Production of Activated Carbon from Residue of Liquorices Chemical Activation

Size: px
Start display at page:

Download "Production of Activated Carbon from Residue of Liquorices Chemical Activation"

Transcription

1 Abstract: Production of Activated Carbon from Residue of Liquorices Chemical Activation T.Kaghazchi *, M.Soleimani, M.Madadi Yeganeh, Department of Chemical Engineering, AmirKabir University of Technology, No.424, Hafez Ave., Tehran, Iran, Tel. & Fax: +98(21) , Activated carbons are materials widely used in several processes, mainly as effective adsorbents Important applications are related to their use in water and industrial wastewater treatment for removal of flavor, color, odor and other undesirable organic impurities. Apart from such interesting properties as very high surface area, different pore-size distributions and different functional groups, which can be modified by changing activation conditions, the availability and abundance and consequently low price of the raw materials, have made activated carbon to appear as an economical product in the industries. Activated carbon can be produced from a large variety of raw materials. Common examples of commercial feed stocks are coal, wood and agricultural wastes such as coconut shell, fruit stones (apricot and cherry stones), hard shell (almond and pecan shell), bagasse, olive waste, etc. In this work, the production of activated carbon from residue of liquorices by chemical activation has been studied. The activation was performed using phosphoric acid under different operating conditions. The effects of parameters such as particle size, impregnation ratio of chemical agent, final activation temperature and heating rate on the physico-chemical properties of activated carbon were investigated. Production tests for the effects of these factors were designed with Taguchi method. Experimental results showed that the selection of impregnation ratio of chemical agent plays a very important role in the properties of activated carbon. The properties of prepared activated carbon at optimum operating conditions such as surface area (1130m 2 /g) and iodine number (923 mg I 2 /gr C), were compared to those of commercial activated carbons. Keyword: activated carbon, production, residue of liquorices, characterization 1-Introduction Activated carbons are materials widely used in several processes, mainly as effective adsorbents. Activated carbon is a generic term for a family of highly porous carbonaceous materials none of which can be characterized by a structural formula or by chemical analysis. Activated carbon in the form of granules, powders or shaped can be produced from virtually any carbonaceous solid precursor by physical or chemical activation methods [1-5].

2 Activated carbon can be produced from a large variety of raw materials, basically by two methods: physical and chemical activation or combination of both methods. The physical or thermal activation method involves carbonization of raw material at elevated temperature ( C) in an inert atmosphere and the subsequent activation at high temperature ( C) in a CO 2 or steam atmosphere. In chemical activation method, a simultaneous carbonization and activation can be obtained by impregnation with dehydrating agent such as phosphoric acid or zinc chloride at lower temperature. In this method, a carbonized product with a well-developed porosity (after appropriate washing) could be obtained in a single operation. The common feature of all substances used in the chemical activation process is that they are dehydrating agents that influence pyrolytic decomposition and inhibit formation of tar, thus enhancing the yield of production of activated carbon [2-8]. Activated carbons have been widely used for the separation of gases, the recovery of solvents, the removal of organic pollutants from drinking water, wastewater treatment and as a catalyst support [1-3, 5, 9]. The physical and chemical properties of activated carbon (such as surface area, bulk density, ash content) vary with the feed materials used and the way of activation. These properties may not relate directly to their effectiveness in the applications of activated carbon, but they are important for commercial utilization [9-12]. Process economics normally dictated the selection of readily available inexpensive feed stocks. Common examples of commercial raw materials are coal, lignite, peat and agricultural by-products such as woods, fruit stones (apricot & cherry stones), hard shell (almond and pecan shell), coconut shell, bagasse, olive waste, [2, 3, 6, 9-11]. Agricultural and forestry residues or generally biomass residues wastes could be used as suitable raw materials for the production of activated carbon. Agricultural wastes widely available in Iran are of little or no economic value and in fact cause disposal problems. The vast quantity of waste is generally dumped in landfills [13, 14]. In this work, the production of activated carbon from residue of liquorices has been studied. Liquorice has been in medicinal industry and as a sweetener. Residue of liquorices widely available in the central part of Iran and have little economic value. The activation process was performed by phosphoric acid solution under different operating conditions. In this study, the effect of preparation conditions such as heating rate, impregnation ratio, particle size and activation time on the properties of activated carbons was investigated. 2-Experimental 2.1. Chemical analysis of raw materials In order to assess the composition of the raw material, the content of lignin, cellulose, extractable materials and ash content were determined according to TAPPI standards. In lignin and cellulose test, the particle size of initial raw materials must be between mesh [15-17].

3 2.2. Production of activated carbon: Activated carbon was produced from domestic agricultural by-product, residue of liquorices by chemical activation process as follows [14, 18]. The raw material was ground in a laboratory mill and sieved to various particle size fractions using a conventional sieve-shaker. The selected fraction of particle size was dried and impregnated with H 3 PO 4. This mixture was left in an air oven at 100 C for 24 hours; subsequently, the mixture was subjected to carbonization and an activation process in a programmable electrical furnace (Nabertherm, Labothem MODEL C19) to a final carbonization temperature of 400 C. After cooling to room temperature, the samples were washed with hot distilled water (80 C) until water ph reached a value of approximately 5. The samples were dried over night at100 C in an air oven. Production tests were designed with Taguchi method and effects of parameters such as particle size, impregnation ratio of chemical agent, final activation time and heating rate on the physico-chemical properties of activated carbon were investigated. According to Taguchi method, L9 orthogonal array with four columns and nine rows is suitable for these experiments. The experimental layout for these parameters using the L9 orthogonal array is listed in Table 1. In these experiments, the iodine number of activated carbons was selected as response of the system and optimum operating conditions was determined based on this parameters. According to Taguchi method, L 9 array was suitable for these experiments. Arrangement of these parameters and selected levels of them in L 9 array was shown in Table 1. Table 1. Arrangement of factors in L 9 orthogonal array Parameters Size of raw material (mesh) Impregnation ratio (%) Heating rate( C/min) Activation time(hr) Number of experiment Impregnation ratio (wt %) defined as (gram of H 3 PO 4 per gram residue of liquorice) 100. Production efficiency of this process was determined from the following equation:

