Physical Polymer Science Lecture notes by Prof. E. M. Woo adapting from: Textbook of Physical Polymer Science (Ed: L. H.

Size: px
Start display at page:

Download "Physical Polymer Science Lecture notes by Prof. E. M. Woo adapting from: Textbook of Physical Polymer Science (Ed: L. H."

Transcription

1 Caution: Contents of the lecture notes are copyrighted ( 有版權 Textbook of Physical Polymer Science). (Do not use outside the class room purposes without permission from the publisher.) Physical Polymer Science Lecture notes by Prof. E. M. Woo adapting from: Textbook of Physical Polymer Science (Ed: L. H. Sperling, 3rd Ed) Chap 3: Molecular Weights Of Polymers CONTENTS: Effects of molecular weight on properties - MW distribution - Determination/measurements of MW - MW and intrinsic viscosity - GPC 1

2 3.7 MOLECULAR WEIGHTS OF POLYMERS Molecular Weight of Commercial Polymers The molecular weight of polymers used in commerce varies from about 30,000 to over 1,000,000 g/mol. Sometimes conflicting requirements include the use of high enough molecular weights to obtain good physical properties, and low enough molecular weights to permit reasonable processing conditions, such as melt viscosity. Poly(vinyl chloride) - Commercial poly(vinyl chloride) vinyl polymers range from 60,000 to about 90,000 g/mol. The restrictions above hold in this case. Poly(methyl methacrylate) - Those polymers that are used in such products as Plexiglas have high molecular weights with broad distributions. PMMA molding from low-mw oligomers A viscous syrup containing low-molecular-weight polymer and monomer is poured into a mold and allowed to polymerize. Late in the polymerization, the phenomenon known as auto-acceleration takes place, where the molecular weight increases dramatically owing to a suppression of the termination step. This high molecular weight (PMMA) produced at the end may be over 1 * 10 6 g/mol, contributing strength and toughness to the final sheet. 2

3 Molecular Weight of Polyethylene Ultra-high-molecular-weight polyethylene (UHMWPE) is a subset of the polyethylene. Also known as high-modulus polyethylene, (HMPE), or highperformance polyethylene (HPPE). It has extremely long chains, with a molecular mass usually between 3.5 and 7.5 million [1] g/mol (or amu, Da). The longer chain serves to transfer load more effectively to the polymer backbone by strengthening intermolecular interactions. This results in a very tough material, with the highest impact strength of any thermoplastic presently made. [2] Note: Molecular weight unit sometime is expressed as; amu or Dalton (Da). Amu: atomic mass unit (symbol: u or amu) or dalton (symbol: Da) is the standard unit that is used for indicating mass on an atomic or molecular scale (atomic mass) Da (Dalton) is numerically equivalent to 1 g/mol. UHMWPE is produce by synthesis process based on metallocene catalysts, resulting in UHMWPE molecules typically having 100,000 to 250,000 monomer units per 3 molecule each, compared to HDPE's 700 to 1,800 monomers.

4 Mw of cellulose Cellulose: This natural polymer occurs with extremely high molecular weights, sometimes in the several millions range, and with molecular weight distributions of M w /M n in the range of 10 to 50 [quite wide distribution]. For commercial applications such as rayon (which is re-processed cellulose), the polymer is deliberately degraded down to the 50,000 to 80,000 g/mol range to increase processibility. The better products often utilize the higher end of this range. 4

5 Many properties of cellulose depend on its chain length or degree of polymerization, the number of glucose units that make up one polymer molecule. Cellulose from wood pulp has typical chain lengths between 300 and 1700 units; cotton and other plant fibers as well as bacterial cellulose have chain lengths ranging from 800 to 10,000 units [MW up to millions]. [10] Molecules with very small chain length resulting from the breakdown of cellulose are known as cellodextrins; in contrast to long-chain cellulose, cellodextrins are typically soluble in water and organic solvents. 5

6 3.4 MOLECULAR WEIGHT AVERAGES There are four molecular weight averages in common use; the number-average molecular weight, Mn; the weight-average molecular weight, Mw; the z-average molecular weight, Mz; and the viscosity-average molecular weight, Mv. M v =[Σ i N i M i 1+a /Σ i NiMi] 1/a a=0.5=0.8 for most polymers These are defined below in terms of the numbers of molecules Ni having molecular weights Mi, or in terms of wi, the weight of species with molecular weights Mi. See textbook p

7 3.7.2 Thermodynamics and Kinetics of Polymerization effects on Mw and PDI of polymers The synthesis of polymers, with attendant aspects of the thermodynamics and kinetics of polymerization that occupy entire textbooks (62,63), is to a very significant extent beyond the coverage of this text. Indeed, organic polymer science is often taught as a mate course to physical polymer science. However, since the thermodynamics and kinetics of polymerization affect both the molecular weights and the polydispersity index obtained, the most salient features of these areas will be explored. Polymer synthesis itself was briefly discussed in Section

8 Thermodynamics of Chain Polymerization Under standard conditions, the Gibbs free energy, G 0, is related to the equilibrium constant of the polymerization, K, by (3.64) Consider a chain polymerization of monomer M: (3.65) where the rate constant of the forward reaction, polymerization, is k p and the rate constant of the reverse reaction, depolymerization, is given by k dp. Then (3.66) 8

9 Cont d When the forward and reverse reactions have equal rates, namely when polymerization-depolymerization propagation rates are equal, the concept of ceiling and floor temperatures arises. Most polymerizations have ceiling temperatures, temperatures above which the monomer cannot be polymerized, but the polymer will spontaneously depolymerize back to the monomer. Commercially this fact leads to an important method of polymer recycling whereby scrapped polymer is heated under anaerobic (no air) conditions to allow distilling off the resultant monomers. 9

10 Kinetics of Chain Polymerization p. 92 The kinetic chain length, v, of a radical chain polymerization is the average number of monomer molecules consumed for each radical initiating a chain. Thus, at steady state, where Ri, Rp, and Rt represent the rates of initiation, propagation, and termination, respectively. - The quantity f is the initiator efficiency factor, the fraction of initiator molecules that actually initiate a polymerization on decomposition. Frequently f is about The number-average degree of polymerization, DPn in reaction (3.72), is equal to 2v for termination by combination. - Termination by combination yields a polydispersity index of PDI=1.5, 10 while termination by chain transfer yields a PDI of 2.0, ideally.

