2014 학년도 1 학기 분석화학실험. 담당교수 : 이원용 ( 연구실 : 과 443-C, 전화 : , 전자우편 : 분광분석 / / 분리분석 / 전기분석화학

Size: px
Start display at page:

Download "2014 학년도 1 학기 분석화학실험. 담당교수 : 이원용 ( 연구실 : 과 443-C, 전화 : , 전자우편 : 분광분석 / / 분리분석 / 전기분석화학"

Transcription

1 2014 학년도 1 학기 분석화학실험 담당교수 : 이원용 ( 연구실 : 과 443-C, 전화 : , 전자우편 : wylee@yonsei.ac.kr) 분광분석 / / 분리분석 / 전기분석화학

2 Instrumental Analysis General concept Spectrophotometric experiment I A Lamp Monochromator Electrochemical experiment Optical cell with sample Phototube E Power supply i i t t

3 Chapter 18: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such as ions and electrons Spectrophotometry: a more restrictive term, - any procedure that uses light to measure chemical concentrations. - the quantitative measurement of the intensity of electromagnetic radiation at one or more wavelengths with photoelectric detector.

4 18-1. Properties of Light Electromagnetic radiation ; EM wave ; radiation ; radient ray ; ray ; light One linearly (or plane) polarized and consists of a single frequency, that is, is monochromatic.

5 18-2 Absorption of light Absorption of light: increases the energy of molecule (the molecule is promoted to an excited state) Emission of light: decreases the energy of molecule Ground state: lowest energy state of a molecule Excitation Relaxation M + h υ M* (life time: 10-6 ~10-9 S) M* M + light (fluorescence, phosphorescence) or M* M + heat

6

7 Absorption Single-beam spectrophotometric experiment Light source Wavelength selector (monochromator) P o Sample P Light Detector b When light is absorbed by a sample the radiant power of the beam of light is decreased Radiant power (P): the energy per second per unit area of the light beam Transmittance (T): T = P/P o (T = 0 ~ 1) Absorbance (A), or optical density: A = log (P o /P) = -log T (if 90% light is absorbed, 10% transmitted: T = 0.1P o /P o = 0.1, A= - log T=1) Absorption spectrum: absorbance vs wavelength

8 Absorption: Beer s Law The part of molecule responsible for light absorption: chromophore Absorbance is directly proportional to the concentration Beer-Lambert law: A = εbc ε : molar absorptivity (extinction coefficient) characteristic of a substance that tells how much light is absorbed at a particular wavelength b: path length c: concentration Beer s law works for monochromatic radiation passing through a dilute solution < 10 mm Colorimetry: a procedure based on absorption of visible light

9 Chapter 21: high temp Atomic Spectroscopy ( K)

10 21-1. An Overview Most compounds Atoms in gas phase high temp ( K) (AES) (AAS) sample Mass-to-charge (ICP-MS) (AFS)

11 Atomic Absorption experiment Flame in Atomic Spec. Cuvette in Mol. Spec. (Path length in Flame: 10 cm)

12 Flames Premix burner: fuel, oxidant, and sample are premixed. Nebulization: formation of a small droplets Aerosol: a fine suspension of liquid (solid) particles in a gas Nebulizer: create an aerosol from the liquid sample aerosol reaching the flame contains only about 5% of initial sample Pneumatic nebulizer

13 Hollow-Cathode Lamp in AAS Monochromators cannot isolate lines narrower than nm. To get narrow lines of the correct frequency, Use of hollow cathode lamp containing the same element that being analyzed Filled with Ne or Ar at a pressure of 130 ~ 700 Pa High voltage (~300V) is applied between the anode and cathode Filler gas is ionized and positive ions are accelerated toward the cathode Accelerated positive ions strike the cathode with enough energy to sputter metal atoms from the cathode into the gas phase Free atoms are excited by collisions with high-energy electrons: photon emission Atomic radiation has the same frequency as that absorbed by the analyte atoms

14 Chapter 14: Fundamentals of Electrochemistry Electrochemistry is the branch of chemistry concerned with the interrelation of electrical and chemical effects. The study of chemical changes caused by passage of an electric current and production of electrical energy by chemical reactions.