4 activated carbon weight production efficiency = *100 (1) raw material weight The agent (H 3 PO 4 ) is also an important factor, and it is reused after concentration. The percent of H 3 PO 4 recovery was calculated with equation (2): product weight before washing- product weight after washing recovery = * 100 (2) H PO weight for impregnation Characterization of activated carbon Activated carbon was characterized by selected physical and chemical properties Iodine number The Iodine number of prepared activated carbon was measured by titration at 30 C based on the standard method (ASTM Designation D ).This parameter was used to evaluate the activated carbon adsorption capacity [19] Surface area measurement The surface area (S BET ) of activated carbons was measured by N 2 adsorption at 77 K using a Quantachrom AUTO ZORB-1. Before measuring the isotherm, the samples were heated at 200 C for 2 h in vacuum to degassing [20] Bulk density Apparent or bulk density is a measure of the weight of material that can be obtained in a given volume under specified conditions. The volume used in this determination includes, in addition to the volume of the skeletal solid, the volume of the voids among the particles and the volume of the pores within the particles. A10 ml cylinder was filled to a specified volume with activated carbon that had been dried in an oven at 80 C for 24hr. The cylinder was weighted. The bulk density was then calculated as [21]: Bulk density= [weight of dry material (g)/vol. of packed dry material (ml)]. (3) The volume of this vessel was calibrated by measuring the volume of water at ambient temperature that the vessel can contain Ash content The Ash content (Ash %) of an activated carbon is the residue that remains when the carbonaceous portion is burned off. Ash content of activated carbon was determined by standard methods (ASTM Designation D , 1999) [22]. Approximately 1-2 gr of powdered activated carbon was placed into weighted ceramic

5 crucibles. Activated carbon and crucibles were dried 24 h at 80 and reweighed to obtain the dry carbon weight. The sample were heated in an electrical furnace at 650 ± 25 C for 3 hr. The crucibles were cooled in desiccator, and remaining solids (ash) were weighted. Percent of ash was calculated by: %Ash = [remaining solids wt (g)/ original carbon wt (g)]*100 (4) 3. Results and Discussion 3.1 Chemical analysis of raw materials The content of lignin and cellulose may be one of the criteria parameter for the selection of appropriate raw material in the production of the activated carbon. The chemical composition of the residue of liquorice is as follows: Cellulose (wt. %): 56.5 Lignin (wt. %): 22.5 Extractable materials (wt. %): 7.95 Ash (wt. %): Properties of the activated carbons The properties of the activated carbon depend on the treatment conditions and the choice of raw materials. In this work, the effect of operating conditions on the production efficiency, physico- chemical properties of the activated carbons obtained under different conditions are shown in Table 2. In these experiments, the iodine number of activated carbons was selected as response of the system in Taguchi method and optimum operating conditions was determined based on this parameters. In figures 1-4, system response versus the level of factors was shown. Test no. Table 2.properties of activated carbon in different operating condition Iodine number Bulk density Surface Area Ash (%) Production Chemical (mg I 2 /gr) (kg/m 3 ) (m 2 /g) efficiency (%) recovery (%)

6 Iodine number(mgi2/g C) particle size(mesh) Figure.1 Average response at different levels of particle size of raw material Iodine number(mgi2/gc) Impregnation ratio(%) Figure2. Average response at different levels of impregnation ratio Heating rate(0c/min) Figure3. Average response at different levels of heating rate Iodine number(mgi2/gc)

7 Iodine number(mgi2/gc) Activation time(hr) Figure4. Average response at different levels of activation time The optimum operating condition was achieved using residue of liquorice with mesh and impregnation ratio 150% with heating rate 2.5 C/min to a final carbonization temperature of 400 C for 2hr. Properties of the produced activated carbon under optimal condition are: Surface area: 1130 m 2 /g, Iodine number: 923 mg I 2 /gr, Ash: 6.55%. Another step of Taguchi method is the analysis results or ANOVA table. The ANOVA table shows which parameters significantly affect the performance characteristic and the contribution of each treatment process parameters on the adsorption characteristic (Iodine number) of the activated carbons. The percentage contribution of each parameter in the total sum of the squared deviations can be used to evaluate the importance of the parameter change on the performance characteristic [23]. Table 3- Results of the analysis of the variance (ANOVA table) Factor Sum of squares Variance Percentage of contribution Particle size Impregnation ratio Heating rate Activation time Total Results of ANOVA, which are shown in table 3, indicate that the impregnation ratio is the significant production treatment parameter due to its highest percentage contribution (69.75%) among the operating treatment parameters; however activation time in the range studied has not considerable effect on the iodine number of activated carbon. 4. Conclusions World consumption of activated carbons is steadily increasing and new applications are ever emerging, particularly those concerning environmental pollution remediation that will tend to sustain the demand. Therefore it is necessary to the exploitation of new sources for

8 production of activated carbon. Agricultural wastes could be considered as suitable raw materials for the production of these adsorbents. The physical and chemical properties of activated carbon (such as surface area, bulk density, ash content) vary with the feed material used and the way of activation. These properties do not relate directly to the effectiveness of their applications, but they are important for commercial utilization. In this work, the production of activated carbon from residue of liquorices by chemical activation has been studied. The activation was performed using phosphoric acid under different operating conditions. The effects of parameters such as particle size, impregnation ratio of chemical agent, final activation temperature and heating rate on the physico-chemical properties of activated carbon were investigated. Production tests for the effects of these factors were designed with Taguchi method. The results showed that the selection of impregnation ratio of chemical agent plays a very important role in the adsorption properties of activated carbon. The surface area (1130 m 2 /g) and iodine number (923 mg I 2 /gr C) of the produced activated carbon were compared to those of imported commercial ones. 5. References 1- A.Dorbrowksi, Adsorption: from Theory to Practice, Adv. Colloid & interface Sci., 2001, 93, Bansal R.C. et al, Active carbon, Patric, J.W., Porosity in Carbons, Chapter 9, London, Zanzi, R. and et al, Pyrolysis of biomass in Presence of Steam for Preparation of Activated Carbon, Liquid and Gaseous Product, Proceeding of the 6 th World Congress of Chemical Engineering, Australia, sect Streat, M. and Naden, D., Ion Exchange and Sorption Process in Hydrometallurgy, John Wiley, Moreno Castilla, C. et al, Chemical and Physical Activation of Olive-mill Waste water to Produce Activated Carbon, Carbon, p , Teng HJ, Lin HC., Activated carbon production from low ash sub bituminous coal with CO 2 activation. Am. Inst Chem. Eng., 44 (5):1170 7, Evans M.J.B., et al., "The production of chemically-activated carbon", Carbon, vol. 37, , Heschel, W. and Klose, E., On the Suitability of Agricultural By-products for the Manufacture of Granular Activated Carbon, Fuel, 74(12), , Gergva, K. et al, A Comparison of Adsorption Characteristics of Various Activated Carbon, Journal of Chemical Technology and Biotechnology, 56, 77-82, Hayashi J., et al., "Preparing activated carbon from various nutshells by chemical activation with K 2 CO 3 ", Carbon, vol. 40, , Ahmenda M., et al., "Production of granular activated carbons from selected agricultural by-products and evaluation of their physical, chemical and adsorption

9 properties", Bioresource Technology, vol. 71, , Soleimani M., Kaghazchi T., "Adsorption of gold from liquid wastes on activated carbon prepared from apricot stones", CHISA 2002, 15 th International Congress of chemical & Process Engineering, Aug. 2002, Praha, Czech. 14- Kaghazchi T., Soleimani M., "Chemical activation of agricultural wastes to produce activated carbon", 7 th Asia-Pacific International Symposium on combustion and energy utilization, December 2004, Hong Kong 15- Preparation of wood for chemical analysis", TAPPI standards, T 264 om-88, "Acid-insoluble lignin in wood and pulp ", TAPPI standards, T 222 om-88, "Ash in wood, pulp, paper and paperboard: combustion at 525 C", TAPPI standards, T211 om-93, M. Soleimani, T. Kaghazchi, Chemical activation of agricultural wastes to produce Activated carbon,5scce &3SCPE, Iran, "Standard test method for determination of Iodine Number of activated carbon", ASTM standard, Designation D , Brunauer, S, B, P.H. Emmett, F. Teller, J. Am. Chem. Soc., 73, 309, Snell- Ettre, Encyclopedia of industrial chemical analysis, vol.8, "Standard test method for total ash content of activated carbon", ASTM standard, Designation D , Roy Ranjit K, 1990, A primer on the Taguchi method, Van Nostrand Reinhold, New York.