11 11

12 Thermodynamics of Step Polymerization (3.74) (3.75) For step-growth polymerizations, the fractional conversion p is given by [COO] = p[m] 0, where [M] 0 is the concentration of ester groups. Then DP n is given by: (3.76) and the corresponding weight-average degree of polymerization is given by This leads directly to the polydispersity index, DP w /DP n, PDI = 1 + p (3.78) (3.77) PDI thus depends on the value of p (fractional conversion). 12

13 3.7.3 Molecular Weight Distributions -If the termination reaction in chain polymerization is by disproportionation, then the polydispersity index, Mw/Mn, is Termination by combination yields a polydispersity index of Stepwise polymerizations, such as polyester formation, yield a value of PDI=2 (because p=1.0). -Anionic polymerizations yield surprisingly narrow distribution, with values sometimes less than Of course, polymerization need not be ideal in its kinetics. Branching may occur, which broadens the molecular weight distribution. There may even be two or more peaks in the molecular weight distribution. A powerful method for directly observing the shape of the distribution curve is gel permeation chromatography (see Section 3.9). In general, the polydispersity index can be determined from an analysis of the kinetics of the reaction; in practice, various phenomena cause 13 the products to be much broader in molecular weight distributions (67).

14 Note: Proteins are almost the only source of truly monodisperse polymers (PDI=1.0), with perfect stereoregularity. Nature makes all these molecules exactly alike [All molecules have same Mn no MW distribution]. NOTE: -By contrast, other natural polymers like cellulose or amylose have very broad distributions, as mentioned previously. 14

15 3.8 INTRINSIC VISCOSITY Intrinsic viscosity measurements are carried out in dilute solution and result in the viscosity-average molecular weight; see Figure 3.4 and equation (3.34). Consider such a dilute solution flowing down a capillary tube (Figure 3.12) Definition of Terms Several terms need defining. The solvent viscosity is η 0, usually expressed in poises, Stokes, or, more recently, Pascal. seconds, Pa s. [Note: 1 P = 1 g s -1 cm -1 Fo r UI, Pa s = kg m -1 s -1,therefore: 1 Pa s = 10 P = 1000 cp. The viscosity of the polymer solution is η. The relative viscosity is the ratio of the two, 15

16 The specific viscosity is the relative viscosity minus one: Usually η sp is a quantity between 0.2 and 0.6 for the best results. The specific viscosity, divided by the concentration and extrapolated to zero concentration, yields the intrinsic viscosity: For dilute solutions, where the relative viscosity is just over unity, the following algebraic expansion is useful: Then, dividing ln η rel by c and extrapolating to zero concentration also yields the intrinsic viscosity: Note that the natural logarithm of η rel is divided by c in equation (3.88), not itself. The term (ln η rel )/c is called the inherent viscosity. η rel 16

17 3.8.2 The Equivalent Sphere Model In assuming a dilute dispersion of uniform, rigid, noninteracting spheres, Einstein (69,70) derived an equation expressing the increase in viscosity of the dispersion,.., and derivation by Flory, etc. [Procedures skipped. See text book] 17

18 3.8.3 The Mark Houwink Sakurada Relationship In the late 1930s and 1940s, Mark, Houwink, and Sakurada arrived at an empirical relationship between the molecular weight and the intrinsic viscosity (71): where K and a are constants for a particular polymer solvent pair at a particular temperature. Equation (3.97) is known today as the Mark Houwink Sakurada equation. This equation is in wide use today, being one of the most important relationships in polymer science and probably the single most important equation in the field. More generally, it should be pointed out that a varies from 0 to 2.0, as shown in Table

19 The quantity K is often given in terms of the universal constant Φ, where r 02 represents the mean square end-to-end distance of the unperturbed coil. If the number-average molecular weights are used, then Φ equals 2.5x10 21 dl/mol cm 3. A theoretical value of 3.6x10 21 dl/mol cm 3 can be calculated from a study of the chain frictional coefficients (17). For many theoretical purposes, it is convenient to express the Mark Houwink Sakurada equation in the form: Same as the theoretical derivation according to Flory (17), Eq

20 3.8.4 Intrinsic Viscosity Experiments - p. 101 In most experiments, dilute solutions of about 1% polymer are made up. The quantity η rel should be about 1.6 for the highest concentration used. The most frequently used instrument is the Ubbelhode viscometer, which equalizes the pressure above and below the capillary. Several concentrations are run and plotted according to Figure Two practical points must be noted: Figure 3.15 Figure 3.14 Double logarithnmic plots of [h] versus MW for anionically synthesized polystyrenes, which were then fractionated leading to values of MW /Mn of less than Filled circles in benzene, half-filled circles in toluene, 20 and open circles in dichloroethylene, all at 30 C (75). The arrows indicate the axes to be used. Units for [h] in 100 ml/g.

