CHAPTER 8 POLLUTION PREVENTION AND UNIT OPERATIONS

Size: px
Start display at page:

Download "CHAPTER 8 POLLUTION PREVENTION AND UNIT OPERATIONS"

Transcription

1 CHAPTER 8 POLLUTION PREVENTION AND UNIT OPERATIONS

2 UNIT OPERATIONS AND POLLUTION PREVENTION - Chemical Reactors - Separation Devices - Separative Reactors - Storage Tanks and Fugitive Sources

3 Pollution Prevention for Chemical Reactors In the designing of chemical reactors for pollution prevention there are important considerations : Raw materials, products and byproducts Conversion yield and selectivity for the desired product To establish reaction type and make the reactor choice Definition of the reactor operation

4 Selection of Reactors and Material Selection The selection of materials has an influence on the environmental impacts caused by reactors in chemical processes. For materials used in a reactor it is important to consider : The choice of feed entering the reactor The catalyst (if one is needed) Solvents or diluents

5 Selection of Reactors and Material Selection Raw Materials and Feedstocks Raw materials and feedstocks used in chemical processes should not pose toxic threats to the environment or to human health. New process chemistry may need to be adopted if raw materials are eliminated or substituted. If toxic compounds are being used, they should be replaced with an equivalent, but less toxic, substance.

6 Solvents are very useful and important in the chemical process and due to their high volatility cause : - Tropospheric (low-level) ozone occuring from smog - Health concerns for workers Selection of Reactors and Material Selection Solvents - Health concerns for the general population in the vicinity of the facility

7 Selection of Reactors and Material Selection Solvent Selection Some criteria to consider for solvent selection : The solvent s properties The byproducts generated and their properties The potential health impacts to the workers and to the general population The potential environmental repercussions

8 Selection of Reactors and Material Selection Catalysts Catalyst : a substance that is added to a chemical reaction mixture in order to accelerate the rate of reaction. Type of Catalysts : homogeneous, which is one phase with the reaction mixture heterogeneous, which exists in a phase other then the reacting mixture, (typically existing as a solid within a reacting fluid mixture)

9 Selection of Reactors and Material Selection Benefits of Catalysts - Allow the use of more environmentally benign raw materials - Directly create more environmentally acceptable products from reactions - Increases selectivity toward the desired product and away from unwanted byproducts (wastes) - Converts waste chemicals into raw materials

10 Selection of Reactors and Material Selection Catalyst Selection Important considerations regarding catalyst selection include : - End disposal of the catalyst - The possiblity of regenerating it Because these two issues may have important environmental impacts, it is desirable to regenerate the catalyst as many times as possible and /or use minimal energy or materials to regenerate it instead of disposing of it.

11 Selection of a Reactor : Reaction Type and Reactor Choice Features that influence pollution prevention opportunities and strategies for selecting a chemical reactor : Chemical reaction mechanism The reaction order Series or parallel reaction pathways, Reversiblity These details will determine the optimum reactor temperature, residence time, and mixing.

12 Selection of a Reactor : Reaction Type and Reactor Choice As a general rule, a desirable reaction includes : - A very high conversion of the reactants - High selectivity toward the desired product - Low selectivity toward any byproducts.

13 Conversion and Selectivity Equations Reactant conversion (reaction yield): ratio of the existing concentration of product to inlet reactant: R P [P] / [R] o Reaction selectivity: ratio of existing product concentration to the undesired byproduct concentration R P + W [P] / [W] Modified Selectivity is the ratio of exiting product concentration to the sum of product and byproduct (waste) concentrations: [P] / ([P]+[W]) = [P] / [Reactant consumed]

14 Types of Reactions Parallel reactions pathways are very common in the chemical industry. These kind of reactions are in competition of the main reactions (undesirable). k p R P k w R W Also series reactions, it s when a reaction is followed of other one, consecutively (one after other). R P W

15 Types of Reactions Optimizing the reaction in serial reactions: * k p / k w must be as large as possible * Control of the reaction residence time k p and k w [=] reaction constants of product and waste respectively Reversible reactions, are reactions where there is a competition between two reactions: one towards the desired product and the other one is of the decomposition of the product (in the opposite direction). R P This kind of reaction inhibits full conversion of reactants to products.