PREPARATION OF ACTIVATED CARBON FROM PULP AND PAPER MILL WASTES TO BE TESTED FOR THE ADSORPTION OF VOCS

PREPARATION OF ACTIVATED CARBON FROM PULP AND PAPER MILL WASTES TO BE TESTED FOR THE ADSORPTION OF VOCS PREPARATION OF ACTIVATED CARBON FROM PULP AND PAPER MILL WASTES TO BE TESTED FOR THE ADSORPTION OF VOCS A. GREGÓRIO *, A. GARCIA-GARCIA #, D. BOAVIDA *, I. GULYURTLU * AND I. CABRITA * * Department of

More information

PRODUCING ACTIVED CARBONS FROM PINECONES VIA CHEMICAL ACTIVATION. Abstract. Introduction. Experimental

PRODUCING ACTIVED CARBONS FROM PINECONES VIA CHEMICAL ACTIVATION. Abstract. Introduction. Experimental PRODUCING ACTIVED CARBONS FROM PINECONES VIA CHEMICAL ACTIVATION Esin Apaydın Varol, Dept. of Chemical Engineering, Anadolu University, Eskisehir, Turkey Ersan Pütün, Dept. of Material Science and Engineering,

More information

Recovery of Gold from Gold Plating Industry Wastewater Using an Agricultural Waste: Hard Shell of Apricot Stones

Recovery of Gold from Gold Plating Industry Wastewater Using an Agricultural Waste: Hard Shell of Apricot Stones Iranian Journal of Chemical Engineering Vol. 4, No. 1 (Winter), 2007, IAChE Recovery of Gold from Gold Plating Industry Wastewater Using an Agricultural Waste: Hard Shell of Apricot Stones M. Soleimani

More information

ADSORPTION. Briefly, adsorption is the surface accumulation of material.

ADSORPTION. Briefly, adsorption is the surface accumulation of material. ADSORPTION Briefly, adsorption is the surface accumulation of material. Adsorption is a unit operation in which dissolved constituents are removed from the solvent (water) by transfer to the surfaces of

More information

OPTIMIZATION OF ACTIVATED CARBONS FABRICATED FROM AGRICULTURAL WASTES

OPTIMIZATION OF ACTIVATED CARBONS FABRICATED FROM AGRICULTURAL WASTES An Open Access, Online International Journal Available at www.cibtech.org/sp.ed/jls/216/1/jls.htm 216 Vol. 6 (S1), pp. 481-493/Sedghi et al. OPTIMIZATION OF ACTIVATED CARBONS FABRICATED FROM AGRICULTURAL

More information

Characterization of Activated Carbon Prepared from Almond Shells for Scavenging Phenolic Pollutants

Characterization of Activated Carbon Prepared from Almond Shells for Scavenging Phenolic Pollutants Chem Sci Trans., 2013, 2(3), 835-840 Chemical Science Transactions DOI:10.7598/cst2013.358 ISSN/E-ISSN: 2278-3458/2278-3318 RESEARCH ARTICLE Characterization of Activated Carbon Prepared from Almond Shells

More information

Comparison of the properties of activated carbons produced in a one-stage and a two-stage process

Comparison of the properties of activated carbons produced in a one-stage and a two-stage process Communication Comparison of the properties of activated carbons produced in a one-stage and a two-stage process Davide Bergna 1,2, Toni Varila 1,2, Henrik Romar 1 and Ulla Lassi 1,2 1 University of Oulu,

More information

Abstract. Introduction

Abstract. Introduction REMOVAL OF Pb +2 IONS FROM AQUEOUS SOLUTIONS BY ACTIVATED CARBONS PRODUCED FROM PEANUT SHELLS Ayşe Eren Pütün, Dept. of Chemical Engineering, Anadolu University, Eskisehir, Turkey Esin Apaydın Varol, Dept.

More information

Waste Palm Shell Converted to High Efficient Activated Carbon by Chemical Activation Method and Its Adsorption Capacity Tested by Water Filtration

Waste Palm Shell Converted to High Efficient Activated Carbon by Chemical Activation Method and Its Adsorption Capacity Tested by Water Filtration Available online at www.sciencedirect.com APCBEE Procedia 1 (2012 ) 293 298 ICESD 2012: 5-7 January 2012, Hong Kong Waste Palm Shell Converted to High Efficient Activated Carbon by Chemical Activation

More information

Adsorption of Ethylacetate from Ethyl Acetate Water Mixture using Activated Clay

Adsorption of Ethylacetate from Ethyl Acetate Water Mixture using Activated Clay Adsorption of Ethylacetate from Ethyl Acetate Water Mixture using Activated Clay N.V. Ohaa, P.k. Igbokwe, I.A. Obiora-Okafo, E.M. Ejikeme and R.M. Government Department of Chemical Engineering, Faculty

More information

PREPARATION OF ACTIVATED CARBON FROM THE BY-PRODUCTS OF AGRICULTURAL INDUSTRY

PREPARATION OF ACTIVATED CARBON FROM THE BY-PRODUCTS OF AGRICULTURAL INDUSTRY PREPARATION OF ACTIVATED CARBON FROM THE BY-PRODUCTS OF AGRICULTURAL INDUSTRY L. H. NOSZKO, A. BOTA, A. SIMAY and L. Gy. NAGY Department for Applied Chemistry, Technical University, H-1521 Budapest Received

More information

Production Of Activated Charcoal From Sugar Cane Leaves Using ZnCl 2 Activation For The Adsorption Of Methylene Blue Dye

Production Of Activated Charcoal From Sugar Cane Leaves Using ZnCl 2 Activation For The Adsorption Of Methylene Blue Dye Production Of Activated Charcoal From Sugar Cane Leaves Using ZnCl 2 Activation For The Adsorption Of Methylene Blue Dye Deepti Patil 1*, Sanjay Chavan 1, Shrikant Barkade 1 1 Department of Chemical Engineering,

More information

Evaluation of the Correlation between Selected Quality Indices of Activated Carbon: A Review

Evaluation of the Correlation between Selected Quality Indices of Activated Carbon: A Review Meteku: Evaluation of the Correlation between Selected Quality Indices of Activated Carbon: A Review (42-50) Evaluation of the Correlation between Selected Quality Indices of Activated Carbon: A Review