21 GEL PERMEATION CHROMATOGRAPHY (GPC) for determination of Mw s of polymers 21

22 3.9 GEL PERMEATION CHROMATOGRAPHY (GPC) - p. 103 Note: MW measurements, etc.. [] For details, see Instrumental Analysis Noting that GPC is a relative molecular weight method, such instrumentation needs to be calibrated. Narrow molecular weight distribution, anionically synthesized polystyrenes are used most often for the purpose. Other polymers used for calibration include poly(methyl methacrylate), polyisoprene, polybutadiene, poly(ethylene oxide), and the sodium salt of poly(methacrylic acid). Molecular weight ranges available start at low oligomers of only a few hundred g/mol, up to 20,000,000 g/mol. In all cases, use of narrow molecular weight distribution standards is preferred. Table

23 3.9 Gel permeation chromatography (GPC) p.103 Or Size Exclusion Chromatography 資料來源 : search/getfile?urn=etd &filename=etd pdf

24 Eluent [from Wiki] The eluent (mobile phase) should be a good solvent for the polymer, should permit high detector response from the polymer and should wet the packing surface. The most common eluents in for polymers that dissolve at room temperature GPC are tetrahydrofuran (THF), o-dichlorobenzene and trichlorobenzene at C for crystalline polyalkynes and m-cresol and o-chlorophenol at 90 C for crystalline condensation polymers such as polyamides and polyesters. Gel - [packing materials] Gels are used as stationary phase for GPC. The pore size of a gel must be carefully controlled in order to be able to apply the gel to a given separation. Other desirable properties of the gel forming agent are the absence of ionizing groups and, in a given solvent, low affinity for the substances to be separated. Commercial gels like PLgel, Sephadex, Bio-Gel (cross-linked polyacrylamide), agarose gel and Styragel are often used based on different separation requirements. [5] Note: Styragel (commercial name) = 聚苯乙烯型交联共聚物 24

25 3.9 Gel permeation chromatography (GPC) The type of column packing depends on whether the polymer is water-soluble or organic soluble. For water soluble polymers, column packings consist of a range of materials, including silicas, hydroxyethyl methacrylate copolymers, chitosan, and highly cross-linked poly(vinyl alcohol). Organic soluble polymer-based columns most often contain porous, densely cross-linked polystyrene [Styragel], but porous silicas and highly cross-linked poly(vinyl alcohol) are also used. The size of the pores determines the size of the molecule that can diffuse in and out by Brownian motion. The larger molecules are restricted to entering only the larger pores. Since the motion in and out of the pores is random, the residence time in the pores of the short chains is longer. Hence the larger, high molecular weight polymer chains elute first from the column. 25

26 Packing Material -Silica based SEC packing materials generally exhibit higher resolving power than polymer based materials. -However, polymer based materials show greater stability for use with high ph eluents. Polymeric packing materials are generally available in larger particle sizes, which may be more practical for large scale preparative separations. Glycerol Bonded Silica Silica Poly(hydroxymethacrylate) Divinylbenzene Styrene Poly(styrene-co-Divinylbenzene) Poly(vinyl alcohol) - crosslinked Note: Styrene and divinylbenzene react to form the copolymer styrenedivinylbenzene, S-DVB or Sty-DVB. [crosslinked into gels ] The resulting cross-linked polymer is mainly used for the production of ion exchange resins or column packings. [3] 26

27 detectors There are several types of detectors; see Figure 3.17 (79). These are classified as either (I) concentration-sensitive detectors, or (II) molar mass (molecular weight) sensitive detectors. The refractive index (RI) detector is most popular concentration-sensitive detector, measuring the change in refractive index as the concentration of polymer in the solution changes. When the polymer chains arrive at the detector, then the refractive index of the solution changes, providing a measure of the polymer concentration. While most polymers have a different refractive index than the solvent (usually higher), if the refractive indices of both the polymer and solvent are substantially the same, the method cannot be used. Another detector group of methods involves the input of ultraviolet light (UV), with the output being fluorescence or absorption by the polymer. Polymers, like polystyrene, absorb strongly in UV light very powerful detector. Molecular-weight sensitive detectors: viscometry or light scattering less often 27 used.

28 The most sensitive detector is the differential UV photometer and the most common detector is the differential refractometer (DRI). When characterizing copolymer, it is necessary to have two detectors in series. [4] For accurate determinations of copolymer composition at least two of those detectors should be concentration detectors. [6] The determination of most copolymer compositions is done using UV and RI detectors, although other combinations can be used. Standard for GPC: Polystyrene standards with PDI of less than 1.2 are typically used to calibrate the GPC. [4] Unfortunately, polystyrene tends to be a very linear polymer and therefore as a standard it is only useful to compare it to other polymers that are known to be linear and of relatively the same size. 28

29 3.9.5 Calibration Noting GPC is a relative molecular weight method, such instrumentation needs to be calibrated. Narrow molecular weight distribution, anionically synthesized polystyrenes are used most often for the purpose. Other polymers used for calibration include poly(methyl methacrylate), polyisoprene, polybutadiene, poly(ethylene oxide), and the sodium salt of poly(methacrylic acid). Molecular weight ranges available start at low oligomers of only a few hundred g/mol, up to 20,000,000 g/mol. In all cases, use of narrow molecular weight distribution standards is preferred. GPC Separation of Anionically Synthesized Polystyrene; M n =3,000 g/mol, PDI=1.32 GPC Separation of Free-Radical Synthesized Polystyrene; M n =24,000 g/mol, PDI=

30 By determining the retention volumes (or times) of monodisperse polymer standards (e.g. solutions of monodispersed polystyrene in THF), a calibration curve can be obtained by plotting the logarithm of the molecular weight versus the retention time or volume. Once the calibration curve is obtained, the gel permeation chromatogram of any other polymer can be obtained in the same solvent and the molecular weights (usually M n and M w ) and the complete molecular weight distribution for the polymer can be determined. A typical calibration curve is shown to the right and the molecular weight from an unknown sample can be obtained from the calibration curve. [From Wikipedia] End of Chap. 3 - Molecular Weights of Polymers. 30

GPC - Gel Permeation Chromatography. aka Size Exclusion Chromatography- SEC

GPC - Gel Permeation Chromatography. aka Size Exclusion Chromatography- SEC GPC - Gel Permeation Chromatography aka Size Exclusion Chromatography- SEC Wendy Gavin Biomolecular Characterization Laboratory Version 1 May 2016 1 Table of Contents 1. GPC Introduction. Page 3 2. How

More information

COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download)

COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download) COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download) Dr. Debasis Samanta Senior Scientist & AcSIR Assistant Professor Polymer Science & Technology Department., CSIR-CLRI,

More information

Polymer analysis by GPC-SEC. Technical Note. Introduction

Polymer analysis by GPC-SEC. Technical Note. Introduction Polymer analysis by GPC-SEC Technical Note Introduction Gel Permeation Chromatography (GPC), also referred to as Size Exclusion Chromatography (SEC) is a mode of liquid chromatography in which the components