16 Types of Reactors - Continuous-flow stirred-tank reactor (CSTR), consists of a batch of reaction stirred at certain parameters settled. - Plug flow reactor, can be staged and each stage can be operated at different conditions to minimize waste formation - Fixed-bed catalytic reactor, that is used when hot spots are a problem for highly exotermic reactions (it will likely avoid the unwanted temperature excursions)

17 Reaction Temperatures Can influence the : - Degree of conversion of reactants to products - Product yield - Product selectivity Temperature is changed above or below the initial temperature: ΔT = + T o or T o Ratio of [product] / [byproduct] T (direct ratio) Therefore pollution can be prevented in parallel (and also series) reactions by increasing reactor temperature generally

18 Mixing It s the addition of two or more raw materials into a reactor to assure contact or collisions occur between substances in order for the chemical reaction to occur. This effect of mixing occurs for both : - Homogeneous and heterogeneous reaction systems - Batch or semi-batch reactors

19 Mixing The factors that influence/are affected by mixing are: - The reaction must be mixed instantaneously at a molecular level. - The rate of reaction can be reduced because of diffusional limitations between segregated elements of the reaction mixture. - Problems with imperfect mixing are particularly evident for rapidly reacting systems. In these situations, reactants are significantly converted to products and byproducts before mixing is complete.

20 Pollution Prevention for Separation Units Separation tecnologies are one of the most important unit operations found in chemical processes : As the mixtures and chemical reactions are not 100% efficient, it is necessary to separate chemical components from one another prior to subsequent processing steps. Separation unit operations generate waste because: The separation steps themselves are not 100% efficient Require addtional energy input Require waste treatment to deal with off-spec products

21 Pollution Prevention for Seperation Units Choice of Mass Separating Agent Selectin a mass seperation agent (chemical compound like solvent) is an important issue for pollution prevention in order to avoid: - Exposure to toxic substances for facility workers and consumers who use the final product. - Excessive energy consuption in the recovery of the solvent or other raw materials - Associated health impacts of the emitted criteria pollutants (CO, CO 2, NOx, and SOx, particulate matter)

22 Pollution Prevention for Separation Units Choice of Mass Separating Agent Adsorption is when a chemical dissolved in a liquid or a gas phase will preferentially become immobilized on the surface of a solid matrix (adsorbent) packed with a column. - Separation and recovery of toxic metal ions from aqueous streams is one of the very important application of adsorption

23 Operation Design and Operation Heuristics for Separation Technologies Air Chemical process WASTE Water Soil While it may be difficult or impossible to eliminate all waste streams, it is certain that wastes can be minimized by: - Judicious choice of mass separating agent - Correct choice and sequencing of separation technologies - Careful control of system parameters during operation.

24 Minimizing Waste from Seperation Technologies - Making the correct choice of type of separating process (i.e.: adsorption, distillation, dialysis, etc.) - Considering several pollution prevention heuristics to guide the design of the flowsheet and operation of the units - Associating streams of the process by simmilar compositions - Avoidint the addition of chemical compounds to improve separation (i.e. corrososive), unless necessary

25 Minimizing Waste from Seperation Technologies Continued - Reduce as much as possible the number of components of simmilar component properties - When adding separating agents, remove it in the next step of the process of separation using an energy separating agent technology - The process should avoid separation technologies that operate far from ambient temperature and pressure.if large variations from ambient temperature are required, it is more economical to operate above rather than below.

26 Types of Separation Technologies : It is used for over 90% of the separation applications in chemical processing. Distillation columns contribute to process waste in four ways: a) By allowing impurities to remain in a product b) By forming waste within the column itself c) By inadequate condensing of overhead product d) By excessive energy use Distillation Columns

27 Types of Seperation Technologies : Distillation Columns Optimizing Use of Distillation Columns The most common way to increase product purity in distillation are: - To increase the reflux ratio. - If a column is operating close to flooding (increasing reflux ratio is not an option), then adding a section to the column leads to higher-purity products. There are several ways to decrease the generation of tars in the reboiler of the column: - Reducing the column pressure, resulting in lower reboiler temperatures. - Improving the process control technology = product purity specifications will be met