More information

Adsorption of metal ions by pecan shell-based granular activated carbons

Adsorption of metal ions by pecan shell-based granular activated carbons Bioresource Technology 89 (23) 115 119 Adsorption of metal ions by pecan shell-based granular activated carbons R.R. Bansode a, J.N. Losso a, W.E. Marshall b, R.M. Rao a, *, R.J. Portier c a Department

More information

Received: 24 th April-2012 Revised: 07 th May-2012 Accepted: 10 th May-2012 Research article

Received: 24 th April-2012 Revised: 07 th May-2012 Accepted: 10 th May-2012 Research article Received: 24 th April-2012 Revised: 07 th May-2012 Accepted: 10 th May-2012 Research article EQUILIBRIUM ISOTHERM STUDIES OF METHYLENE BLUE FROM AQUEOUS SOLUTION UNTO ACTIVATED CARBON PREPARED FORM STRYCHNOS

More information

CARBONIZATION KINETICS OF COCONUT SHELL AND PLUM STONE

CARBONIZATION KINETICS OF COCONUT SHELL AND PLUM STONE CARBONIZATION KINETICS OF COCONUT SHELL AND PLUM STONE Benoît CAGNON, Xavier PY, André GUILLOT I.M.P.-C.N.R.S., Institut de Science et Génie des Matériaux et Procédés, Rambla de la Thermodynamique, Tecnosud,

More information

Preparation and Characterization of Activated Carbon from the Prosopis juliflora Plant

Preparation and Characterization of Activated Carbon from the Prosopis juliflora Plant Asian Journal of Chemistry Vol. 20, No. 3 (2008), 1702-1706 Preparation and Characterization of Activated Carbon from the Prosopis juliflora Plant A. JAFAR AHAMED* and K. RIAZ AHAMED Department of Chemistry,

More information

Research Article. Removal of nickel(ii) using lotus stem powder as adsorbent

Research Article. Removal of nickel(ii) using lotus stem powder as adsorbent Available online wwwjocprcom Journal of Chemical and Pharmaceutical Research, 2015, 7(10):621-625 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Removal of nickel(ii) using lotus stem powder as

More information

Investigating Crude Potash as Activating Agent for the Production of Activated Carbon for Gold Adsorption Operations A Preliminary Study

Investigating Crude Potash as Activating Agent for the Production of Activated Carbon for Gold Adsorption Operations A Preliminary Study International Journal of Engineering and Technology Volume 4 No. 10, October, 2014 Investigating Crude Potash as Activating Agent for the Production of Activated Carbon for Gold Adsorption Operations A

More information

Study of some Effecting Factors on the Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon

Study of some Effecting Factors on the Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon J. Int. Environmental Application & Science, Vol. 11(2): 148-153 (2016) Study of some Effecting Factors on the Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon M. R. Mohammad

More information

Characterization Of Activated Carbon Prepared From Coconut Shell Using Various Reagents For A Low Cost Water- Filter

Characterization Of Activated Carbon Prepared From Coconut Shell Using Various Reagents For A Low Cost Water- Filter Characterization Of Activated Carbon Prepared From Coconut Shell Using Various Reagents For A Low Cost Water- Filter Sohan Ahmed 1, Vaibhav V Mada 1, Vaibhav Kamath 1, Gautham P Jeppu 2 1 UG Student. Chemical

More information

ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT

ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT Shashikant.R.Mise 1, Ravindra P. Amale 2, Rejendra K.Lamkhade 3 1 Professor, Department of Civil Engineering, PDA College

More information

Pyrolysis process for the treatment of food waste. Barbora Grycová VSB - Technical University of Ostrava Czech Republic

Pyrolysis process for the treatment of food waste. Barbora Grycová VSB - Technical University of Ostrava Czech Republic Pyrolysis process for the treatment of food waste Barbora Grycová VSB - Technical University of Ostrava Czech Republic INTRODUCTION Wastes from the food production are still mostly disposed of by landfilling,

More information

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption EVE 402 Air Pollution Generation and Control Chapter #6 Lectures Adsorption Recap: Solubility: the extent of absorption into the bulk liquid after the gas has diffused through the interface An internal

More information

ROLE OF SURFACE CHEMISTRY IN ADSORPTION OF ETHYLMETHYLAMINE ON ACTIVATED CARBONS

ROLE OF SURFACE CHEMISTRY IN ADSORPTION OF ETHYLMETHYLAMINE ON ACTIVATED CARBONS ROLE OF SURFACE CHEMISTRY IN ADSORPTION OF ETHYLMETHYLAMINE ON ACTIVATED CARBONS Yehya El-Sayed, and Teresa J. Bandosz Department of Chemistry, The City College and The Graduate School of the City University

More information

REMOVAL OF HEAVY METALS FROM DYE EFFLUENT USING ACTIVATED CARBON PRODUCED FROM COCONUT SHELL

REMOVAL OF HEAVY METALS FROM DYE EFFLUENT USING ACTIVATED CARBON PRODUCED FROM COCONUT SHELL REMOVAL OF HEAVY METALS FROM DYE EFFLUENT USING ACTIVATED CARBON PRODUCED FROM COCONUT SHELL Onyeji, L. I.; Aboje, A. A. Chemical Engineering Department, Federal University of Technology, (FUT), Minna,

More information

Adsorption Studies on Activated Carbon Derived from Steam Activation of Jute Stick Char

Adsorption Studies on Activated Carbon Derived from Steam Activation of Jute Stick Char Vol-23-1&2 1 J. Surface Sci. Technol., Vol 23, No. 1-2, pp. 73-80, 2007 2007 Indian Society for Surface Science and Technology, India. Adsorption Studies on Activated Carbon Derived from Steam Activation

More information

Preparation of Activated Carbon from Palm Shells using KOH and ZnCl2 as the Activating Agent

Preparation of Activated Carbon from Palm Shells using KOH and ZnCl2 as the Activating Agent IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Preparation of Activated Carbon from Palm Shells using KOH and ZnCl2 as the Activating Agent To cite this article: Yuliusman et

More information

Jurnal Teknologi CHARACTERIZATION OF PHOSPHORIC ACID IMPREGNATED ACTIVATED CARBON PRODUCED FROM HONEYDEW PEEL. Full Paper

Jurnal Teknologi CHARACTERIZATION OF PHOSPHORIC ACID IMPREGNATED ACTIVATED CARBON PRODUCED FROM HONEYDEW PEEL. Full Paper Jurnal Teknologi CHARACTERIZATION OF PHOSPHORIC ACID IMPREGNATED ACTIVATED CARBON PRODUCED FROM HONEYDEW PEEL Zalilah Murni Yunus a*, Norzila Othman b, R. Hamdan a, N. N. Ruslan b a Dept. Of Sci., Fac.

