Conversion Factors. Equations Final Exam Instructions: This exam is worth 100 points. Some questions allow a choice as to which parts are answered. Do not answer more parts than are requested. velocity of light in a vacuum: 3.0x10

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 2b: X-ray Fluorescence Spectrometry Text: Chapter 12 Rouessac (1 week) 4.0 X-ray Fluorescence Download, read and understand EPA method 6010C ICP-OES Winter 2009 Page 1 Atomic X-ray Spectrometry Fundamental

More information