28 REACTOR + SEPERATOR = REDUCTION OF BY- PRODUCTS Examples: Pollution Prevention for Reactors and Seperators Distillation: - Solvent recovery from waste water - Ink and solvent recycle - Batch distillation of used antifreeze - Solvent recovery and reuse in automobile paint operations

29 Pollution Prevention for Reactors and Seperators (cont) Extraction: - Extraction of a batch process residue - Hydrocarbon recovery from refinery wastewater and sludge Reverse Osmosis: - Closed-loop rinsewater for process electroplating - Recovery of homogeneous metal catalysis Ultrafiltration: - Polymer recovery from wastewater

30 Pollution Prevention for Reactors and Seperators (cont) Adsorption: - Natural gas dehydration - Replacement of azeotropic distillation (benzene, ciclohexane) Membranes: - Recovery and recycle of high-value volatile organic compounds - Recovery of organic compounds fron wastewater streams - Metal ion recovery from aqueous waste streams

31 Pollution Prevention Applications for Separative Reactors The separative reactor has a very high potential for reducing waste generation: - Hybrid systems that combine chemical reactions and product separation in a single process unit. - When chemical reaction and separation ocurr in concert, the requirements for downstream processing units are reduced, leading to lower capitals costs. - Unwanted byproduct generation can be minimized in series reactions by the removal of the desired product - Separation units that have been integrated with reaction include distillation, membrane separation, and adsoption.

32 Pollution Prevention Applications for Membrane Separative Reactiors Reaction coupled with membrane separation also is used to increase the efficiency of chemical reactions: - Can be used to selectively remove either products or byproducts from the reaction zone - Overcoming low conversions in equilibrium-limited reactions and reduce waste generation in series reactions. - Can also be used to selectively permeate reactants into the reaction zone in order to control excessive byproduct formation (e.g. Permeation of O 2 in partial oxidation or oxidative coupling reactions).

33 Pollution Prevention Applications for Membrane Separative Reactiors Additional challenges remain before commercial application of membrane separative reactors can be realized. These include: a) Economical manufacture of thin, defect-free selective membrane layers over large surface areas b) Leak-free reaction systems with high temperature seals c) Elimination or reduction of sweep gases which dilute product streams d) Enhanced membrane and catalyst performance, including resistance to foulding and deactivation

34 Pollution Prevention for Storage Tanks and Fugitive Sources - Storage Tanks - Fugitive Sources (valves, pumps, piping conectors, pressure relief valves, sampling conections, compressor seals, and openended lines)

35 Pollution Prevention for Storage Tanks Storage tanks are very common unit operations in several industrial sectors: Petroleum production and refining Petrochemical and chemical manufaturing, storage and transportation Other industries that either use or produce organic liquid chemicals.

36 Pollution Prevention for Storage Tanks The main environmental impact of storage tanks: - Continual occurrence of air emissions of volatile organic compounds (VOC s) from roof vents - Periodic removal of oily sludges from tank bottoms. Tank bottoms are: - Solids or sludges composed of rusts, soil particles, heavy feedstock constituents, and other dense materials that are likely to settle out of the liquid being stored.

37 Minimizing Pollution from Tank Bottom Sludges Sludges from tank bottoms may be periodically removed and either treated via land aplication or disposed of as hazardous waste. They may be prevented from settling to the tank bottom: By the action of mixers that keep the solid particles suspended in the liquid. The use of emulsifing agents that keep water and solids in solution and out of the tank bottoms.

38 Minimizing Pollution from Storage Tank Air Emissions Air emissions of VOC s from storage tanks are mainly from petroleum and chemical processing facilities: Working losses are the emission that stem from the normal operation of the chemical processing in response to the changes in liquid level within the tank Standing losses are the emissions caused by the action of ambient changes in temperature and pressure

39 Minimizing Pollution from Storage Tank Air Emissions The emissions from tanks are dependent on : - Vapor pressure of the stored liquids - Tank caracteristics (it s type) - Paint color and condition (of the tank) - Geographic location of the tank There are 6 major types of storage tanks: - Fixed roof - External floating roof - Internal floating roof - Domed external floating roof - Variable vapor space - Pressure tanks