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Vacuum Degasser Pump and Pulse Controller Autosampler Solvent and Filter In-Line Filter Column Oven and Columns Injection Loop Sample Source Detector 1 Detector 2 Detector 3 Waste

More information

Lecture 4 : Gel Permeation or Size Exclusion Chromatography

Lecture 4 : Gel Permeation or Size Exclusion Chromatography Lecture 4 : Gel Permeation or Size Exclusion Chromatography Polymer Fractionation Sedimentation Centrifugation Evaporation of the solvent Gel permeation chromatography Gel Permeation Chromatography (GPC)

More information

Gel Permeation Chromatography Basics and Beyond eseminar March 13, Jean Lane Technical and Applications Support LSCA, Columns and Supplies

Gel Permeation Chromatography Basics and Beyond eseminar March 13, Jean Lane Technical and Applications Support LSCA, Columns and Supplies Gel Permeation Chromatography Basics and Beyond eseminar March 13, 2013 Jean Lane Technical and Applications Support LSCA, Columns and Supplies 1 Content Overview of GPC/SEC What is it? Why do we use it?

More information

Gel Permeation Chromatography

Gel Permeation Chromatography Gel Permeation Chromatography Polymers and Coatings Laboratory California Polytechnic State University San Luis Obispo, CA Gel permeation chromatography (GPC) has become the most widely used technique

More information

Clearing the Confusion: GPC, SEC, GFC What, When, Why, and How?

Clearing the Confusion: GPC, SEC, GFC What, When, Why, and How? Clearing the Confusion: GPC, SEC, GFC What, When, Why, and How? Jean Lane Applications Engineer LC Columns & Consumables Technical Support January 19, 2017 What we will cover What - Clarification of the

More information

Polymers Reactions and Polymers Production (3 rd cycle)

Polymers Reactions and Polymers Production (3 rd cycle) EQ, Q, DEQuim, DQuim nd semester 017/018, IST-UL Science and Technology of Polymers ( nd cycle) Polymers Reactions and Polymers Production (3 rd cycle) Lecture 5 Viscosity easurements of the viscosity

More information

GPC / SEC Theory and Understanding

GPC / SEC Theory and Understanding Dr. Jason S. Davies, Smithers Rapra, UK Gel permeation chromatography (GPC), also known as size exclusion chromatography (SEC) is a branch of liquid chromatography specifically concerned with characterisation

More information

An Introductions to Advanced GPC Solutions

An Introductions to Advanced GPC Solutions An Introductions to Advanced GPC Solutions Alan Brookes Sales Manager GPC Instruments EMEAI 9 th April 2014 Agilent GPC/SEC Solutions 1 Introduction to Polymers Polymers are long chain molecules produced

More information

Sem /2007. Fisika Polimer Ariadne L. Juwono

Sem /2007. Fisika Polimer Ariadne L. Juwono Chapter 8. Measurement of molecular weight and size 8.. End-group analysis 8.. Colligative property measurement 8.3. Osmometry 8.4. Gel-permeation chromatography 8.5. Ultracentrifugation 8.6. Light-scattering

More information

Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE

Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE Introduction Gel permeation chromatography (GPC) and size exclusion chromatography

More information

Optimizing GPC Separations

Optimizing GPC Separations Optimizing GPC Separations Criteria for Solvent Selection True sample solubility (Polarity and Time dependant) Compatibility with columns Avoid non-size exclusion effects (eg adsorption by reverse phase

More information

Maximizing Performance Through GPC Column Selection

Maximizing Performance Through GPC Column Selection Maximizing Performance Through GPC Column Selection What Are Polymers? Polymers are long chain molecules produced by linking small repeat units (monomers) together There are many ways to link different

More information

GPC/SEC An essential tool for polymer analysis

GPC/SEC An essential tool for polymer analysis GPC/SEC An essential tool for polymer analysis Ben MacCreath, PhD Product Manager GPC/SEC Instrumentation 26 th March 2013 Introduction to Polymers Where are they found? Polyolefins Engineering Polymers

More information

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC Advanced GPC GPC On Tour, Barcelona, 28 th February 2012 The use of Advanced Detectors in GPC 1 What does Conventional GPC give? Molecular weight averages Relative to the standards used Mw Weight Average

More information

Chap. 2. Molecular Weight and Polymer Solutions

Chap. 2. Molecular Weight and Polymer Solutions Chap.. Molecular Weight and Polymer Solutions. Number Average and Weight Average Molecular Weight A) Importance of MW and MW Distribution M.W. physical properties As M.W., toughness, viscosity ) Optimum

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry N N N Cu + BR - N Lecture 7 Decomposition of Thermal Initiator k d I 2 R Efficiency factor ( f ): CN N N CN di-tert-butylperoxide AIBN di-tert-butylperoxalate f = 0.65 f = 0.75

More information

Final Exam Introduction to Polymers (each part, a,b,c,, is worth 2.2 points)

Final Exam Introduction to Polymers (each part, a,b,c,, is worth 2.2 points) 168 Final Exam Introduction to Polymers (each part, a,b,c,, is worth 2.2 points) 1) Polymers are different than low-molecular weight oligomers. For example an oligomeric polyethylene is wax, oligomeric

More information

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i Gel Permeation Chromatography (GPC) : Size Exclusion Chromatography GPC : 1. Chromatogram (V R vs H) H i Detector response Baseline N i M i 130 135 140 145 150 155 160 165 Elution volume (V R ) (counts)

More information

PAPER No. 6: PHYSICAL CHEMISTRY-II (Statistical

PAPER No. 6: PHYSICAL CHEMISTRY-II (Statistical Subject Chemistry Paper No and Title Module No and Title Module Tag 6, PHYSICAL -II (Statistical 32, Concept of Number average and Mass average molecular weights CHE_P6_M32 TABLE OF CONTENTS 1. Learning

More information

Gel Permeation Chromatography (GPC) or Size Exclusion Chromatography (SEC)