15 14-2. Galvanic Cells (Voltaic Cells) A galvanic cell : uses a spontaneous chemical reaction to generate electricity To accomplish this: 1. One reagent must be oxidized 2. The other must be reduced 3. The two reagents must be physically separated electrons are forced to flow through external circuit to go from one reagent to the other High input impedance potentiometer (voltmeter) (+) Anode reaction : oxidation Cathode reaction : reduction Cd(s) Cd 2+ (aq) + 2 e - 2 AgCl(s) + 2 e - 2Ag(s) + 2Cl - (aq) Cd(s) + 2 AgCl(s) Cd 2+ (aq) +2Ag(s) + 2Cl - (aq) When electrons flow from the left electrode to the right electrode : positive voltage When electrons flow from the right electrode to the left electrode : negative voltage

16 14-3. Standard (reduction) Potentials (activities of all species = 1) A quantitative description of the relative driving force for a half-cell reaction. A relative quantity vs standard hydrogen electrode assigned to zero volt. E 0 (SHE)=0 H + (aq, A = 1) + e- ½ H 2 (g, A = 1) E 0 (SHE)=0

17 Reduction : spontaneous SHE Oxidation: Spontaneous

18 14-4. Nernst Equation (activities of all species = 1) Le Chatelier s principle: increasing reactant concentrations drives the reacting to the right The net driving force of the reaction is expressed by the Nernst equation The Nernst equation tells us the potential of a cell whose reagents are not all unit activity Nernst Equation for a Half-Reaction aa + ne - bb R: gas constant = J/Kmol T: temperature (K) E E o RT nf ln A A b B a A (14.13) ΔG = ΔG o + RT lnq (Q; reaction quotient) -nfe = -nfe o + RT lnq ( 양변을 nf 로나누어준다 ) E = E o (RT/nF) lnq

19 17-1. Fundamentals of Electrolysis Dipping Cu and Pt electrodes into a solution of Cu2+ and forcing electric current through to deposit Cu metals at the cathode and to liberate O2 at the anode Cathode: Cu e - Cu(s) E = (0.0592/2)log([1/[Cu 2+ ]) Anode: H 2 O ½ O 2 + 2H + + 2e - E = (0.0592/2)log(1/pO 2 1/2 [H + ] 2 ) H 2 O + Cu 2+ Cu(s) + ½ O 2 + 2H + E = E o (cathode) E o (anode) = = V 0.2 M Cu2+ and 1.0 M H+ and liberates O2 at a pressure of 1.00 bar E = E o (cathode) E o (anode) = = V This voltage would be read on the potentiometer if there were negligible current not spontaneous A power supply is needed to force the reaction occur (electrolysis) the reaction of interest occur

20 Potential, V vs SCE Cyclic Voltammtry Forward scan Backward scan (reverse scan) E pc : cathodic peak potential, E pa : anodic peak potential i pa : anodic peak current, i pc : cathodic peak current Time, s Scan rate = V/s : 1.0 V/20 s = 50 mv/s Figure. Cyclic voltammetric excitation signal used to obtained voltammogram Figure. Cyclic voltammogram for 6.0 mm K 3 Fe(CN) 6 in 1.0 M in KNO 3.

21 Cyclic Voltammtry(CV) reversible E p = E pa -E pc = 59 mv/n 1 mm O 2 irreversible 0.06 mm 2-nitropropane Reversible means the reaction is fast enough to maintain equilibrium concentrations of the reactant and product at the electrode surface

22 Cyclic Voltammtry(CV) Peak current for a reversible system the working electrode (Randles-Sevcik equation) i p = (2.69x10 5 ) n 3/2 AD 1/2 C*v 1/2 A : electrode area, D : diffusion coefficient C* : bulk concentration (mol cm -3 ) v : scan rate (V s -1 ) i p v 1/2 from slope D can be calculated i p v 1/2

23 Cyclic Voltammtry(CV): Scan Rate Effect Figure (a) Effect of variation of scan rate on cyclic voltammograms and (b) plot of ip versus v 1/2.