40 Reducing Emissions from Fugitive Sources Within individual components, leaks are localized near seals, valve packing and gaskets. These leaks are of two types: - Low-level leaks that may persist for long periods of time until detected - Sudden episodic failures resulting in a large release Leaks can be prevented or repaired, and leakless technologies are available for situations where even small rates of release cannot be tolerated

41 Methods to Reduce Fugitive Emissions There are two methods for reducing or preventing emissions and leaks from fugitive sources in the industry : 1) Leak detection and repair (LDAR) of leaking equipment 2) Equipment modification or replacement with emissionless technologies

42 Methods to Reduce Fugitive Emissions LDAR Program - Equipment such as pumps and valves are monitored periodically using an organic vapor analyzer (OVA). - The wand of OVA is directed towards the suspected source of leakage on each piece of equipment ( i.e. at a packing nut on a valve, at a shaft seal on a pump.) - If the source registers an OVA reading over a threshold value, the quipment is said to be leaking and repair is required.

43 Methods to Reduce Fugitive Emissions The nature of the repairs varies : - It may involve something as simple as tightening a packing nut on a valve - It may require replacement of a seal on a pump or a gasket in a connector. Industrial LDAR programs vary greatly: - Frecuency of monitoring and their effectiveness (monthly, quarterly, or annual basis using an OVA is the preferred approach) - Problems in detecting low concentrations of VOCs - Intensity of monitoring (area) - Costs of monitoring: establich the frecuency of monitoring

44 Methods to Reduce Fugitive Emissions Reducing fugitive emissions might involve: - Equipment modification (redesigning a process) - Considering fewer pieces of equipment and connections - Replacing leaking equipment with new conventional equipment.

Lecture 25: Manufacture of Maleic Anhydride and DDT

Lecture 25: Manufacture of Maleic Anhydride and DDT Lecture 25: Manufacture of Maleic Anhydride and DDT 25.1 Introduction - In this last lecture for the petrochemicals module, we demonstrate the process technology for Maleic anhydride and DDT. - Maleic

More information

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre Chemical Reaction Engineering Multiple Reactions Dr.-Eng. Zayed Al-Hamamre 1 Content Types of Reactions Selectivity Reaction Yield Parallel Reactions Series Reactions Net Rates of Reaction Complex Reactions

More information

IV Distillation Sequencing

IV Distillation Sequencing IV Distillation Sequencing Outline 1. Basic Concepts of Distillation Sequence Design 2. Choice of Sequence and its Operating Pressure. 3. Performance of Distillation Column (Sieve tray and packed tower)

More information

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 2 Flowsheet Synthesis (Conceptual Design of

More information

January 19, 2012, Workshop on Chemical Data Reporting (CDR) Rule Case Studies for Byproduct/Recycling Reporting

January 19, 2012, Workshop on Chemical Data Reporting (CDR) Rule Case Studies for Byproduct/Recycling Reporting January 19, 2012, Workshop on Chemical Data Reporting (CDR) Rule Case Studies for Byproduct/Recycling Reporting Scenario 1 In its operations, ABC Company uses an etchant to strip copper off of a substrate.

More information

Physicochemical Processes

Physicochemical Processes Lecture 3 Physicochemical Processes Physicochemical Processes Air stripping Carbon adsorption Steam stripping Chemical oxidation Supercritical fluids Membrane processes 1 1. Air Stripping A mass transfer

More information

Technical Resource Package 1

Technical Resource Package 1 Technical Resource Package 1 Green Chemistry Impacts in Batch Chemical Processing UNIDO IAMC Toolkit Images may not be copied, transmitted or manipulated 1/5 The following list provides an overview of

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

Environmental Evaluation and Improvement During Process Synthesis - Chapter 9 (b) David R. Shonnard Department of Chemical Engineering

Environmental Evaluation and Improvement During Process Synthesis - Chapter 9 (b) David R. Shonnard Department of Chemical Engineering Environmental Evaluation and Improvement During Process Synthesis - Chapter 9 (b) David R. Shonnard Department of Chemical Engineering 1 Chapter 9 (b): Outline After the Input-Output structure is established,