Gel Permeation Chromatography (GPC) or Size Exclusion Chromatography (SEC) Gel Permeation Chromatography (GPC) or Size Exclusion Chromatography (SEC) Size Exclusion Chromatography (SEC) is a non-interaction based separation mechanism in which compounds are retained for different

More information

How Molecular Weight and Branching of Polymers Influences Laser Sintering Techniques

How Molecular Weight and Branching of Polymers Influences Laser Sintering Techniques How Molecular Weight and Branching of Polymers Influences Laser Sintering Techniques Dr. Bernd Tartsch Malvern Instruments GmbH Rigipsstr. 19, D-71083 Herrenberg Tel: +49-703-97 770, Fax: +49-703-97 854

More information

Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments

Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments Molecular weight The most fundamental molecular property that controls

More information

Polymer Analysis by Gel Permeation Chromatography

Polymer Analysis by Gel Permeation Chromatography Polymer Analysis by Gel Permeation Chromatography A Historical Perspective The development of polymer has had a profound effect on the modern world. These versatile materials are used in an extensive array

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS CHAPTER 25: Opener Aa CHAPTER 25: Opener Ab CHAPTER 25: Opener B 25-1 Ion-Exchange

More information

Comparison of Polymer Separation by Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation

Comparison of Polymer Separation by Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation Comparison of Polymer Separation by Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation Stepan Podzimek, 1 Christoph Johann 2 1 SYNPO / University of Pardubice, Czech Republic, stepan.podzimek@synpo.cz

More information

Investigating the Relationship Between the Rheological Properties of Hyaluronic Acid and its Molecular Weight and Structure using Multidetector

Investigating the Relationship Between the Rheological Properties of Hyaluronic Acid and its Molecular Weight and Structure using Multidetector Investigating the Relationship Between the Rheological Properties of Hyaluronic Acid and its Molecular Weight and Structure using Multidetector SEC and SEC-MALS Presented by Bassem Sabagh, PhD Technical

More information

Chapter 5. Ionic Polymerization. Anionic.

Chapter 5. Ionic Polymerization. Anionic. Chapter 5. Ionic Polymerization. Anionic. Anionic Polymerization Dr. Houston S. Brown Lecturer of Chemistry UH-Downtown brownhs@uhd.edu What you should know: What is anionic polymerization? What is MWD,

More information

Size exclusion chromatography of branched polymers: Star and comb polymers

Size exclusion chromatography of branched polymers: Star and comb polymers Macromol. Theory Simul. 8, 513 519 (1999) 513 Size exclusion chromatography of branched polymers: Star and comb polymers Hidetaka Tobita*, Sadayuki Saito Department of Materials Science and Engineering,

More information

CHAPTER 10 DENSITY AND VISCOSITY AS REAL-TIME PROBES FOR THE PROGRESS OF HIGH-PRESSURE POLYMERIZATION:

CHAPTER 10 DENSITY AND VISCOSITY AS REAL-TIME PROBES FOR THE PROGRESS OF HIGH-PRESSURE POLYMERIZATION: CHAPTER 10 DENSITY AND VISCOSITY AS REAL-TIME PROBES FOR THE PROGRESS OF HIGH-PRESSURE POLYMERIZATION: POLYMERIZATION OF METHYL METHACRYLATE IN ACETONE Density and viscosity can be used as real-time probes

More information

Phenogel. GPC/SEC Columns. Sample Elution. Technical Specifications 10 3 Å 10 6 Å

Phenogel. GPC/SEC Columns. Sample Elution. Technical Specifications 10 3 Å 10 6 Å phenogel Gpc/sec columns HPLC 5 and 10 μm particle sizes Narrow bore (4.6 mm ID) solvent-saver to preparative columns available Very good alternative to Polymer Labs PLgel and Waters Styragel, Ultrastyragel,

More information

Practical Steps in GPC Method Development

Practical Steps in GPC Method Development Practical Steps in GPC Method Development Jean Lane Applications Engineer LC Columns & Consumables Technical Support March 23,2016 1 Overview Solvent Criteria for Solvent Selection Polymer Standards -

More information

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2016 The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar

More information

Wood Chemistry. Cellulose: the Basics. Cellulose: More Basics. PSE 406/Chem E 470. Reducing End Groups. Lecture 5 Cellulose.

Wood Chemistry. Cellulose: the Basics. Cellulose: More Basics. PSE 406/Chem E 470. Reducing End Groups. Lecture 5 Cellulose. : the Basics PSE 406/Chem E 470 Lecture 5 PSE 406: Lecture 5 1 Linear polymer made up of -d glucopyranose units linked with 1 4 glycosidic bonds. Repeating unit glucose (cellobiose) Glucopyranose units

More information

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

Application compendium. Authors. Greg Saunders, Ben MacCreath Agilent Technologies, Inc. A guide to multi-detector gel permeation chromatography

Application compendium. Authors. Greg Saunders, Ben MacCreath Agilent Technologies, Inc. A guide to multi-detector gel permeation chromatography Application compendium Authors Greg Saunders, Ben MacCreath Agilent Technologies, Inc. A guide to multi-detector gel permeation chromatography Contents Introduction...3 Why do multi-detector GPC/SEC?...4

More information

PHENOGEL GPC/SEC COLUMNS

PHENOGEL GPC/SEC COLUMNS 5, 10, and 20 μm particle sizes Narrow bore (4.6 mm D) solvent-saver to preparative columns available Very good alternative to Polymer Labs PLgel and Waters Styragel, Ultrastyragel, Styragel HT, and Styragel

More information

Differentiation of polymer branching and composition using the Mark Houwink plot

Differentiation of polymer branching and composition using the Mark Houwink plot Differentiation of polymer branching and composition using the Mark Houwink plot MOLECULAR SIZE MOLECULAR STRUCTURE MOLECULAR WEIGHT Introduction The manipulation of polymer properties through changes

More information

Characterization of polyphenylene sulphide using the Agilent PL-GPC 220 High Temperature GPC System with triple detection

Characterization of polyphenylene sulphide using the Agilent PL-GPC 220 High Temperature GPC System with triple detection materials analysis Characterization of polyphenylene sulphide using the Agilent PL-GPC 220 High Temperature GPC System with triple detection Solutions for Your Analytical Business Markets and Applications

More information

Tips & Tricks GPC/SEC: Inter-Detector Delay

Tips & Tricks GPC/SEC: Inter-Detector Delay Tips & Tricks GPC/SEC: Inter-Detector Delay Daniela Held and Wolfgang Radke, PSS Polymer Standards Service GmbH, Mainz, Germany Combinations of detectors are often used in gel permeation chromatography/size-exclusion

More information

Chapter 14. Molar Mass Distribution.