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.7, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.7, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.7, pp 3095-3099, 2015 ICEWEST-2015 [05 th - 06 th Feb 2015] International Conference on Energy, Water and Environmental

More information

ACTIVATION OF BIOMASS FIBRES USING ALKALI METAL SALTS

ACTIVATION OF BIOMASS FIBRES USING ALKALI METAL SALTS SUMMARY ACTIVATION OF BIOMASS FIBRES USING ALKALI METAL SALTS James Illingworth, Aidan Westwood*, Brian Rand and Paul Williams School of Process Environmental and Materials Engineering University of Leeds,

More information

ACTIVATED CARBON MANUFACTURE, STRUCTURE & PROPERTIES

ACTIVATED CARBON MANUFACTURE, STRUCTURE & PROPERTIES Address : N0,12 Al mohammad st Chamran avenue Esfahan Iran Tel/fax : +98 311-5684878 Mob: +98 913 866 0105 E-mail: mazraehgroup@yahoo.com Persian URL : http://mazraehgroup.webs.com/ ACTIVATED CARBON MANUFACTURE,

More information

Production of Mesoporous Carbon from Waste Tire

Production of Mesoporous Carbon from Waste Tire Production of Mesoporous Carbon from Waste Tire E.L.K. Mui and G. M c Kay Department of Chemical Engineering Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong Corresponding

More information

Preparation of activated carbon from paper mill sludge by KOH-activation

Preparation of activated carbon from paper mill sludge by KOH-activation Korean J. Chem. Eng., 23(6), 948-953 (2006) SHORT COMMUNICATION Preparation of activated carbon from paper mill sludge by KOH-activation Hwa-Young Kang, Sang-Sook Park* and Yu-Sup Rim** Dept. of Civil

More information

Experimental study on biochar modified characteristics

Experimental study on biochar modified characteristics 2nd Annual International Conference on Energy, Environmental & Sustainable Ecosystem Development (EESED 2016) Experimental study on biochar modified characteristics Yan-Ru Ma, Li-Ming Wang, Wen-Yang Sun,

More information

Physical Characteristics of Activated Carbon Derived from Durian Shell

Physical Characteristics of Activated Carbon Derived from Durian Shell Asian Journal of Chemistry Vol. 22, No. 1 (2010), 772-780 Physical Characteristics of Activated Carbon Derived from Durian Shell Y.J. THAM, PUZIAH ABDUL LATIF*, A.M. ABDULLAH and Y.H. TAUFIQ-YAP Department

More information

R&D on adsorption processing technology using pitch activated carbon fiber

R&D on adsorption processing technology using pitch activated carbon fiber 1999D.4.1.1 R&D on adsorption processing technology using pitch activated carbon fiber 1. Contents of empirical research With respect to waste water, exhausts and other emissions in the petroleum refining

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder Anoop Raj J R Anil K Das Aishwarya B S Sruthi Suresh Abstract- Batch sorption experiments

More information

TEXTURAL AND CHEMICAL CHARACTERISATION OF ACTIVATED CARBONS PREPARED FROM RICE HUSK (ORYZA SATIVA) USING A TWO- STAGE ACTIVATION PROCESS

TEXTURAL AND CHEMICAL CHARACTERISATION OF ACTIVATED CARBONS PREPARED FROM RICE HUSK (ORYZA SATIVA) USING A TWO- STAGE ACTIVATION PROCESS Journal of Engineering Science and Technology Vol. 3, No. 3 (2008) 234-242 School of Engineering, Taylor s University College TEXTURAL AND CHEMICAL CHARACTERISATION OF ACTIVATED CARBONS PREPARED FROM RICE

More information

Removal of Cd (II) and Cr (VI) from Electroplating Wastewater by Coconut Shell

Removal of Cd (II) and Cr (VI) from Electroplating Wastewater by Coconut Shell International Journal of Environmental Engineering and Management ISSN 2231-1319, Volume 4, Number 4 (213), pp. 273-28 Research India Publications http://www.ripublication.com/ ijeem.htm Removal of Cd

More information

Synthesis and Characterization of Bio-Based Porous Carbons by Two Step Physical Activation with CO 2

Synthesis and Characterization of Bio-Based Porous Carbons by Two Step Physical Activation with CO 2 Jurnal Teknologi Full paper Synthesis and Characterization of Bio-Based Porous Carbons by Two Step Physical Activation with CO 2 Noor Shawal Nasri a, Mohammed Jibril a,b,c*, Muhammad Abbas Ahmad Zaini

More information

Methylene Blue Colour Removal Using Physically And Chemically Activated Cashew Nut Shell Activated Carbon

Methylene Blue Colour Removal Using Physically And Chemically Activated Cashew Nut Shell Activated Carbon INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 7 64 Methylene Blue Colour Removal Using Physically And Chemically Activated Cashew Nut Shell Activated

More information

Figure 1. Pore size distribution

Figure 1. Pore size distribution Product Information '2:(;Ã237,325(Ã/ÃDQGÃ9 Polymeric Adsorbents Dow has developed a new polymeric adsorbent type for the concentration of organics from air and water. Key features of these adsorbents are:

More information

Minneapolis Community and Technical College. Separation of Components of a Mixture

Minneapolis Community and Technical College. Separation of Components of a Mixture Minneapolis Community and Technical College Chemistry Department Chem1020 Separation of Components of a Mixture Objectives: To separate a mixture into its component pure substances. To calculate the composition

More information

Improving GAC Filter Operations at SCWA. Joseph Roccaro Suffolk County Water Authority NYSAWWA Tifft Symposium Sept. 18, 2014

Improving GAC Filter Operations at SCWA. Joseph Roccaro Suffolk County Water Authority NYSAWWA Tifft Symposium Sept. 18, 2014 Improving GAC Filter Operations at SCWA Joseph Roccaro Suffolk County Water Authority NYSAWWA Tifft Symposium Sept. 18, 2014 GAC Pilot Phase 1 Results 1,1-DCA: Effect of Virgin GAC Type 1.6 1.4 1.2 1.0

More information

Tex-620-J, Determining Chloride and Sulfate Contents in Soil

Tex-620-J, Determining Chloride and Sulfate Contents in Soil Contents in Soil Contents: Section 1 Overview...2 Section 2 Sample Preparation...3 Section 3 Ion Chromatography Method...5 Section 4 Wet Chemical Method...9 Section 5 Archived Versions...15 Texas Department

More information

Research Article Preparation of Active Carbon by Additional Activation with Potassium Hydroxide and Characterization of Their Properties

Research Article Preparation of Active Carbon by Additional Activation with Potassium Hydroxide and Characterization of Their Properties Advances in Materials Science and Engineering Volume 216, Article ID 581928, 4 pages http://dx.doi.org/1.1155/216/581928 Research Article Preparation of Active Carbon by Additional Activation with Potassium

More information

Separation and recovery of mangenese- and cobalt catalysts from wastewater of PTA unit

Separation and recovery of mangenese- and cobalt catalysts from wastewater of PTA unit Trade Science Inc. December 2009 CTAIJ 4(2) 2009 [37-41] from wastewater of PTA unit S.A.A.Sajadi Institute of Water & Energy, Sharif University of Technology, Tehran P.O.Box 11155-8639, (IRAN) E-mail

