Biochemistry. Biochemical Techniques. 12 Gas Liquid Chromatography

Size: px
Start display at page:

Download "Biochemistry. Biochemical Techniques. 12 Gas Liquid Chromatography"

Transcription

1

2 Description of Module Subject Name Paper Name 12 Module Name/Title 12 Gas - liquid Chromatography

3 1. Objectives 1.1 To understand principle of Gas Liquid Chromatography 1.2 To explain the different components of GLC 2.0 Introduction and principle- Introduction and principle- Gas Liquid chromatography (GLC) is one of the most useful techniques in analytical chemistry. Claesson published one of the first important accounts of gas liquid chromatography in Gas liquid chromatography is a form of partition chromatography in which the stationary phase is a film coated on a solid support and the mobile phase is an inert gas like Nitrogen (N2) called as carrier gas flowing over the surface of a liquid film in a controlled fashion. The sample under analysis is vaporized under conditions of high temperature programming. The components of the vaporized sample are fractionated as a result of partitioning between a mobile gaseous phase and a liquid stationary phase held in a column. Principle: When the vapours of sample mixture move between the stationary phase (liquid) and mobile phase (gas) the different components of a sample mixture will separate according to their partition coefficient between the gas and liquid stationary phase. Concn. of solute in liquid (w/cc) Partition coeff.(kg) = Concn of solute in gas (w/cc) It is general assumption that if partition coefficient is low the emergence of the component is fast and vice versa. The substances having low boiling point (B.P) i.e. more volatility and higher vapour pressure will have more concentration in the mobile phase and thus will elute or emerge first and so on. For example, lower carbon number compounds have low B.P and higher volatility and vapour pressure will elute first than the higher carbon number compounds e.g. lower chain fatty acids emerge first than long chain ones. Therefore, less polar substances elute fast than polar substances. More polar substances are more retained in the column and therefore move slowly as compared to less polar substances which move at faster rate. In chromatographic analysis there are two terms commonly used (i) Retention Time and (ii)

4 Retention volume. Retention Time ( tr): It is the time required for the maximum for a solute peak (the peak of that particular component) to reach the detector in a gas chromatographic column. The retention time (tr) is characteristic of that component and the area under the peak is proportional to its quantity. These parameters yield qualitative and quantitative data, respectively. The characterization of mixture in as unknown sample is done through retention time by comparing with those of reference compounds. The relative proportion of varouis components in a mixture is determined by calculating their peak areas and then calculating the percentage of peaks are out of the total area of various peaks obtained. Retention volume (VR) is defined as the volume of the gas required to carry a component maximum through the column VR = tr Fc Where Fc is the volume flow rate of the gas at outlet. 3.0 Applications of GLC: Gas liquid chromatography is generally used for both qualitative and quantitative analysis of organic compounds. This technique is much sought technique in Agricultural Science, Agriculture Industry, Food industry, Environmental field, Forensic field, Biotechnology field, Perfume and fragrance industry i.e. cosmetic industry and chemical industry. This technique is very useful for the estimation of (i) pesticide and insecticide residues in food and other consumables (ii) estimation of pollutants in water and other food stuff (iii) Banned and controlled drugs in urine, blood, tablets, energy drinks etc. 4. Apparatus: The basic components of a typical gas chromatograph (GC) are as:

5 Carrier Gas Supply: The gaseous mobile phase must be inert. Helium is the most common mobile phase, although argon, nitrogen, hydrogen are also used. Most of these gasses in highly pure form including mixtures such as nitrogen with hydrogen are available in cylinders. Generally the gasses used in GC must be thoroughly dried because moisture entrapped in the gasses leads to background noise. Now, a day s GC suppliers are providing desiccant cartridges and other filters along with the machines which take care of these problems as well as other impurities. Otherwise, the best desiccant is a molecular sieve (Linde 5A) activated at o C. the flow rate of these gases is controlled by the pressure gauges and flow meters. Detector Thermal conductivity Flame ionization Electron capture Carrier Gas Helium Helium or nitrogen Very dry nitrogen 4.1. Sample injection Systems:

6 Method of sample injection depends on the type of sample i.e. gaseous, liquid or solid. In GLC the requirement is that the suitable amount of sample should be injected as a plug of vapors. It has been noticed that slow injection or oversized samples cause band spreading and poor resolution. Sample size depends upon the sensitivity of the detector; when an ionization detector is used a liquid sample should not be greater than 0.5 l Liquid Samples: Liquids are injected by means of micro syringes through a silicon septum into a heated sample port located at the head of the column. The sample port is ordinarily above 50 o C above the boiling point of the least volatile components of the sample. For ordinary packed analytical columns, sample sizes range from a few tenth of micro liter to 20 l. Capillary columns require samples that are smaller by a factor of 100 or more. Here a sample splitter is often required to deliver only a small known fraction (1:100 to 1:500) of the injected sample, with the remainder going to waste Solid samples: Solid samples are generally weighed into thin glass ampules which are placed in the gas stream and then crushed Columns: Efficiency of any gas chromatograph is very much dependent on the columns used in GLC, which may be of glass or metal. These columns are mainly of two types packed columns and open tubular (capillary) columns Packed columns: These columns can accommodate larger samples and are generally more convenient to use. They are normally 2 3 m long and have inside diameters of 2 4 mm. The tubes are ordinarily formed as coils with diameters of roughly 15cm to permit convenient thermo stating in an oven. The packing or support, for a column hold the liquid stationary phase in place, so that the surface area exposed to the mobile phase is as large as possible. The ideal particle size of packing material for gas chromatography is in the range of mesh ( m) or mesh ( m).

7 Capillary columns: Capillary columns are generally made up of glass or fused silica. These columns have inside diameters of mm and lengths of m. Silica capillaries which have much thinner walls than their glass or metal counter parts, have outside diameters of about 0.3 mm Column Oven: The oven used in GLC is usually having a high precision thermostat to control the temperature of the column fitted inside the oven to get the reproducible retention time. Range of temperature may vary from 0-400ᵒC 4.4. Detectors: Detectors are very sensitive and respond quickly to minute concentrations of solutes exiting the columns. Detectors have the linear response stabile and uniform response for a wide variety of chemical species. There are many types of detectors are available. (a) Thermal conductivity (b) Gas density (c) Flame ionization (d) ß ray ionization ( Cross section, Argon, Helium, Electron capture, Electron mobility) (e) Photo ionization. (f) Glow discharge (g) Flame temperature (h) Dielectric constant. Out of the abovementioned detectors the two are most commonly used Thermal Conductivity Detector (TCD): this is also called as Katharometer. This is madeup of four filaments arranged in a electrical bridge network. The carrier gas flowing around these filaments through cavities. The temperature of filament is determined by the rate of heat loss by conduction through the carrier gas. As the components elute out from the column, the composition of gas changes with the consequent changes in the thermal conductivity. This in turn, produces change in temperature of filaments which generate electrical output from the bridge circuit. Merits: i) Simple ii) can be used in all applications iii) non destructive and thus suitable for preparative fraction collection work. Limitation: Low resistance ii) Low sensitivity ( 10 9 g/ ml carrier ) Flame Ionization Detector (FID): Most popular detector due to its high sensitivity, wide

8 range and greater reliability. It responds only to organic compounds.. It works on the principle that most organic compounds, when pyrolize in a hot flame, produce ionic intermediates that conduct electricity through the flame. It consists of a small hydrogen flame burning in an excess of air and surrounded by an electrostatic field. Column effluent is mixed with hydrogen entering the burner. Organic components eluted from the column are burnt producing CO2. During this oxidation process, some ionizing particles and electron are formed as intermediate products of oxidation. These ionizing particles are quantitatively proportional to the amount of carbon in original compounds. These ionizing particles are collected and neutralized by the polarizing electrodes generating an electric current which is picked up by electrometer and forms a peak on the recording chart. The ionization detector exhibits a high sensitivity (10 13 g / ml ), a large linear response and low noise. It is also rugged and easy to use. It responds only to organic compounds. Detection limit: 5 ppb for light hydrocarbon gases and 10 picograms for higher organic liquids and gases. When column temperature of 200 C or higher is used, the practical detection limit is about 1 nanogram ( g.). Disadvantage: It destroys the sample Modified Flame ionization detector (FID): It is also called as thermo ionic alkali flame detector (TID). In this case an alkali metal salt is added to the flame to enhance the ionization of compounds containing P. Cl and N. The salts mainly PO4 and halides of Na, K, Rb or CS are fed to the flame by (i) fixed wire (ii) heated capillary (iii) pallet fastened on jet. Salts should be replaced when consumed Electron Capture Detector (ECD): It is based on the principal of electron capturing by various substances being sensed which causes a reduction in the ion current. Chemicals containing an electronegative element or group have a strong affinity for electrons. In the gaseous state, they tend to capture electrons to form negative ions. Exposing these compounds to a source of low energy electrons forms the basis of an extremely sensitive selective detector for such compounds. The radioactive source employed for ECD include: Tritium (H3)and Ni63. Methane or argon are also used as a quench gas (mixed with carrier ga) to reduce the energy. Non radio active sources: Glow discharge in helium high sensitivity and high operating temperature. (400 C). In all types of ECD, more important is specificity or selectivity than sensitivity. Non capturing compounds (compounds which do not contain electronegative group) should go undetected.