Chapter 14. Molar Mass Distribution. Chapter 14. Molar Mass Distribution. Difficulty with M n and M w, etc. osome polymers are hard to describe from just M n, M w, etc. o Examples: Bimodal, multimodal, nonuniform, broad, etc. MWDs. oin early

More information

How to use GPC/SEC for compositional analysis

How to use GPC/SEC for compositional analysis How to use GPC/SEC for compositional analysis Determining the relative concentration of two components in a polymer sample MOLECULAR SIZE MOLECULAR STRUCTURE MOLECULAR WEIGHT Introduction Over the last

More information

Periodic table with the elements associated with commercial polymers in color.

Periodic table with the elements associated with commercial polymers in color. Polymers 1. What are polymers 2. Polymerization 3. Structure features of polymers 4. Thermoplastic polymers and thermosetting polymers 5. Additives 6. Polymer crystals 7. Mechanical properties of polymers

More information

Macromolecular colloids. Size and shape of linear macromolecules. Osmosis and osmotic pressure.

Macromolecular colloids. Size and shape of linear macromolecules. Osmosis and osmotic pressure. Macromolecular colloids. Size and shape of linear macromolecules. Osmosis and osmotic pressure. What are macromolecules Macromolecules (macro = large, big) are large molecules Larger in solution than 1

More information

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I)

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) Overview: General Properties of Macromolecules in Solution Molar Mass Dependencies Molar Mass Distributions Generalized Ratios Albena Lederer Leibniz-Institute

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY

ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY CHROMATOGRAPHY Week 9-10 Reading Assignment: Chapter 7. Bioseparations Science & Engineering, Harrison, R; Todd, P; Rudge, S.C and Petrides, D,P CHROMATOGRAPHY

More information

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state 2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state or concentrated from the solution, molecules are often

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Lecture 8 Measuring Molecular Weight Membrane Osmometry Alfredo Vapor Phase Osmometry Linda Viscometry GW Gel Permeation Chromatography Size exclusion Chromatography Light Scattering

More information

[VIM = 4 R3 gx ( 3)

[VIM = 4 R3 gx ( 3) POLYMER LETTERS vol. 5, PP. 753-759 (1967) A UNIVERSAL CALIBRATION FOR GEL PERMEATION CHROMATOGRAPHY Gel permeation chromatography is one of the most powerful techniques for characterizing the polydispersity

More information

GFC separation of water-soluble polymers with TSKgel PW-type columns (2) using the PWXL series. Contents

GFC separation of water-soluble polymers with TSKgel PW-type columns (2) using the PWXL series. Contents No.038 GFC separation of water-soluble polymers with TSKgel PW-type columns (2) using the PWXL series Contents Page 1. Introduction 2. Calibration curves, theoretical plate numbers and separation range

More information

GPC/SEC Practical Tips and Tricks. Thomas Dent Applications Scientist Agilent Technologies. October, 2011 Gulf Coast Conference

GPC/SEC Practical Tips and Tricks. Thomas Dent Applications Scientist Agilent Technologies. October, 2011 Gulf Coast Conference GPC/SEC Practical Tips and Tricks Thomas Dent Applications Scientist Agilent Technologies October, 2011 Gulf Coast Conference 1 Section 1: Introduction Goals Brief introduction to GPC/SEC Highlight considerations

More information

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Types of Polymers Compatibility of Polymers Effects of Polymers Analysis of polymers Recovery of PMA What Is a

More information

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Dr. Christoph Johann Wyatt Technology Europe GmbH 2010 Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Introduction Overview The Nature of Scattered Light: Intensity of scattered light Angular

More information

(3) A UNIVERSAL CALIBRATION FOR GEL PERMEATION CHROMATOGRAPHY. [TIM = 4 R3 gx POLYMER LETTERS VOL. 5, PP (1967)

(3) A UNIVERSAL CALIBRATION FOR GEL PERMEATION CHROMATOGRAPHY. [TIM = 4 R3 gx POLYMER LETTERS VOL. 5, PP (1967) POLYMER LETTERS VOL. 5, PP. 753-759 (1967) A UNIVERSAL CALIBRATION FOR GEL PERMEATION CHROMATOGRAPHY Gel permeation chromatography is one of the most powerful techniques for characterizing the polydispersity

More information

MATERIALS SCIENCE POLYMERS

MATERIALS SCIENCE POLYMERS POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,

More information

Introduction to Chromatographic Separations

Introduction to Chromatographic Separations Introduction to Chromatographic Separations Analysis of complex samples usually involves previous separation prior to compound determination. Two main separation methods instrumentation are available:

More information

GPC/SEC Start-up Kit

GPC/SEC Start-up Kit GPC/SEC Start-up Kit GPC/SEC Start-up Kit Congratulations for choosing GPC/SEC solutions from Agilent. This kit contains everything you need to get you up and running quickly and easily. The information

More information

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer =

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer = 1.1 Basic Polymer hemistry Polymers are the largest class of soft materials: over 100 billion pounds of polymers made in US each year lassification systems 1.2 Polymer Nomenclature Polymer = Monomer =

More information

Polymer Molecular Weight

Polymer Molecular Weight Chapter 3 Polymer Molecular Weight 3.1 Introduction Polymer molecular weight is important because it determines many physical properties. Some examples include the temperatures for transitions from liquids