More information

TAMARIND FRUIT SHELL ADSORBENT SYNTHESIS, CHARACTERIZATION AND ADSORPTION STUDIES FOR REMOVAL OF CR(VI) & NI(II) IONS FROM AQUEOUS SOLUTION

TAMARIND FRUIT SHELL ADSORBENT SYNTHESIS, CHARACTERIZATION AND ADSORPTION STUDIES FOR REMOVAL OF CR(VI) & NI(II) IONS FROM AQUEOUS SOLUTION International Journal of Engineering Sciences & Emerging Technologies, Feb. 213. ISSN: 2231 664 TAMARIND FRUIT SHELL ADSORBENT SYNTHESIS, CHARACTERIZATION AND ADSORPTION STUDIES FOR REMOVAL OF CR(VI) &

More information

Preparation and Characterization of Soybean Straw Activated Carbon by Zinc Chloride Xu Zhong, Zhao Dan

Preparation and Characterization of Soybean Straw Activated Carbon by Zinc Chloride Xu Zhong, Zhao Dan 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology (MMECEB 215) Preparation and Characterization of Soybean Straw Activated Carbon by Zinc Chloride

More information

Carbon molecular sieves production and performance assessment in carbon dioxide separation

Carbon molecular sieves production and performance assessment in carbon dioxide separation JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 9, No. 7, July 2007, p. 2296-2301 Carbon molecular sieves production and performance assessment in carbon dioxide separation M. VĂDUVA *, V. STANCIU

More information

Electronic Supporting Information (ESI) Porous Carbon Materials with Controllable Surface Area Synthsized from Metal-Organic Frameworks

Electronic Supporting Information (ESI) Porous Carbon Materials with Controllable Surface Area Synthsized from Metal-Organic Frameworks Electronic Supporting Information (ESI) Porous Carbon Materials with Controllable Surface Area Synthsized from Metal-Organic Frameworks Seunghoon Lim, Kyungwon Suh, Yelin Kim, Minyoung Yoon, Hyeran Park,

More information

Validation of Adsorption Efficiency of Activated Carbons through Surface Morphological Characterization Using Scanning Electron Microscopy Technique

Validation of Adsorption Efficiency of Activated Carbons through Surface Morphological Characterization Using Scanning Electron Microscopy Technique Carbon Science Vol. 5, No. 2 June 2004 pp. 75-80 Validation of Adsorption Efficiency of Activated Carbons through Surface Morphological Characterization Using Scanning Electron Microscopy Technique Ruchi

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

Adsorption of Cd(II) ions by synthesize chitosan from fish shells

Adsorption of Cd(II) ions by synthesize chitosan from fish shells British Journal of Science 33 Adsorption of Cd(II) ions by synthesize chitosan from fish shells Angham G. Hadi Babylon University, College of Science, Chemistry Department. Abstract One of the major applications

More information

EXPERIMENT #4 Separation of a Three-Component Mixture

EXPERIMENT #4 Separation of a Three-Component Mixture OBJECTIVES: EXPERIMENT #4 Separation of a Three-Component Mixture Define chemical and physical properties, mixture, solubility, filtration, sublimation, and percent Separate a mixture of sodium chloride

More information

Sriperumbudur , INDIA

Sriperumbudur , INDIA The International Journal Of Engineering And Science (Ijes) Volume 2 Issue 1 Pages 287-292 2013 Issn: 2319 1813 Isbn: 2319 1805 Adsorption Studies On Reactive Blue 4 By Varying The Concentration Of Mgo

More information

MOLECULAR SIEVE EFFECTS IN THE ADSORPTION OF ORGANIC VAPORS ON POLYARAMIDE-DERIVED ACTIVATED CARBON FIBERS

MOLECULAR SIEVE EFFECTS IN THE ADSORPTION OF ORGANIC VAPORS ON POLYARAMIDE-DERIVED ACTIVATED CARBON FIBERS MOLECULAR SIEVE EFFECTS IN THE ADSORPTION OF ORGANIC VAPORS ON POLYARAMIDE-DERIVED ACTIVATED CARBON FIBERS M.C. Almazán-Almazán 1, I. Fernández-Morales 1, M. Domingo-García 1, F.J. López- Garzón 1, M.

More information

Application. Air : Food :

Application. Air : Food : Application Activated Carbon, Activated Charcoal, and Related Product Applications Water : POU/POE Groundwater remediation Wastewater treatment Process water treatment Municipal water treatment Aquarium

More information

Adsorption of Humic acid on Powdered Activated Carbon (PAC)

Adsorption of Humic acid on Powdered Activated Carbon (PAC) Adsorption of Humic acid on Powdered Activated Carbon (PAC) Department of Civil and Environmental Engineering, MSU, East Lansing, MI, 48824, USA Abstract Removal capacity and rate of Humic Acid (HA) onto

More information

Removal of Vanadium (V) from water by adsorption using GAC loaded with ethylene di-amine tetra acetic acid (EDTA) and nitrilo tri-acetic acid (NTA)

Removal of Vanadium (V) from water by adsorption using GAC loaded with ethylene di-amine tetra acetic acid (EDTA) and nitrilo tri-acetic acid (NTA) Oriental Journal of Chemistry Vol. 25(3), 799-803 (2009) Removal of Vanadium (V) from water by adsorption using GAC loaded with ethylene di-amine tetra acetic acid (EDTA) and nitrilo tri-acetic acid (NTA)

More information

STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS

STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS Int. J. Chem. Sci.: 12(4), 2014, 1550-1556 ISSN 0972-768X www.sadgurupublications.com STUDIES ON THE REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION BY MIXED ADSORBENTS AMITA SHARMA * Chemistry Department,

More information

CO 2 ADSORPTION BY SURFACE MODIFIED CARBON SORBENTS

CO 2 ADSORPTION BY SURFACE MODIFIED CARBON SORBENTS CO 2 ADSORPTION BY SURFACE MODIFIED CARBON SORBENTS Mercedes Maroto-Valer*, Zhong Tang and Yinzhi Zhang The Energy Institute and The Department of Energy and Geo-Environmental Engineering, The Pennsylvania

More information

PREPARATION AND CHARACTERISTICS OF HIGHLY MICROPOROUS ACTIVATED CARBON DERIVED FROM EMPTY FRUIT BUNCH OF PALM OIL USING KOH ACTIVATION

PREPARATION AND CHARACTERISTICS OF HIGHLY MICROPOROUS ACTIVATED CARBON DERIVED FROM EMPTY FRUIT BUNCH OF PALM OIL USING KOH ACTIVATION Rasayan J. Chem., 11(1), 280-286(2018) http://dx.doi.org/10.7324/rjc.2018.1112000 Vol. 11 No. 1 280-286 January - March 2018 ISSN: 0974-1496 e-issn: 0976-0083 CODEN: RJCABP http://www.rasayanjournal.com