9 Advantages : Very high sensitivity and specificity for molecules such as oxygen, halogens oxygen containing and halogen containing compounds, which have high electron affinities The Nitrogen Phosphorus Detector (NPD): This detector is very-very sensitive and a specific detector. It is highly responsive to organic compounds containing nitrogen and/or phosphorus. Sensor in this detector is made up of a rubidium or cesium bead contained inside a small heater coil. One side of the detector has the anode. The heated alkali Rubidium Sulphate emits electrons by thermionic emission which are collected at the anode and thus produce ions. When a solute containing nitrogen or phosphorus is eluted, the partially combusted nitrogen and phosphorus materials are adsorbed on the surface of the bead. This adsorbed material reduces the work function of the surface and, as consequence, the emission of electrons is increased which raises the anode current. The sensitivity of the NPD is about g/ml for phosphorus and g/ml for nitrogen) Stationary Phases for GLC: Hundreds of liquids have been proposed as stationary phases in the development of GLC. The important factors governing the selection of a liquid phase are its polarity and operational temperature range. The later can be determined from tables or supplier. From practical point of view, the greater the polarity of the liquid stationary phase, the greater the retention of a polar solute relative to that of a non-polar solute with a similar boiling point. Like is dissolved by like is the general rule. Thus if sample components are similar in chemical structure but have different volatilities, a non polar liquid phase is generally better. Conversely the components have different functional groups, but are of similar boiling points then polar phase is generally more suitable. These stationary phases are mainly of two types polar and non-polar Polar (Selective) stationary phases: They contain functional groups such as - CN, - CO, and OH. These phases include Polyethylene glycol and polyester which retain polar solutes. Theses phases separate solute molecules on the basis of functional groups. Selective stationary phases show selective retention for carbon carbon double bonds. Such phases are used to separate

10 carbonyls, lactones and fatty acid esters Non-polar (non- selective) phases: They are generally hydrocarbon type (dialkyl siloxane) such as methyl silicons, Apiezen greases and squalene. They tend to fractionate solutes by B.P. Generally used for triglyceride. All type of stationary phases has the following properties: (1) Low volatility (ideally boiling point of the liquid should be at 100ᵒ C higher than the maximum operating temperature of the column (2) Thermal stability (3) Chemical inertness (4) Solvent characteristics Some Common Liquid Stationary phases: Polydimethyl siloxane, Phenyl polydimethyl siloxane, Polyethylene glycol, Cynopropyl polydimethyl siloxane. Selection of stationary phases depend upon the compounds, researches want to study. Stationary phase Type Analyte type 100% Dimethyl polysiloxane Non- polar Solvents, Petroleum products, flavors, saturated hydrocarbons 5% : 95% Diphenyl : dimethyl Non- Polar flavors, pesticides, polysiloxane aromatic hydrocarbons 35% : 65%; Diphenyl : dimethyl Medium polarity Nitrogen containing polysiloxane pesticides Polyethylene glycol Polar Fatty acid methyl esters, fatty acids, flavours, alcohols Conditioning of column: To remove low molecular weight residues from stationary phase so as to maintain the minimum bleeds of liquid phase throughout the working range of temp. This is normally accomplished by heating the column to a temperature about C above its proposed operating temperature with a stream of carrier gas passing through it. This is essential to ensure that the complete removal of any solvent, water and volatile contaminants that may have been retained during the preparation of the column material. 5.0 Derivatives for GLC: Most common derivatization is done prior to G.C. which makes the sample more volatile; e.g. 1. Methyl esters: Both acidic and basic catalysts are used for esterification reactions of fatty acids and fats.

11 2. Silyl ethers: The silyl ethers are preferred for partial glycerides, sterol, carbohydrates etc. 3. 2,4 DNPH: Volatile carbonyl compounds are important flavour compounds in food stuffs, accounting for flavour & off flavour. These are converted to their 2, 4 dinitrophenyl hydrzones.