24 Chapter 23: Introduction to Analytical Separations

25 In real analytical problems, we must identify and quantitate one or more components from a complex mixture Separation of mixture into each component is the first step in analysis Sample (mixture) <separation> Component 1, 2, 3, --- Detection Optical (absorbance, FL, CL) Electrochemical (voltammetry) Mass-to-charge

26 23-2. What is Chromatography? Martin and Synge: Nobel Prize in Chromatography operates on the same principle as extraction, but one phase is held in place while the other moves past it. Mobile phase Gas: gas chromatography Liquid: liquid chromatography Sample Injection Stationary phase Solid: GSC, LSC Liquid: GLC, LLC (partition chromatography) Detector

27 Chromatography (LSC) Solute A has a greater affinity than solute B for the stationary phase: (A is more polar) Solute A is more strongly adsorbed than solute B on the solid particles Solute A spends a more time in stationary phase solute A moves down the column more slowly than solute B (longer retention time) Column packing (stationary phase): solid particles (silica: polar) filled with solvent Solvent (mobile phase): Non-polar organic solvent Fluid entering the column: eluent Fluid emerging from the end of column: eluate The process of passing liquid or gas through a chromatography column is called elution

28 Types of Chromatography Adsorption chromatography Stat. phase: solid Mobile phase: gas/liquid Partition chromatography Stat. phase: liquid Mobile phase: gas/liquid

29 23-3. Chromatogram unretained species - Retention time for each component: t r - Dead time for unretained species: t m - Adjusted retention time (t r ) = t r t m - Capacity factor (k ) = (t r t m )/t m = t r /t m - Relative retention (α) for any two components (A, B) = (t r ) B / (t r ) A = (k ) B / (k ) A Selectivity factor = K B / K A (partition coefficient)

30 Band Broadening & Efficiency of Separation Plate theory: theoretical plates (1941, Martin & Synge) Rate theory: Van Deemter (1956) One main cause of band broadening is diffusion Definition of diffusion coefficient (D): Flux (mol/m 2 s) = J = - D dc/dx concentration gradient Standard deviation of band : σ = (2Dt) 1/2

31 Chapter 24: Gas Chromatography

32 Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid or gas Stationary phase: - solid (GSC) or non-volatile liquid (GLC) GSC (gas-solid adsorption chromatography) - semi-permanent retention of active or polar molecules - severe tailing of elution peaks GLC (gas-liquid partition chromatography) - non-volatile liquid is coated on the inside of the column or on a fine solid support - In 1955, the first commercial apparatus for GLC appeared on the market

33 24-1. The separation process in gas chromatography Temp of a sample injector port: 50 o C above the b.p. of least volatile component of the sample rapidly evaporates (2-50 m) (thermostated) The column should be hot enough to provide sufficient vapor pressure for analyte to be eluted in a reasonable time.

34 Open Tubular Columns Thin coating: small C-term (decreased H) : Compared with packed columns, OTC offers higher resolution, shorter analysis time, greater sensitivity, lower sample capacity Length: m

35 Liquid Sta. Phase Choice of liquid phase for a given problem: like dissolves like - Nonpolar columns: best for nonpolar solutes - Polar columns for polar solutes - As a column ages, stationary phases bakes off surface silanol groups (Si-OH) are exposed peak tailing (polar analyte) Therefore, stationary phase is covalently attached to silica surface

36 The Retention Index Non-polar column Polar column (retention time: hydrocarbon<ketone<alcohol) Dipole interaction H-bonding Column oven temp = 70 o C

37 Temperature Programming Temp of column (oven) increases Solute vapor pressure increase decrease retention time Isothermal at 150 o C Temp programming: o C at 8 o C/min Precaution: at too high temp. thermal decomposition of analyte

38 Sample Injection in GC Liquid samples are injected into GC by syringe through a rubber septum into a heated port Gaseous samples use gas-tight syringe <Sample size> Packed column: sub L 20 L, Capillary column: 10-3 L (split injection) Spilt injection delivers only 0.2-2% of the sample to the column

39 Quantitative and Qualitative Analysis by GC Qualitative analysis: - retention time (GC-FID, TCD, ECD ): comparison with authentic sample - mass (GC-MS) Quantitative analysis: - peak area or peak height

40 Thermal Conductivity Detector (TCD) <Advantages of TCD> - simple system - wide linear dynamic range (~ 10 4 ) - general response to organic and inorganic species - non-destructive <Limitation of TCD> - relatively low sensitivity