More information

Developing a Low Cost Activated Carbon from Agricultural Waste for the Removal of Heavy Metal from Contaminated Water

Developing a Low Cost Activated Carbon from Agricultural Waste for the Removal of Heavy Metal from Contaminated Water International Journal of Applied Chemistry. ISSN 0973-1792 Volume 13, Number 3 (2017) pp. 453-460 Research India Publications http://www.ripublication.com Developing a Low Cost Activated Carbon from Agricultural

More information

Effect of Activation Temperature and Heating Duration on Physical Characteristics of Activated Carbon Prepared from Agriculture Waste

Effect of Activation Temperature and Heating Duration on Physical Characteristics of Activated Carbon Prepared from Agriculture Waste EnvironmentAsia The international journal published by the Thai Society of Higher Education Institutes on Environment Available online at www.tshe.org/ea EnvironmentAsia 3(special issue) (2010) 143-148

More information

REMOVAL OF PHENOL FROM WASTE WATER USING MAGNETIC IRON OXIDE LOADED IN ACTIVATED CARBON

REMOVAL OF PHENOL FROM WASTE WATER USING MAGNETIC IRON OXIDE LOADED IN ACTIVATED CARBON International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 REMOVAL OF PHENOL FROM WASTE WATER USING MAGNETIC IRON OXIDE LOADED IN ACTIVATED CARBON Anusree Sasidharan 1, K. Soundhirarajan

More information

Lecture 7. Sorption-Separation Equipment

Lecture 7. Sorption-Separation Equipment Lecture 7. Sorption-Separation Equipment Adsorption - Stirred-tank, slurry operation - Cyclic fixed-bed batch operation - Thermal (temperature)-swing adsorption - Fluidizing bed for adsorption and moving

More information

KINETICS AND EQUILIBRIUM STUDY OF ADSORPTION OF PHENOL RED ON TEFF (Eragrostis teff) HUSK ACTIVATED CARBON

KINETICS AND EQUILIBRIUM STUDY OF ADSORPTION OF PHENOL RED ON TEFF (Eragrostis teff) HUSK ACTIVATED CARBON International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 11 No. 2 Nov. 2014, pp. 471-476 2014 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

Effects of Activating Chemicals on the Adsorption Capacity of Activated Carbons Prepared from Palm Kernel Shells.

Effects of Activating Chemicals on the Adsorption Capacity of Activated Carbons Prepared from Palm Kernel Shells. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-issn: 319-40,p- ISSN: 319-399.Volume 11, Issue 1 Ver. II (Jan. 017), PP 60-64 www.iosrjournals.org Effects of Activating

More information

ACTIVATED CARBON IN GOLD RECOVERY

ACTIVATED CARBON IN GOLD RECOVERY ACTIVATED CARBON IN GOLD RECOVERY 1 TITLE What is Activated Carbon? Manufacture of Activated Carbon. Characteristics of Carbon. Adsorption. Mechanism of Gold Adsorption. Factors influencing Gold Adsorption

More information

Preparation and Adsorption Studies of High Specific Surface Area Activated Carbons Obtained from the Chemical Activation of Jute Stick

Preparation and Adsorption Studies of High Specific Surface Area Activated Carbons Obtained from the Chemical Activation of Jute Stick 761 Preparation and Adsorption Studies of High Specific Surface Area Activated Carbons Obtained from the Chemical Activation of Jute Stick Mohammad Asadullah *, Muhammad A. Rahman, Mohammad A. Motin and

More information

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium Nikazar, M.*, Davarpanah, L., Vahabzadeh, F. * Professor of Department of Chemical Engineering, Amirkabir University

More information

Full GAED Characterization with Aqueous-phase comparisons for Sample EE-541 February 22, 2015

Full GAED Characterization with Aqueous-phase comparisons for Sample EE-541 February 22, 2015 1 Full GAED Characterization with Aqueous- comparisons for Sample February 22, 2015 Executive Summary One sample of granular activated carbon (GAC) was fully characterized for aqueous comparison using

More information

Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science,

Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science, Supporting information A rht type Metal-Organic Framework based on Small Cubicuboctahedron Supermolecular Building Blocks and Adsorption Properties Liangjun Li a,b, Sifu Tang a, Xiaoxia Lv a,b, Min Jiang

More information

Effect of Activation of Date Palm Kernel Powder on the Remediation Process of Oil Polluted Water

Effect of Activation of Date Palm Kernel Powder on the Remediation Process of Oil Polluted Water Avestia Publishing International Journal of Environmental Pollution and Remediation Volume 1, Issue 1, Year 2012 ISSN: 1929-2732 Article ID: 006, DOI: 10.11159/XXX 38 Effect of Activation of Date Palm

More information

OIL-PALM SHELL ACTIVATED CARBON PRODUCTION USING CO 2 EMISSION FROM CaCO 3

OIL-PALM SHELL ACTIVATED CARBON PRODUCTION USING CO 2 EMISSION FROM CaCO 3 Journal of Sustainability Science and Management Volume 8 Number 2, December 2013: 150-160 ISSN: 1823-8556 Penerbit UMT OIL-PALM SHELL ACTIVATED CARBON PRODUCTION USING EMISSION FROM CaCO 3 CALCINATION

More information

Current World Environment Vol. 4(2), (2009)

Current World Environment Vol. 4(2), (2009) Current World Environment Vol. 4(2), 413-417 (2009) Removal of divalent manganese from water by adsorption using gac loaded with Ethylene Di-amine Tetra Acetic acid (EDTA) and Nitrilo Tri-acetic Acid (NTA)

More information

Chapter No. 2 EXPERIMENTAL TECHNIQUES IN CHEMISTRY SHORT QUESTIONS WITH ANSWERS Q.1 Define analytical chemistry? The branch of chemistry which deals with the qualitative and quantitative analyses of sample

More information

Full GAED Characterization with Aqueous-phase comparisons for Sample EE-541 February 22, 2015

Full GAED Characterization with Aqueous-phase comparisons for Sample EE-541 February 22, 2015 1 Full GAED Characterization with Aqueous- comparisons for Sample February 22, 2015 Executive Summary One sample of granular activated carbon (GAC) was fully characterized for aqueous comparison using

More information

Lecture 25: Manufacture of Maleic Anhydride and DDT

Lecture 25: Manufacture of Maleic Anhydride and DDT Lecture 25: Manufacture of Maleic Anhydride and DDT 25.1 Introduction - In this last lecture for the petrochemicals module, we demonstrate the process technology for Maleic anhydride and DDT. - Maleic

More information

Activated Carbon from Sugar Waste Bagasse is used for Removal of Colour from Dye Solution

Activated Carbon from Sugar Waste Bagasse is used for Removal of Colour from Dye Solution International Journal of Research in Advent Technology, Vol.2, No.11, November214 Activated Carbon from Sugar Waste Bagasse is used for Removal of Colour from Dye Solution Amish B. Patel 1 *, Mehul H.