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

SEPARATION BY BARRIER

SEPARATION BY BARRIER SEPARATION BY BARRIER SEPARATION BY BARRIER Phase 1 Feed Barrier Phase 2 Separation by barrier uses a barrier which restricts and/or enhances the movement of certain chemical species with respect to other

More information

Types of Chemical Reactors. Nasir Hussain Production and Operations Engineer PARCO Oil Refinery

Types of Chemical Reactors. Nasir Hussain Production and Operations Engineer PARCO Oil Refinery Types of Chemical Reactors Nasir Hussain Production and Operations Engineer PARCO Oil Refinery Introduction Reactor is the heart of Chemical Process. A vessel designed to contain chemical reactions is

More information

Distillation. Presented by : Nabanita Deka

Distillation. Presented by : Nabanita Deka Distillation OPTIMIZATION FOR MAXIMISATION Presented by : Nabanita Deka LPG department OIL INDIA LIMITED DATED-04.03.2011 Basics of mass transfer Mass transfer : Transfer of material from one homogeneous

More information

The Role of Process Integration in Process Synthesis

The Role of Process Integration in Process Synthesis The Role of Process Integration in Process Synthesis Jeffrey J. Siirola Purdue University, West Lafayette, Indiana Carnegie Mellon University, Pittsburgh, Pennsylvania "Process integration" and "process

More information

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry TYPICAL SOLVENT USE IN Pharma Industry Usage of solvents in an API process development is for: Diluent to carry out reaction

More information

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz,

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz, Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Multiple reactions are usually present So far we have considered reactors in which only

More information

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate 1 Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate ME Zeynali Petrochemical Synthesis Group, Petrochemical Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O.

More information

Module: 7. Lecture: 36

Module: 7. Lecture: 36 Module: 7 Lecture: 36 DIMETHYL FORMAMIDE INTRODUCTION Dimethylformamide is an organic compound and denotes as DMF. The name is derived from the fact that it is a derivative of formamide, the amide of formic

More information

Lecture 7. Sorption-Separation Equipment

Lecture 7. Sorption-Separation Equipment Lecture 7. Sorption-Separation Equipment Adsorption - Stirred-tank, slurry operation - Cyclic fixed-bed batch operation - Thermal (temperature)-swing adsorption - Fluidizing bed for adsorption and moving

More information

Module: 7. Lecture: 36

Module: 7. Lecture: 36 Module: 7 Lecture: 36 DIMETHYL FORMAMIDE INTRODUCTION Dimethylformamide is an organic compound and denotes as DMF. The name is derived from the fact that it is a derivative of formamide, the amide of formic

More information

Distillation is a method of separating mixtures based

Distillation is a method of separating mixtures based Distillation Distillation is a method of separating mixtures based on differences in their volatilities in a boiling liquid mixture. Distillation is a unit operation, or a physical separation process,

More information

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 2 Flowsheet Synthesis (Conceptual Design of

More information

Level 2: Input output structure

Level 2: Input output structure Level : Input output structure Cheng-Ching Yu Dept of Chem. Eng. National Taiwan University ccyu@ntu.edu.tw 0-3365-1759 1 Input/output Structure Hierarchy of decisions 1. batch versus continuous. Input-output

More information

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 1: EXPERIMENTAL CHEMISTRY 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 1: EXPERIMENTAL CHEMISTRY

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 1: EXPERIMENTAL CHEMISTRY 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 1: EXPERIMENTAL CHEMISTRY 5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 1: EXPERIMENTAL CHEMISTRY 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 1: EXPERIMENTAL CHEMISTRY SUB-TOPIC 1.2 METHODS OF PURIFICATION AND ANALYSIS LEARNING

More information

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34 POSITION R & D Officer M.Tech Candidates having M.Tech / M.E. Chemical Engg. with 60% marks (aggregate of all semesters/years) and 50% for SC/ST/PWD are being called for Computer Based Test basis the information

More information

FDE 211 Material & Energy Balances. Instructor: Dr. Ilgin Paker Yikici Fall 2015

FDE 211 Material & Energy Balances. Instructor: Dr. Ilgin Paker Yikici Fall 2015 FDE 211 Material & Energy Balances Instructor: Dr. Ilgin Paker Yikici Fall 2015 Agenda Process classification General mass balance equation Basic functions of Processes Process Flow Diagram Degree of Freedom