41 Chapter 25: High-Performance Liquid Chromatography

42 HPLC Mobile phase: liquid Analyte: non-volatile liquid Stationary phase: - solid (GSC) or non-volatile liquid (GLC) HPLC; uses high-pressure pump to deliver liquid mobile phase <HPLC system> Mobile phase High-pressure pump injector column detector

43

44 Elution Process In adsorption chromatography, solvent molecules compete with solute molecules for sites on the stationary phase Elution occurs when solvent displaces solute from the stationary phase

45 Normal- vs Reversed-Phase Chromatography Normal-phase chromatography (e.g. adsorption chromatography based on silica gel) Stationary phase: polar (e.g. silica) Mobile phase: non-polar (hexane, i-propylether) Reversed-phase chromatography Stationary phase: non-polar (hydrocarbon) or weakly polar Mobile phase: more polar (water, methanol, acetonitrile) <Normal Phase C> Polarity: A>B>C <Reversed- Phase C> Mobile phase: low polarity MP: high polarity C B A A B C time MP: medium polarity MP: medium polarity C B A A B C

46 - Ultraviolet detector: most common - Refractive index (universal) - Fluorescence - Electrochemical - Conductivity (ion-exchange C) - Mass spectrometry - Chemi-(electrochemi-)luminescence Detectors in HPLC

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

high temp ( K) Chapter 20: Atomic Spectroscopy

high temp ( K) Chapter 20: Atomic Spectroscopy high temp (2000-6000K) Chapter 20: Atomic Spectroscopy 20-1. An Overview Most compounds Atoms in gas phase high temp (2000-6000K) (AES) (AAS) (AFS) sample Mass-to-charge (ICP-MS) Atomic Absorption experiment

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25 High Performance Liquid Chromatography (HPLC) Harris Chapter 25 12/1/2005 Chem 253 - Chapter 25 1 HPLC Separation of nonvolatile or thermally unstable compounds. If the analyte/sample can be found to be

More information

Chem 321 Name Answer Key D. Miller

Chem 321 Name Answer Key D. Miller 1. For a reversed-phase chromatography experiment, it is noted that the retention time of an analyte decreases as the percent of acetonitrile (CH 3 CN) increases in a CH 3 CN/H 2 O mobile phase. Explain

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

Gas Chromatography. Introduction

Gas Chromatography. Introduction Gas Chromatography Introduction 1.) Gas Chromatography Mobile phase (carrier gas) is a gas - Usually N 2, He, Ar and maybe H 2 - Mobile phase in liquid chromatography is a liquid Requires analyte to be

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L2 Page1 Instrumental Chemical Analysis Chromatography (General aspects of chromatography) Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester,

More information

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5 Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH 5730-6730 Analysis Topic 5 Chromatography! Group of separation techniques based on partitioning (mobile phase/stationary phase). Two immiscible

More information

Questions on Instrumental Methods of Analysis

Questions on Instrumental Methods of Analysis Questions on Instrumental Methods of Analysis 1. Which one of the following techniques can be used for the detection in a liquid chromatograph? a. Ultraviolet absorbance or refractive index measurement.

More information

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC Gas Chromatography Gas Chromatography Presented By Mr. Venkateswarlu Mpharm KTPC What is Gas Chromatography? It is also known as Gas-Liquid Chromatography (GLC) GAS CHROMATOGRAPHY Separation of gaseous

More information

Ch 313 FINAL EXAM OUTLINE Spring 2010

Ch 313 FINAL EXAM OUTLINE Spring 2010 Ch 313 FINAL EXAM OUTLINE Spring 2010 NOTE: Use this outline at your own risk sometimes a topic is omitted that you are still responsible for. It is meant to be a study aid and is not meant to be a replacement

More information

Luminescence transitions. Fluorescence spectroscopy

Luminescence transitions. Fluorescence spectroscopy Luminescence transitions Fluorescence spectroscopy Advantages: High sensitivity (single molecule detection!) Measuring increment in signal against a dark (zero) background Emission is proportional to excitation

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

1. Cyclic voltammetry involves the measurement of a diffusion controlled at an electrode in which the is controlled. (4 points)