Chapter 31 Gas Chromatography. Carrier Gas System

Chapter 31 Gas Chromatography. Carrier Gas System Chapter 31 Gas Chromatography GAS-LIQUID CHROMATOGRAPHY In gas chromatography, the components of a vaporized sample are fractionated as a consequence of being partitioned between a mobile gaseous phase

More information

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas GAS CHROMATOGRAPHY Mobile phase is a gas! Stationary phase could be anything but a gas Gas Chromatography (GC) GC is currently one of the most popular methods for separating and analyzing compounds. This

More information

2401 Gas (liquid) Chromatography

2401 Gas (liquid) Chromatography 2401 Gas (liquid) Chromatography Chromatography Scheme Gas chromatography - specifically gas-liquid chromatography - involves a sample being vaporized and injected onto the head of the chromatographic

More information

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Gas Chromatography (GC) In gas chromatography, the sample is vaporized and injected onto the head of a chromatographic

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC Gas Chromatography Gas Chromatography Presented By Mr. Venkateswarlu Mpharm KTPC What is Gas Chromatography? It is also known as Gas-Liquid Chromatography (GLC) GAS CHROMATOGRAPHY Separation of gaseous

More information

Gas Chromatography. Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 2

Gas Chromatography. Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 2 Print version Gas Chromatography Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 1 Contents The primary components to a GC system 1. Carrier Gas System (including

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography. M. Subramanian

CH 2252 Instrumental Methods of Analysis Unit V  Gas Chromatography.  M. Subramanian CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography M. Subramanian Assistant Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603

More information

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

GC Instruments. GC Instruments - Sample Introduction

GC Instruments. GC Instruments - Sample Introduction GC Instruments 1 Fairly simple instrumentation Maintaining constant average pressure is important! Pressure controls flow rate T influences retention (k ) Flow rate monitoring Changing flow rate changes

More information

Gas Chromatography CHEM Dr. Reem M. Alghanmi st term

Gas Chromatography CHEM Dr. Reem M. Alghanmi st term Gas Chromatography CHEM 313-5 Dr. Reem M. Alghanmi 2017 1 st term 17.7 Gas Chromatography Introduction There are two types of gas chromatography: Gas-solid (adsorption) chromatography. Gas-liquid (partition)

More information

Gas Chromatography. Introduction

Gas Chromatography. Introduction Gas Chromatography Introduction 1.) Gas Chromatography Mobile phase (carrier gas) is a gas - Usually N 2, He, Ar and maybe H 2 - Mobile phase in liquid chromatography is a liquid Requires analyte to be

More information

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5 Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH 5730-6730 Analysis Topic 5 Chromatography! Group of separation techniques based on partitioning (mobile phase/stationary phase). Two immiscible

More information

10/27/10. Chapter 27. Injector typically 50 C hotter than oven

10/27/10. Chapter 27. Injector typically 50 C hotter than oven Sample and solvent are vaporized onto the head of a column Vaporized solvent and solute are carried through the column by an inert gas (mobile phase) The mobile phase does not interact with compounds of

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

Gas Chromatography. Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid

Gas Chromatography. Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid Gas Chromatography Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid Principles Instrumentation Applications 18-1 Retention Volumes Volumes rather than times

More information

Gas chromatography. Advantages of GC. Disadvantages of GC

Gas chromatography. Advantages of GC. Disadvantages of GC Advantages of GC Gas chromatography Fast analysis, typically minutes Effi cient, providing high resolution Sensitive, easily detecting ppm and often ppb Nondestructive, making possible on - line coupling;

More information

Ch24. Gas Chromatography (GC)

Ch24. Gas Chromatography (GC) Ch24. Gas Chromatography (GC) 24.1 What did they eat in the year 1000? From 13 C content of cholesterol in ancient bone 13 C : 1.1%, 12 C: 98.9% 13 C/ 12 C ratio types of plants Bones of 50 people in Barton-on-Humber

More information

Gas Chromatography (GC)

Gas Chromatography (GC) Gas Chromatography (GC) Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11541 Saudi Arabia Office: AA53

More information

Experiment 6 Simple and Fractional Distillation

Experiment 6 Simple and Fractional Distillation Experiment 6 Simple and Fractional Distillation Vapor Pressure vs Temperature of Water Vapor Pressure vs Temperature of Water 25 Vapor Pressure vs Temperature of Water 25 Vapor Pressure (kpa) (kpa) 2 2

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

Chapter 11 Conventional Gas Chromatography

Chapter 11 Conventional Gas Chromatography Chapter 11 Conventional Gas Chromatography Gas Chromatography GC is the first instrumental chromatographic method developed commercially It is relatively easy to introduce a stable flow and pressure for