More information

GFC Analysis of Water-Soluble Polymers with TSKgel PW-type Columns. Contents

GFC Analysis of Water-Soluble Polymers with TSKgel PW-type Columns. Contents No.035 GFC Analysis of Water-Soluble Polymers with TSKgel PW-type Columns Contents Page 1. Introduction 2. Separation ranges for each grade of TSKgel PW-type column 3. GFC apparatus for water-soluble systems

More information

Size Exclusion Chromatography

Size Exclusion Chromatography Springer Laboratory Size Exclusion Chromatography Bearbeitet von Sadao Mori, Howard G Barth 1. Auflage 1999. Buch. xiv, 234 S. Hardcover ISBN 978 3 540 65635 7 Format (B x L): 15,5 x 23,5 cm Gewicht: 1170

More information

Lecture 27 More Polymers

Lecture 27 More Polymers Lecture 27 More Polymers Step Chain April 26, 2016 Midterm Exam III Where: WEL 1.316!! When: Wed., May 4 th, 7:00 9:00 PM What: Covers lectures through 4/28 Review Session: Mon & Tues. 5-6 PM Monday PAI

More information

GPC/SEC standards. Product guide

GPC/SEC standards. Product guide GPC/SEC standards Product guide Contents Polymer standards for GPC/SEC 3 Agilent EasiVial 5 Agilent EasiCal 8 Polystyrene 9 Polymethylmethacrylate 11 Polyethylene glycol/oxide 12 Other polymer standards

More information

Appendix 1. GPC Characterization of Cyclic Polymers

Appendix 1. GPC Characterization of Cyclic Polymers 175 Appendix 1 GPC Characterization of Cyclic Polymers 176 Cyclic metathesis catalysts described in Chapters 2 and 3 also exhibit functional group tolerance, and can be used to readily polymerize functionalized

More information

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION Paper # 164-8P Pittsburgh Conference 24 T. Wampler, C. Zawodny, L. Mancini CDS Analytical, Inc 465 Limestone Road, Oxford,

More information

Relationship of Rheological Behavior and Molecular Architecture for LDPE Designed for Extrusion Coating. Bert Nijhof Technical Paper-7603

Relationship of Rheological Behavior and Molecular Architecture for LDPE Designed for Extrusion Coating. Bert Nijhof Technical Paper-7603 Relationship of Rheological Behavior and Molecular Architecture for LDPE Designed for Extrusion Coating Bert Nijhof Technical Paper-7603 Introduction LDPE produced commercially for first time in 1939 Process

More information

Chapter 11. Polymer Structures. Natural vs man-made

Chapter 11. Polymer Structures. Natural vs man-made . Polymer Structures Polymers: materials consisting of long molecules - the word polymer comes from the Greek Polys = many Meros = parts Macromolecules (long size of the chains) many parts - typically,

More information

Experiment 5. Synthetic Polymers.

Experiment 5. Synthetic Polymers. Experiment 5. Synthetic Polymers. References: Brown & Foote, Chapters 24 INTRODUCTION: A polymer (Greek: polys + meros = many parts) is a giant or macromolecule made up of repeating structural units. The

More information

Analysis of Star Polymers Using the Agilent 1260 Infinity Multi-Detector GPC/SEC System

Analysis of Star Polymers Using the Agilent 1260 Infinity Multi-Detector GPC/SEC System Analysis of Star Polymers Using the Agilent 1260 Infinity Multi-Detector GPC/SEC System Application Note Material testing Authors Kayleigh McEwan, Rajan K. Randev, and David M. Haddleton University of

More information

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt)

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) Polymers 1 Polymers Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) 2 If we consider a series of chains = 0 Except when i = j, and

More information

Chromatographic Separation

Chromatographic Separation What is? is the ability to separate molecules using partitioning characteristics of molecule to remain in a stationary phase versus a mobile phase. Once a molecule is separated from the mixture, it can

More information

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography)

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) Ch.28 HPLC 28.1 Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) High Performance (Pressure) LC Glass column st.steel (high

More information

Combustion and thermal degradation of polymers

Combustion and thermal degradation of polymers Polymers and biomaterials - laboratory Combustion and thermal degradation of polymers Theoretical background dr Hanna Wilczura-Wachnik University of Warsaw Faculty of Chemistry Chemical Technology Division

More information

Gel Permeation Chromatography

Gel Permeation Chromatography Gel Permeation Chromatography Polymers and Coatings Laboratory California Polytechnic State University Gel permeation chromatography (GPC) has become the most widely used technique for determination of

More information

Title: Cesa-extend a User Friendly Technology to Enhance Reprocessing and Recycling of Condensation Plastics

Title: Cesa-extend a User Friendly Technology to Enhance Reprocessing and Recycling of Condensation Plastics GPEC 24 Paper Abstract #52: Title: Cesa-extend a User Friendly Technology to Enhance Reprocessing and Recycling of Condensation Plastics Author(s): V. Karayan, Clariant Masterbatches, and M. Villalobos,

More information

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization Introduction of Polymers Polymer - The word polymer is the Greek word : poly means many and mer means unit or parts, A Polymer is a large molecule that comprises repeating structural units joined by the

More information

Chapter 3. Molecular Weight. 1. Thermodynamics of Polymer Solution 2. Mol Wt Determination

Chapter 3. Molecular Weight. 1. Thermodynamics of Polymer Solution 2. Mol Wt Determination Chapter 3 Molecular Weight 1. Thermodynamics of Polymer Solution 2. Mol Wt Determination 1. Weight, shape, and size of polymers monomer oligomer polymer dimer, trimer, --- telomer ~ oligomer from telomerization

More information

GPC/SEC standards. Product guide

GPC/SEC standards. Product guide GPC/SEC standards Product guide Contents Polymer standards for GPC/SEC 3 Agilent EasiVial 5 Agilent EasiCal 8 Polystyrene 9 Polymethylmethacrylate 11 Polyethylene glycol/oxide 12 Other polymer standards

More information

Optimization of PLA/PLGA molecular weight and structure to suit final application requirements