More information

Carbonaceous Materials Obtained from Sewage Sludge for NO 2 Removal under Wet Conditions at Room Temperature

Carbonaceous Materials Obtained from Sewage Sludge for NO 2 Removal under Wet Conditions at Room Temperature Vol. 118 (2010) ACTA PHYSICA POLONICA A No. 3 The 8th Torunian Carbon Symposium, Toruń, Poland, September 2 5, 2009 Carbonaceous Materials Obtained from Sewage Sludge for NO 2 Removal under Wet Conditions

More information

PREPARATION AND CHARACTERIZATION OF ACTIVATED CARBON FROM EUPHORBIA TIRUCALLI L WOOD FOR THE REMOVAL OF TEXTILE DYES FROM WASTE WATER

PREPARATION AND CHARACTERIZATION OF ACTIVATED CARBON FROM EUPHORBIA TIRUCALLI L WOOD FOR THE REMOVAL OF TEXTILE DYES FROM WASTE WATER Int. J. Chem. ci.: 11(2), 201, 957-967 I 0972-768X www.sadgurupublications.com PREPARATI AD CHARACTERIZATI F ACTIVATED CARB FRM EUPHRBIA TIRUCALLI L WD FR THE REMVAL F TEXTILE DYE FRM WATE WATER A. AGALYA

More information

Research in Chemistry and Environment

Research in Chemistry and Environment International Journal of Research in Chemistry and Environment Available online at: www.ijrce.org ISSN 2248-9649 Research Paper Adsorption of Eosin Dyes Onto Activated Carbon Prepared from Wood of Adina

More information

1997 P a g e. Keywords: Adsorption, banana peel, Colour removal, orange peel

1997 P a g e. Keywords: Adsorption, banana peel, Colour removal, orange peel Removal of Colour (dyes) from textile effluent by adsorption using Orange and Banana peel R.S.Mane*, V.N.Bhusari** *(M.Tech Environmental Engineering, G.H.Raisoni College of Engineering, NAGPUR, (India)

More information

Adsorption Studies of Organic Pollutants onto Activated Carbon

Adsorption Studies of Organic Pollutants onto Activated Carbon Adsorption Studies of Organic Pollutants onto Activated Carbon K.BALASUBRAMANI 1, N.SIVARAJASEKAR 2 1 PG Scholar, Department of Chemical Engineering, Kongu Engineering College, Perundurai, Erode 63852,

More information

Investigation of granular activated carbon from peach stones for gold adsorption in acidic thiourea

Investigation of granular activated carbon from peach stones for gold adsorption in acidic thiourea MASIYA, T.T. and GUDYANGA, F.P. Investigation of granular activated carbon from peach stones for gold adsorption in acidic thiourea. Hydrometallurgy Conference 2009, The Southern African Institute of Mining

More information

170 S.A.A. Sajadi, A.A. Alamolhoda and S.J. Hashemian Figure 1. XRD diagram of lead hydroxide. accomplished (EM-Hitachi, H-600). The sample was prepar

170 S.A.A. Sajadi, A.A. Alamolhoda and S.J. Hashemian Figure 1. XRD diagram of lead hydroxide. accomplished (EM-Hitachi, H-600). The sample was prepar Scientia Iranica, Vol. 14, No. 2, pp 169{173 c Sharif University of Technology, April 2007 Research Note An Investigation into the Structure and Thermal Properties of Lead Hydroxide S.A.A. Sajadi, A.A.

More information

Babak Karimi* and Majid Vafaeezadeh

Babak Karimi* and Majid Vafaeezadeh Electronic upplementary Material (EI) for RC Advances This journal is The Royal ociety of Chemistry 2013 BA-15 functionalized sulfonic acid confined hydrophobic and acidic ionic liquid: a highly efficient

More information

ONE-STEP STEAM AND CALCIUM ACTIVATION OF SAWDUST FOR APPLE JUICE PURIFICATION

ONE-STEP STEAM AND CALCIUM ACTIVATION OF SAWDUST FOR APPLE JUICE PURIFICATION ONE-STEP STEAM AND CALCIUM ACTIVATION OF SAWDUST FOR APPLE JUICE PURIFICATION By TIMOTHY S. ENGLISH II A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE

More information

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Strategic use of CuAlO 2 as a sustained release catalyst for

More information

The Study of Natural Nano-Composite Filter for Industrial Wastewater Treatment

The Study of Natural Nano-Composite Filter for Industrial Wastewater Treatment The Study of Natural Nano-Composite Filter for Industrial Wastewater Treatment Chin-Ya Kuo, Hsiao-Han Liu * Department of Biological Science & Technology, I-Shou University, Kaohsiung 824, Taiwan, ROC

More information

Comparative Analysis of Adsorption of Methylene Blue Dye Using Carbon from Palmkernel Shell Activated by Different Activating Agents

Comparative Analysis of Adsorption of Methylene Blue Dye Using Carbon from Palmkernel Shell Activated by Different Activating Agents Comparative Analysis of Adsorption of Methylene Blue Dye Using Carbon from Palmkernel Shell Activated by Different Activating Agents Sann S. E., Adeeyo O. A., Efeovbokhan V., Ojewumi M., Ayoola A., Ogunbiyi

More information

Adsorption of phenol from diluted aqueous solutions by activated carbons obtained from bagasse, oil palm shell and pericarp of rubber fruit

Adsorption of phenol from diluted aqueous solutions by activated carbons obtained from bagasse, oil palm shell and pericarp of rubber fruit Songklanakarin J. Sci. Technol. 30 (2), 185-189, Mar. - Apr. 2008 http://www.sjst.psu.ac.th Original Article Adsorption of phenol from diluted aqueous solutions by activated carbons obtained from bagasse,

More information

ASTM Designation: D Standard Test Method for Determination of Iodine Number of Activated Carbon

ASTM Designation: D Standard Test Method for Determination of Iodine Number of Activated Carbon ASTM Designation: D4607-94 Standard Test Method for Determination of Iodine Number of Activated Carbon 1. Scope 1.1 This test method covers the determination of the relative activation level of unused

More information

Electronic Supplementary Information. Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture

Electronic Supplementary Information. Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture Electronic Supplementary Information Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture Hasmukh A. Patel and Cafer T. Yavuz* Oxide and Organic Nanomaterials

More information

PRODUCTION OF ACTIVATED CARBON FROM SOLID WASTE RICE PEEL (HUSK) USING CHEMICAL ACTIVATION

PRODUCTION OF ACTIVATED CARBON FROM SOLID WASTE RICE PEEL (HUSK) USING CHEMICAL ACTIVATION Jr. of Industrial Pollution Control 33(2)(2017) pp 1132-1139 www.icontrolpollution.com Research Article PRODUCTION OF ACTIVATED CARBON FROM SOLID WASTE RICE PEEL (HUSK) USING CHEMICAL ACTIVATION D. SHARATH

More information

BET Surface Area Analysis of Nanoparticles *

BET Surface Area Analysis of Nanoparticles * OpenStax-CNX module: m38278 1 BET Surface Area Analysis of Nanoparticles * Nina Hwang Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information