More information

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost Gas Chromatography Like other methods of chromatography, a partitioning of molecules must occur between the stationary phase and the mobile phases in order to achieve separation. This is the same equilibrium

More information

https://www.chemicool.com/definition/chromatography.html

https://www.chemicool.com/definition/chromatography.html CHROMATOGRAPHY 1 Chromatography - a physical method of mixture separation in which the components to be separated are distributed between two phases, one of which is stationary (stationary phase) while

More information

Gas Chromatography. Chromatography Laboratory Course. Dr. Christian Jungnickel Chromatography Course GC September 2005

Gas Chromatography. Chromatography Laboratory Course. Dr. Christian Jungnickel Chromatography Course GC September 2005 Gas Chromatography Chromatography Laboratory Course The laboratory course experiments General Aim: Gain general experience using a GC Constant Injection technique Temperature variations Qualitative and

More information

Volatile organic compounds (VOCs):

Volatile organic compounds (VOCs): Volatile organic compounds (VOCs): Organic chemicals with a high vapour pressure at room temperature. High vapour pressure results from a low boiling point. The World Health Organization (WHO) defined

More information

Principles of Gas- Chromatography (GC)

Principles of Gas- Chromatography (GC) Principles of Gas- Chromatography (GC) Mohammed N. Sabir January 2017 10-Jan-17 1 GC is a chromatographic technique utilizes gas as the mobile phase which is usually an inert gas (Hydrogen, Helium, Nitrogen

More information

Principles of Instrumental Analysis

Principles of Instrumental Analysis Principles of Instrumental Analysis Chapter 27 Gas Chromatography Gas Chromatography (GC): vaporized analytes (solutes) are partitioned between a mobile gaseous phase and a liquid or a solid stationary

More information

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications Chapter 27: Gas Chromatography Principles Instrumentation Detectors Columns and Stationary Phases Applications GC-MS Schematic Interface less critical for capillary columns Several types of Mass Specs

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 Two types in general use: -packed (stationary phase) -open tubular or capillary determine selectivity and efficiency of the sample. Column Materials Column

More information

Lab 3 Guide: Gas Chromatography (GC) (Sept 8-14)

Lab 3 Guide: Gas Chromatography (GC) (Sept 8-14) Lab 3 Guide: Gas Chromatography (GC) (Sept 8-14) How GC works The Basic Idea Gas chromatography (GC) is mainly used for the qualitative analysis of samples: it answers the question What chemicals are present

More information

Gas Chromatography (GC)

Gas Chromatography (GC) Gas Chromatography (GC) Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia Building:

More information

1. Carrier gas supply. - Flow rate measurement

1. Carrier gas supply. - Flow rate measurement Chapter 27 Gas chromatography Gas Chromatography - The components of a vaporized sample are separated as a consequence of being partitioned between a mobile gaseous phase and a liquid or a solid stationary

More information

G a s C h r o m a t o g r a p h y Determination of Ethanol in Wine by Head-Space Gas Chromatography

G a s C h r o m a t o g r a p h y Determination of Ethanol in Wine by Head-Space Gas Chromatography G a s C h r o m a t o g r a p h y Determination of Ethanol in Wine by Head-Space Gas Chromatography Pibulsongkram Rajabhat University Department of Agro-Industry Faculty of Food and Agricultural Technology

More information

Partitioning. Separation is based on the analyte s relative solubility between two liquid phases or a liquid and solid.

Partitioning. Separation is based on the analyte s relative solubility between two liquid phases or a liquid and solid. Chromatography Various techniques for the separation of complex mixtures that rely on the differential affinities of substances for a gas or liquid mobile medium and for a stationary adsorbing medium through

More information

/Chapter 27.ppt

/Chapter 27.ppt Information given in these slides are, either in part or all, recollection from the followings: http://bionmr.unl.edu/courses/chem421-821/lectures/chapter-2... http://faculty.atu.edu/abhuiyan/course/chem

More information

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26 Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. Instructor s Manual CHAPTE 26 26-1. (a) Elution is a process in which species are washed through a chromatographic column by

More information

Gas Chromatography. A schematic diagram of a gas chromatograph

Gas Chromatography. A schematic diagram of a gas chromatograph Gas Chromatography In gas liquid chromatography (GLC) partition of solutes occurs between a mobile gas phase (the "carrier gas") and a stationary liquid phase present in the column. The gas-phase concentration

More information

Gas Chromatography notes

Gas Chromatography notes Gas Chromatography notes 1. Here is some terminology related to this experiment: Chromatography is a technique in which compounds to be separated are distributed between a mobile phase and a stationary