Optimization of PLA/PLGA molecular weight and structure to suit final application requirements Optimization of PLA/PLGA molecular weight and structure to suit final application requirements MOLECULAR SIZE MOLECULAR STRUCTURE MOLECULAR WEIGHT Introduction The biodegradable and biocompatible polymers,

More information

Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College Station, TX, USA

Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College Station, TX, USA On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work. Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College

More information

Supporting information

Supporting information Supporting information Temperature and ph-dual Responsive AIE-Active Core Crosslinked Polyethylene Poly(methacrylic acid) Multimiktoarm Star Copolymers ` Zhen Zhang,*,, and Nikos Hadjichristidis*, School

More information

Puzzled? Look it up in our GPC Glossary

Puzzled? Look it up in our GPC Glossary Puzzled? Look it up in our GPC Glossary www.tosohbioscience.de The Ever Evolving EcoSEC GPC System. Providing Greater Reliability and Versatility If your work relies on accurate, reproducible GPC data,

More information

Chromatography. Intro basic terminology types Partition and Adsorption C Ion-Exchange C Gel Filtration (aka Exclusion or Molecular Sieve) C Affinity C

Chromatography. Intro basic terminology types Partition and Adsorption C Ion-Exchange C Gel Filtration (aka Exclusion or Molecular Sieve) C Affinity C Chromatography Intro basic terminology types Partition and Adsorption C Ion-Exchange C Gel Filtration (aka Exclusion or Molecular Sieve) C Affinity C Extremely varied and widely used methodology for separation

More information

Benefit of light scattering technologies (RALS/LALS/MALS) and multidetection characterization in life science research?

Benefit of light scattering technologies (RALS/LALS/MALS) and multidetection characterization in life science research? Benefit of light scattering technologies (RALS/LALS/MALS) and multidetection characterization in life science research? Bert Postma Business Support Separations and MicroCal Size Exclusion Chromatography

More information

CASE STUDY. Degradation of Polyethylene by FTIR and High Temperature GPC

CASE STUDY. Degradation of Polyethylene by FTIR and High Temperature GPC Degradation of Polyethylene by FTIR and High Temperature GPC CASE STUDY Degradation of Polyethylene by FTIR and High Temperature GPC PROBLEM The objective of this analysis was to determine if thermal degradation

More information

Gel Permeation Chromatography - GPC

Gel Permeation Chromatography - GPC Isolation and Separation Methods J. Poustka, VŠCHT Praha, ÚAPV 2014, http://web.vscht.cz/poustkaj Gel Permeation Chromatography - GPC Separation and clean-up method Group separation of compounds with similar

More information

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals?

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? Cellulose Amylose Amylopectin Glycogen 2. Which of the following is not a semisynthetic polymer?

More information

Lecture 27 More Polymers

Lecture 27 More Polymers Lecture 27 More Polymers Step Chain April 25, 2018 Where: MEZ 1.306!! Final Exam When: Friday, May 11 th, 2:00 5:00 PM Do: Study lecture notes, homework, reading Practice: Hydrolysis, signatures and synthesis.

More information

Molecular Weight of Polymers *

Molecular Weight of Polymers * OpenStax-CNX module: m43550 1 Molecular Weight of Polymers * Sehmus Ozden Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Introduction

More information

Polymer Reaction Engineering

Polymer Reaction Engineering Polymer Reaction Engineering Polymerization Techniques Bulk Solution Suspension Emulsion Interfacial Polymerization Solid-State Gas-Phase Plasma Polymerization in Supercritical Fluids Bulk Polymerization

More information

Lecture 26 Classification

Lecture 26 Classification Lecture 26 Classification April 24, 2018 Industrial Influence: Trade Names PVC poly (vinylidene chloride) Saran wrap PVC poly (vinyl chloride) Pipe and records PET poly (ethylene teraphthalate) Coke bottles,

More information

How switching mobile phases can improve your OMNISEC results

How switching mobile phases can improve your OMNISEC results How switching mobile phases can improve your OMNISEC results Analysis of ester- and acid-capped PLGA samples in mobile phases of DCM and THF MOLECULAR SIZE Introduction MOLECULAR Biodegradable, thermoplastic

More information

Size Exclusion Chromatography: Method Development

Size Exclusion Chromatography: Method Development Size Exclusion Chromatography: Method Development To develop a successful Size Exclusion Chromatography (SEC) method it is desired to find a column/solvent combination under which the follow conditions

More information

Molecular Weights of Copolymers Obtained by Gel Permeation Chromatography Light Scattering

Molecular Weights of Copolymers Obtained by Gel Permeation Chromatography Light Scattering Chapter 1 olecular Weights of Copolymers Obtained by Gel Permeation Chromatography Light Scattering Downloaded via 148.251.232.83 on January 27, 2019 at 21:02:53 (UTC). See https://pubs.acs.org/sharingguidelines

More information

TSKgel Size Exclusion Chromatography Columns

TSKgel Size Exclusion Chromatography Columns Silica-based for protein analysis: TSKgel SW mab TSKgel SW TSKgel SWXL TSKgel SuperSW Polymer-based for desalting: TSKgel BioAssist DS Columns Polymethacrylate-based for water-soluble polymers analysis:

More information

GPC/SEC Column Selection & Method Development

GPC/SEC Column Selection & Method Development GPC/SEC Column Selection & Method Development LIVE WEBCAST: Tuesday April 27, 2010 Topics Introduction to GPC/SEC Column Characteristics & Column Selection Additional Method Development Troubleshooting

More information

KEMS448 Physical Chemistry Advanced Laboratory Work. Viscosity: Determining the Molecular Mass of Polyvinyl Alcohol

KEMS448 Physical Chemistry Advanced Laboratory Work. Viscosity: Determining the Molecular Mass of Polyvinyl Alcohol KEMS448 Physical Chemistry Advanced Laboratory Work Viscosity: Determining the Molecular Mass of Polyvinyl Alcohol 1 Introduction The internal friction in fluids, or viscosity, is caused by the cohesion

More information