1. Cyclic voltammetry involves the measurement of a diffusion controlled at an electrode in which the is controlled. (4 points) Chem 454 First Exam Feb. 20, 2002 1. Cyclic voltammetry involves the measurement of a diffusion controlled at an electrode in which the is controlled. (4 points) 2. (5 points) A. Sketch a cyclic voltammogram

More information

Chem 454 instrumental Analysis Exam 1 February 6 th, 2008

Chem 454 instrumental Analysis Exam 1 February 6 th, 2008 Chem 454 instrumental Analysis Exam 1 February 6 th, 2008 1 Name: 1] A glass electrode was immersed into a solution of ph 4.33 gave a response of 677.1 mv. This electrode was used to measure a sample solution

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas GAS CHROMATOGRAPHY Mobile phase is a gas! Stationary phase could be anything but a gas Gas Chromatography (GC) GC is currently one of the most popular methods for separating and analyzing compounds. This

More information

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS.

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS. School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS DURATION: 3 HOURS TOTAL MARKS: 100 Internal Examiners: Professor A Kindness Dr T Msagati

More information

CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography. M. Subramanian

CH 2252 Instrumental Methods of Analysis Unit V  Gas Chromatography.  M. Subramanian CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography M. Subramanian Assistant Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

Emission spectrum of H

Emission spectrum of H Atomic Spectroscopy Atomic spectroscopy measures the spectra of elements in their atomic/ionized states. Atomic spectrometry, exploits quantized electronic transitions characteristic of each individual

More information

2101 Atomic Spectroscopy

2101 Atomic Spectroscopy 2101 Atomic Spectroscopy Atomic identification Atomic spectroscopy refers to the absorption and emission of ultraviolet to visible light by atoms and monoatomic ions. It is best used to analyze metals.

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Chromatographic Separations KAM021 2016 Dr. A. Jesorka, 6112, aldo@chalmers.se Introduction to Chromatographic Separations Theory of Separations -Chromatography Terms Summary: Chromatography

More information

Instrumental Analysis

Instrumental Analysis Chem 454 Name: Instrumental Analysis Exam I February 5, 1999 80 possible points 1] 5 points Which of the following samples would be suitable for analysis by a calibration curve technique using a potentiometric

More information

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A.

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A. Instrumental Analysis II Course Code: CH3109 Chromatographic &Thermal Methods of Analysis Part 1: General Introduction Prof. Tarek A. Fayed What is chemical analysis? Qualitative analysis (1) Chemical

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

https://www.chemicool.com/definition/chromatography.html

https://www.chemicool.com/definition/chromatography.html CHROMATOGRAPHY 1 Chromatography - a physical method of mixture separation in which the components to be separated are distributed between two phases, one of which is stationary (stationary phase) while

More information

Optical Atomic Spectroscopy

Optical Atomic Spectroscopy Optical Atomic Spectroscopy Methods to measure conentrations of primarily metallic elements at < ppm levels with high selectivity! Two main optical methodologies- -Atomic Absorption--need ground state

More information

Chromatography Outline

Chromatography Outline Chem 2001 Summer 2004 Outline What is? The Chromatogram Optimization of Column Performance Why Do Bands Spread? Gas High-Performance Liquid Ion-Exchange 2 What is? In chromatography, separation is achieved

More information

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography Emqal module: M0925 - Quality parameters and optimization in is a separation technique used for quantification of mixtures of analytes Svein.mjos@kj.uib.no Exercises and lectures can be found at www.chrombox.org/emq

More information

Introduction to Chromatography

Introduction to Chromatography Introduction to Chromatography Dr. Sana Mustafa Assistant Professor Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. What is Chromatography? Derived from the Greek

More information

Cork Institute of Technology. Summer 2005 Instrumental Analysis (Time: 3 Hours) Section A

Cork Institute of Technology. Summer 2005 Instrumental Analysis (Time: 3 Hours) Section A Cork Institute of Technology Higher Certificate in Science in Applied Biology Award (National Certificate in Science in Applied Biology Award) Answer FIVE questions; answer Section A, TWO questions from