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

GC Instruments. GC Instruments - Columns

GC Instruments. GC Instruments - Columns GC Instruments 1 Fairly simple instrumentation Maintaining constant average pressure is important! Pressure controls flow rate T influences retention (k ) Flow rate monitoring Changing flow rate changes

More information

Luminescence transitions. Fluorescence spectroscopy

Luminescence transitions. Fluorescence spectroscopy Luminescence transitions Fluorescence spectroscopy Advantages: High sensitivity (single molecule detection!) Measuring increment in signal against a dark (zero) background Emission is proportional to excitation

More information

Chemistry Gas Chromatography: Separation of Volatile Organics

Chemistry Gas Chromatography: Separation of Volatile Organics Chemistry 3200 Gas chromatography (GC) is an instrumental method for separating volatile compounds in a mixture. A small sample of the mixture is injected onto one end of a column housed in an oven. The

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

7 INSTRUMENTAL CHROMATOGRAPHY

7 INSTRUMENTAL CHROMATOGRAPHY 7 INSTRUMENTAL CHROMATOGRAPHY 7.1 Introduction There are two forms of chromatography, very widely used in analytical laboratories, which rely on electronic control of the process and detection of the species.

More information

CfE Higher Chemistry. Unit 3: Chemistry in Society. Chemical Analysis as part of quality control

CfE Higher Chemistry. Unit 3: Chemistry in Society. Chemical Analysis as part of quality control CfE Higher Chemistry Unit 3: Chemistry in Society Chemical Analysis as part of quality control 06/12/2017 Composition and purity 06/12/2017 Learning Outcomes : I can explain the basic principle of how

More information

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography Emqal module: M0925 - Quality parameters and optimization in is a separation technique used for quantification of mixtures of analytes Svein.mjos@kj.uib.no Exercises and lectures can be found at www.chrombox.org/emq

More information

Instrumentation. Components of a gas chromatograph

Instrumentation. Components of a gas chromatograph Gas chromatography Instrumentation Components of a gas chromatograph The components include the Mobile phase (Carrier gas) supply and pressure and flow rate regulators Injector the column the detector

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L2 Page1 Instrumental Chemical Analysis Chromatography (General aspects of chromatography) Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester,

More information

DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY

DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY OBJECTIVE In this lab, one will examine the phosphoric acid catalyzed dehydration of 2-methylcyclohexanol. Gas chromatography will be used to monitor the outcome

More information

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine Webcast Notes Type your questions in the Submit Question box, located below the slide window You can enlarge the slide window at any time by clicking on the Enlarge Slides button, located below the presentation

More information

Introduction and Principles of Gas Chromatography

Introduction and Principles of Gas Chromatography Introduction and Principles of Gas Chromatography Jaap de Zeeuw Restek, Middelburg, The Netherlands Jaap.dezeeuw@restek.com Definition and Uses of Gas Chromatography GC Components and Types of Columns

More information

CHROMATOGRAPHY AND MASS SPECTROMETER

CHROMATOGRAPHY AND MASS SPECTROMETER 22 CHROMATOGRAPHY AND MASS SPECTROMETER 22.1 INTRODUCTION We know that the biochemistry or biological chemistry deals with the study of molecules present in organisms. These molecules are called as biomolecules

More information

Chapter 1. Chromatography. Abdul Muttaleb Jaber

Chapter 1. Chromatography. Abdul Muttaleb Jaber Chapter 1 Chromatography Abdul Muttaleb Jaber What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated

More information

Overview topics. Basics of chromatography. Gaschromatography. Construction. Sampling techniques. Application of gaschromatography

Overview topics. Basics of chromatography. Gaschromatography. Construction. Sampling techniques. Application of gaschromatography Overview topics Basics of chromatography Gaschromatography Construction Sampling techniques Application of gaschromatography Example of a measurement page 2 Why chromatography? Samples of investigation

More information

GAS CHROMATOGRAPHY (GC)

GAS CHROMATOGRAPHY (GC) GAS CHROMATOGRAPHY (GC) Pre-Lab Questions Questions are to be answered before the beginning of the laboratory. The answers are due at the beginning of each experiment (the questions are for credit and

More information

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols.

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. Jaap de Zeeuw, Ron Stricek and Gary Stidsen Restek Corp Bellefonte, USA To analyze basic compounds at

More information

Understanding Gas Chromatography

Understanding Gas Chromatography Understanding Gas Chromatography What is Really Going on Inside the Box? Simon Jones GC Applications Engineer Page 1 Group/Presentation Title Month ##, 200X ?? K? Page 2 Typical GC System Gas supply Injector

More information

6.1 Revision The following questions cover the important concepts that you should have understood in the first year introduction to chromatography.

6.1 Revision The following questions cover the important concepts that you should have understood in the first year introduction to chromatography. 6 Gas Chromatography 6.1 Revision The following questions cover the important concepts that you should have understood in the first year introduction to chromatography. 1. How does a gas chromatograph

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis Watch this lesson online: https://edrolo.com.au/vce/subjects/chemistry/vce-chemistry/aos-1-chemical-analysis/chromatography-hplc-glc/column-chromatography/#watch CHEMISTRY Unit 3, Area of Study 1: Chemical

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 3 November 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #14 Chromatography: Theory (Skoog, Chapt. 26, pp.674-693) (Harris, Chapt. 23) (641-664) David Reckhow

More information

Fundamentals of GC: Introduction: Sample introduction:

Fundamentals of GC: Introduction: Sample introduction: Fundamentals of GC: Introduction: If you are already familiar with gas chromatography, we would recommend you go visit the Links/References page for more in-depth discussion of chromatography. This page

More information

Experiment 3: Analysis of Unknown Hydrocarbons by GC, NMR, and Chemical Tests for Unsaturation and Aromaticity

Experiment 3: Analysis of Unknown Hydrocarbons by GC, NMR, and Chemical Tests for Unsaturation and Aromaticity Experiment 3: Analysis of Unknown Hydrocarbons by GC, NMR, and Chemical Tests for Unsaturation and Aromaticity In this experiment you will be determining the structures and checking the purity of the hydrocarbon

More information

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. Chromatography Primer Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. At its heart, chromatography is a technique

More information

for sodium ion (Na + )

for sodium ion (Na + ) 3.4 Unit 2 Chemistry 2 Throughout this unit candidates will be expected to write word equations for reactions specified. Higher tier candidates will also be expected to write and balance symbol equations

More information

Chromatography and Functional Group Analysis

Chromatography and Functional Group Analysis Chromatography Chromatography separates individual substances from a mixture. - to find out how many components there are - to match the components with known reference materials - to use additional analytical

More information

Chromatography Outline

Chromatography Outline Chem 2001 Summer 2004 Outline What is? The Chromatogram Optimization of Column Performance Why Do Bands Spread? Gas High-Performance Liquid Ion-Exchange 2 What is? In chromatography, separation is achieved

More information

Methods of pollution control and waste management - laboratory. Adsorptive removal of volatile organic compounds from gases streams

Methods of pollution control and waste management - laboratory. Adsorptive removal of volatile organic compounds from gases streams Methods of pollution control and waste management - laboratory Adsorptive removal of volatile organic compounds from gases streams Manual for experiment 17 dr Hanna Wilczura-Wachnik and dr inż. Jadwiga

More information

Selection of a Capillary

Selection of a Capillary Selection of a Capillary GC Column - Series 3 Mark Sinnott Application Engineer March 19, 2009 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector

More information

Dehydration of Alcohols-Gas Chromatography

Dehydration of Alcohols-Gas Chromatography Dehydration of Alcohols-Gas Chromatography OBJECTIVE In this lab, we will examine the phosphoric acid catalyzed dehydration of 2-methylcyclohexanol. Gas chromatography will be used to monitor the outcome

More information

DATES: LAB: Liquid Chromatography Separation of Grape Kool-Aid

DATES: LAB: Liquid Chromatography Separation of Grape Kool-Aid NAME: AP CHEMISTRY DATES: LAB: Liquid Chromatography Separation of Grape Kool-Aid PURPOSE There are a number of analytical techniques used to separate components of a mixture, or solution. They include

More information

Determination of Volatile Substances Proof of Food Adulteration

Determination of Volatile Substances Proof of Food Adulteration ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE Determination of Volatile Substances Proof of Food Adulteration (method: gas chromatography with mass spectrometric detection) Exercise guarantor:

More information

Volumetric Analysis. Quantitative analysis answers the second question

Volumetric Analysis. Quantitative analysis answers the second question Volumetric Analysis Volumetric analysis is a form of quantitative analysis involving the measuring of volumes of reacting solutions, it involves the use of titrations. When buying food we often have two

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds Atmospheric Analysis Gases Sampling and analysis of gaseous compounds Introduction - External environment (ambient air) ; global warming, acid rain, introduction of pollutants, etc - Internal environment