More information

GC Instruments. GC Instruments - Columns

GC Instruments. GC Instruments - Columns GC Instruments 1 Fairly simple instrumentation Maintaining constant average pressure is important! Pressure controls flow rate T influences retention (k ) Flow rate monitoring Changing flow rate changes

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

Chromatographic Separation

Chromatographic Separation What is? is the ability to separate molecules using partitioning characteristics of molecule to remain in a stationary phase versus a mobile phase. Once a molecule is separated from the mixture, it can

More information

Chapter 1. Chromatography. Abdul Muttaleb Jaber

Chapter 1. Chromatography. Abdul Muttaleb Jaber Chapter 1 Chromatography Abdul Muttaleb Jaber What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated

More information

Atomic Absorption Spectroscopy (AAS)

Atomic Absorption Spectroscopy (AAS) Atomic Absorption Spectroscopy (AAS) Alex Miller ABC s of Electrochemistry 3/8/2012 Contents What is Atomic Absorption Spectroscopy? Basic Anatomy of an AAS system Theory of Operation Practical Operation

More information

Volumetric Analysis. Quantitative analysis answers the second question

Volumetric Analysis. Quantitative analysis answers the second question Volumetric Analysis Volumetric analysis is a form of quantitative analysis involving the measuring of volumes of reacting solutions, it involves the use of titrations. When buying food we often have two

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Chapter 31 Gas Chromatography. Carrier Gas System

Chapter 31 Gas Chromatography. Carrier Gas System Chapter 31 Gas Chromatography GAS-LIQUID CHROMATOGRAPHY In gas chromatography, the components of a vaporized sample are fractionated as a consequence of being partitioned between a mobile gaseous phase

More information

Spectroscopy and Chromatography

Spectroscopy and Chromatography Spectroscopy and Chromatography Introduction Visible light is one very small part of the electromagnetic spectrum. The different properties of the various types of radiation depend upon their wavelength.

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING QUESTION BANK V SEMESTER EI6501 Analytical Instruments Regulation 2013 Academic

More information

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction. LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set Extraction Problem #1 1. Devise a scheme to be able to isolate organic acids, bases

More information

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. Chromatography Primer Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. At its heart, chromatography is a technique

More information

Atomization. In Flame Emission

Atomization. In Flame Emission FLAME SPECTROSCOPY The concentration of an element in a solution is determined by measuring the absorption, emission or fluorescence of electromagnetic by its monatomic particles in gaseous state in the

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Analytical Topics to Consider in preparation for the MFAT/GRE

Analytical Topics to Consider in preparation for the MFAT/GRE Analytical Topics to Consider in preparation for the MFAT/GRE 1. Solutions and Measurement: (CHEM 222) Describe the steps in a chemical analysis Know the meaning and use of the following solution concentrations.

More information

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Gas Chromatography (GC) In gas chromatography, the sample is vaporized and injected onto the head of a chromatographic

More information

Gas Chromatography (GC)

Gas Chromatography (GC) Gas Chromatography (GC) Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11541 Saudi Arabia Office: AA53

More information

HPLC Workshop 16 June 2009 What does this do? Chromatography Theory Review Several chromatographic techniques Even though each method utilizes different techniques to separate compounds, the principles

More information

GC Instruments. GC Instruments - Sample Introduction

GC Instruments. GC Instruments - Sample Introduction GC Instruments 1 Fairly simple instrumentation Maintaining constant average pressure is important! Pressure controls flow rate T influences retention (k ) Flow rate monitoring Changing flow rate changes

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications Chapter 27: Gas Chromatography Principles Instrumentation Detectors Columns and Stationary Phases Applications GC-MS Schematic Interface less critical for capillary columns Several types of Mass Specs

More information

Partitioning. Separation is based on the analyte s relative solubility between two liquid phases or a liquid and solid.