More information

Experiment 1: Thin Layer Chromatography

Experiment 1: Thin Layer Chromatography Experiment 1: Thin Layer Chromatography Part A: understanding R f values Part B: R f values & solvent polarity Part C: R f values & compound functionality Part D: identification of commercial food dye

More information

Introduction to Capillary GC

Introduction to Capillary GC ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation What type of samples are common? Sample preparation 1 2 Number of samples? Time spent on different operations during LC analyses 3 4 Sources of error Aims Sample has to be representative Sample has to

More information

Get Selective. By Jaap de Zeeuw

Get Selective. By Jaap de Zeeuw 34 Get Selective Modern narrow bore columns have made chromatographers lazy when it comes to stationary phase selection. Here s how getting back to basics in gas chromatography by using selectivity can

More information

LAB #6 Chromatography Techniques

LAB #6 Chromatography Techniques LAB #6 Chromatography Techniques Objectives: To learn how to story board a procedure Explain how a chromatograph of pigments is formed from both paper and thin layer chromatography. Isolate and identify

More information

Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions

Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions Michael D. Buchanan September 11, 2014 sigma-aldrich.com/analytical 2012 Sigma-Aldrich Co. All

More information

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS International Gas Union Research Conference 14 THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS Main author Hironori IMANISHI Tokyo Gas Co., Ltd. JAPAN himanishi@tokyo-.co.jp

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #24 Special Applications: Chromatographic Retention Time and Environmental Properties (Skoog, nothing)

More information

Experiment 6: Dehydration of 2-Methylcyclohexanol

Experiment 6: Dehydration of 2-Methylcyclohexanol Experiment 6: Dehydration of 2-Methylcyclohexanol Dehydration of 2-Methylcyclohexanol This week's reaction: A B - dehydration of a 2 alcohol to give a mixture of alkene isomers - H 3 PO 4 is a catalyst

More information

Gas chromatography. Flow measurement. Flow control. Injection methods. Flow measurement

Gas chromatography. Flow measurement. Flow control. Injection methods. Flow measurement Gas chromatography Schematic of a packed column gas chromatograph First instrumental chromatographic method developed commercially. Reason - it is relatively easy to produce a stable flow and pressure

More information

The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography

The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography Page 1 of 5 Return The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography Stephanye D. Armstrong and Harold M. McNair Department of Chemistry, Virginia

More information

Organic Chemistry. Alkanes are hydrocarbons in which the carbon atoms are joined by single covalent bonds.

Organic Chemistry. Alkanes are hydrocarbons in which the carbon atoms are joined by single covalent bonds. Organic Chemistry Organic compounds: The branch of chemistry which deals with the study of carbon compounds is called organic chemistry. Catenation: The carbon atom has a property to undergo self linking

More information

Selection of a Capillary GC Column

Selection of a Capillary GC Column Selection of a Capillary GC Column Mark Sinnott Application Engineer March 13, 2008 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector Electrometer

More information

Physical Separations and Chromatography

Physical Separations and Chromatography Lab #5A & B: Physical Separations and Chromatography Individual Objectives: At the end of these experiments you should be able to: Ø Distinguish between Rf and tr; chromatograph and chromatogram; adsorption

More information

Chromatography Lab # 4

Chromatography Lab # 4 Chromatography Lab # 4 Chromatography is a method for separating mixtures based on differences in the speed at which they migrate over or through a stationary phase which means that a complex mixture will

More information

Spectroscopy and Chromatography

Spectroscopy and Chromatography Spectroscopy and Chromatography Introduction Visible light is one very small part of the electromagnetic spectrum. The different properties of the various types of radiation depend upon their wavelength.

More information

Method for the determination of 1,3-butadiene

Method for the determination of 1,3-butadiene Federation of the Employment Accidents Insurance Institutions of Germany (Hauptverband der Berufsgenossenschaften) Centre for Accident Prevention and Occupational Medicine Alte Heerstraße 111, 53757 Sankt

More information

Application Note S/SL

Application Note S/SL Analysis of Ultra low Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence according to ASTM D Ultra low detection limits Excellent Sensitivity, Repeatability &

More information

Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID

Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID Asian Journal of Chemistry Vol. 21, No. 3 (2009), 1739-1746 Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID PRAVEEN KUMAR BALIYAN*, R.P.

More information

Chromatography. writing in color

Chromatography. writing in color Chromatography writing in color Outlines of Lecture Chromatographic analysis» Principles and theory.» Definition.» Mechanism.» Types of chromatography.» Uses of Chromatography. In 1906 Mikhail Tswett used

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information