Partitioning. Separation is based on the analyte s relative solubility between two liquid phases or a liquid and solid. Chromatography Various techniques for the separation of complex mixtures that rely on the differential affinities of substances for a gas or liquid mobile medium and for a stationary adsorbing medium through

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

Introduction to Chromatographic Separations

Introduction to Chromatographic Separations Introduction to Chromatographic Separations Analysis of complex samples usually involves previous separation prior to compound determination. Two main separation methods instrumentation are available:

More information

CHEM 429 / 529 Chemical Separation Techniques

CHEM 429 / 529 Chemical Separation Techniques CHEM 429 / 529 Chemical Separation Techniques Robert E. Synovec, Professor Department of Chemistry University of Washington Lecture 1 Course Introduction Goal Chromatography and Related Techniques Obtain

More information

Exam 3 Chem 454 April 25, 2018, Name

Exam 3 Chem 454 April 25, 2018, Name Exam 3 Chem 454 April 25, 2018, Name K = Cs/Cm k = (tr tm)/tm tr = tr tm = tr2 /tr1 = K2/K1 H = L/N = 2 /L Rs = tr/wavg R s t r, B r, A N t t r, B 4 70 total points. 14 questions @ 5 points each.s 1] Sketch

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

2401 Gas (liquid) Chromatography

2401 Gas (liquid) Chromatography 2401 Gas (liquid) Chromatography Chromatography Scheme Gas chromatography - specifically gas-liquid chromatography - involves a sample being vaporized and injected onto the head of the chromatographic

More information

Luminescence Spectroscopy Excitation is very rapid (10-15 s). Vibrational relaxation is a non-radiational process. It involves vibrational levels of

Luminescence Spectroscopy Excitation is very rapid (10-15 s). Vibrational relaxation is a non-radiational process. It involves vibrational levels of Luminescence Spectroscopy Excitation is very rapid (10-15 s). Vibrational relaxation is a non-radiational process. It involves vibrational levels of the same electronic state. The excess of vibrational

More information

ELECTROCHEMISTRY Chapter 14

ELECTROCHEMISTRY Chapter 14 ELECTROCHEMISTRY Chapter 14 Basic Concepts: Overview of Electrochemical Process at Constant T, P (14-1) ΔG = ΔG o + RT ln Q = w elec (maximum) = qe = ItE (exp) (E intensive parameter, q extensive) = nfe

More information

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers.

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers. CHEM 322 Name Fall 2012 Due In Class Friday, Oct. 19 Complete the following on separate paper. Show your work and clearly identify your answers. General Separations 1. Describe the relative contributions

More information

2. a) R N and L N so R L or L R 2.

2. a) R N and L N so R L or L R 2. 1. Use the formulae on the Some Key Equations and Definitions for Chromatography sheet. a) 0.74 (remember that w b = 1.70 x w ½ ) b) 5 c) 0.893 (α always refers to two adjacent peaks) d) 1.0x10 3 e) 0.1

More information

Volatile organic compounds (VOCs):

Volatile organic compounds (VOCs): Volatile organic compounds (VOCs): Organic chemicals with a high vapour pressure at room temperature. High vapour pressure results from a low boiling point. The World Health Organization (WHO) defined

More information

ELECTROCHEMISTRY I. The science concerned with the study of electron transfer across phase boundary

ELECTROCHEMISTRY I. The science concerned with the study of electron transfer across phase boundary ELECTROCHEMISTRY I The science concerned with the study of electron transfer across phase boundary Electrode: Is a conducting material immersed in a media. Electrode potential: Is the potential difference

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Chromatography: sample transported by mobile phase electrostatic

More information

AN INTRODUCTION TO ATOMIC SPECTROSCOPY

AN INTRODUCTION TO ATOMIC SPECTROSCOPY AN INTRODUCTION TO ATOMIC SPECTROSCOPY Atomic spectroscopy deals with the absorption, emission, or fluorescence by atom or elementary ions. Two regions of the spectrum yield atomic information- the UV-visible

More information

Gas Chromatography. Chromatography Laboratory Course. Dr. Christian Jungnickel Chromatography Course GC September 2005

Gas Chromatography. Chromatography Laboratory Course. Dr. Christian Jungnickel Chromatography Course GC September 2005 Gas Chromatography Chromatography Laboratory Course The laboratory course experiments General Aim: Gain general experience using a GC Constant Injection technique Temperature variations Qualitative and

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 1 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

very high temperature for excitation not necessary generally no plasma/arc/spark AAS

very high temperature for excitation not necessary generally no plasma/arc/spark AAS Atomic Absorption Spectrometry (Chapter 9) AAS intrinsically more sensitive than AES similar atomization techniques to AES addition of radiation source high temperature for atomization necessary flame

More information

Spectroscopy. Page 1 of 8 L.Pillay (2012)

Spectroscopy. Page 1 of 8 L.Pillay (2012) Spectroscopy Electromagnetic radiation is widely used in analytical chemistry. The identification and quantification of samples using electromagnetic radiation (light) is called spectroscopy. Light has

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

Chapter 26. An Introduction to Chromatographic Separations. Chromatography

Chapter 26. An Introduction to Chromatographic Separations. Chromatography Chapter 26 An Introduction to Chromatographic Separations Chromatography 1 Chromatography-Model as Extraction Chromatography-Model as Extraction 2 Chromatography Planar Chromatography-Types paper chromatography

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

CH. 21 Atomic Spectroscopy

CH. 21 Atomic Spectroscopy CH. 21 Atomic Spectroscopy 21.1 Anthropology Puzzle? What did ancient people eat for a living? Laser Ablation-plasma ionization-mass spectrometry CH. 21 Atomic Spectroscopy 21.2 plasma In Atomic Spectroscopy

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2 Goals 43 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

Ch24. Gas Chromatography (GC)

Ch24. Gas Chromatography (GC) Ch24. Gas Chromatography (GC) 24.1 What did they eat in the year 1000? From 13 C content of cholesterol in ancient bone 13 C : 1.1%, 12 C: 98.9% 13 C/ 12 C ratio types of plants Bones of 50 people in Barton-on-Humber

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing)

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Chromatography Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Invention of Chromatography Mikhail Tswett invented chromatography

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography High Performance Liquid Chromatography What is HPLC? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube packed with a tiny particles (stationary phase).

More information

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious Goals 41 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

HPLC Background Chem 250 F 2008 Page 1 of 24

HPLC Background Chem 250 F 2008 Page 1 of 24 HPLC Background Chem 250 F 2008 Page 1 of 24 Outline: General and descriptive aspects of chromatographic retention and separation: phenomenological k, efficiency, selectivity. Quantitative description

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

Gas Chromatography CHEM Dr. Reem M. Alghanmi st term

Gas Chromatography CHEM Dr. Reem M. Alghanmi st term Gas Chromatography CHEM 313-5 Dr. Reem M. Alghanmi 2017 1 st term 17.7 Gas Chromatography Introduction There are two types of gas chromatography: Gas-solid (adsorption) chromatography. Gas-liquid (partition)

More information

Chromatography. Mrs. D. MEENA MPharm PA & QA KTPC

Chromatography. Mrs. D. MEENA MPharm PA & QA KTPC Chromatography Mrs. D. MEENA MPharm PA & QA KTPC INTRODUCTION ANALYTICAL TECHNIQUES Analytical chemistry involves separating, identifying and determining the relative amount of the components in a sample

More information

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Electrochemistry Chapter 18 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Electrochemical processes are oxidation-reduction reactions in which: the energy

More information

Chromatography and other Separation Methods

Chromatography and other Separation Methods Chromatography and other Separation Methods Probably the most powerful class of modern analytical methods for analyzing mixture of components---and even for detecting a single component in a complex mixture!

More information

Electrochem 1 Electrochemistry Some Key Topics Conduction metallic electrolytic Electrolysis effect and stoichiometry Galvanic cell Electrolytic cell Electromotive Force (potential in volts) Electrode

More information

Principles of Gas- Chromatography (GC)

Principles of Gas- Chromatography (GC) Principles of Gas- Chromatography (GC) Mohammed N. Sabir January 2017 10-Jan-17 1 GC is a chromatographic technique utilizes gas as the mobile phase which is usually an inert gas (Hydrogen, Helium, Nitrogen

More information

Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT.

Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. CHEM 322 Name Exam 3 Spring 2013 Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. Warm-up (3 points each). 1. In Raman Spectroscopy, molecules are promoted

More information

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions Spin States Molecular Rotations Molecular Vibrations Outer Shell Electrons Inner Shell Electrons Nuclear Transitions NMR EPR Microwave Absorption Spectroscopy Infrared Absorption Spectroscopy UV-vis Absorption,

More information