More information

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Recovery of Aromatics from Pyrolysis Gasoline by Conventional

More information

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati Module - 02 Flowsheet Synthesis (Conceptual Design of a Chemical

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING CHEMICAL ENGINEERING Subject Code: CH Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Section B Section C Section D Section E Section F Section G Section H Section I

More information

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Nikhil V. Sancheti Department of Chemical Engineering L.I.T., Nagpur, Maharashtra,

More information

Heterogeneous Azeotropic Distillation Operational Policies and Control

Heterogeneous Azeotropic Distillation Operational Policies and Control Heterogeneous Azeotropic Distillation Operational Policies and Control Claudia J. G. Vasconcelos * and Maria Regina Wolf-Maciel State University of Campinas, School of Chemical Engineering, Campinas/SP,

More information

the study of things all around us, its properties, what makes it up and how things can change.

the study of things all around us, its properties, what makes it up and how things can change. Vocabulary Word Definition Chemistry the study of things all around us, its properties, what makes it up and how things can change. Matter Matter is the stuff all around us: your computer, the air you

More information

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth University of Groningen Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

State how a catalyst speeds up a chemical reaction. ...

State how a catalyst speeds up a chemical reaction. ... Q1. This question is about the use of transition metals as catalysts. (a) State how a catalyst speeds up a chemical reaction. State the characteristic property of transition metals that enables them to

More information

Lecture 1: Orientation

Lecture 1: Orientation Lecture 1: Orientation 1.1 Why a chemical engineer needs expertise in process technology? A process engineer at operation in chemical plant shall have a deeper understanding of the technology on which

More information

C (s) + O 2 (g) CO 2 (g) S (s) + O 2 (g) SO 2 (g)

C (s) + O 2 (g) CO 2 (g) S (s) + O 2 (g) SO 2 (g) Combustion The rapid combination of oxygen with a substance. A major type of chemical reaction. When elemental carbon or carbon-containing compounds burn in air, oxygen combines with the carbon to form

More information

Design of Process Equipment-Distillation Column, CSTR and Adsorber. Introduc)on Equipments. Department of Chemical Engineering SRM University

Design of Process Equipment-Distillation Column, CSTR and Adsorber. Introduc)on Equipments. Department of Chemical Engineering SRM University Design of Process Equipment-Distillation Column, CSTR and Adsorber Introduc)on Equipments Department of Chemical Engineering SRM University 1 Distillation Dis)lla)on is the separa)on of liquid mixtures

More information

Reactors. Reaction Classifications

Reactors. Reaction Classifications Reactors Reactions are usually the heart of the chemical processes in which relatively cheap raw materials are converted to more economically favorable products. In other cases, reactions play essential

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Acetone Process Energy Recovery by Means of Energy Analysis

Acetone Process Energy Recovery by Means of Energy Analysis Chemical Engineering Letters: Modeling, Simulation and Control 3 (2018) 16 21 Chemical Engineering Letters: Modeling, Simulation and Control Journal Homepage: www.sciera.org/index.php/celmsc Acetone Process

More information

Process Classification

Process Classification Process Classification Before writing a material balance (MB) you must first identify the type of process in question. Batch no material (mass) is transferred into or out of the system over the time period

More information

Chemical Engineering

Chemical Engineering Chemical Engineering Basic Principles: Energy and material balances Transport Processes Momentum Transfer: Fluid Flow Energy Transfer: Heat Mass Transfer: mixing and separation processes Physical and Chemical

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

Chapter 8: Reaction Rates and Equilibrium

Chapter 8: Reaction Rates and Equilibrium Chapter 8: Reaction Rates and Equilibrium ACTIVATION ENERGY In some reaction mixtures, the average total energy of the molecules is too low at the prevailing temperature for a reaction to take place at

More information

ERT 208 REACTION ENGINEERING

ERT 208 REACTION ENGINEERING ERT 208 REACTION ENGINEERING MOLE BALANCE MISMISURAYA MEOR AHMAD School of bioprocess engineering Unimap Course Outcome No.1: Ability to solve the rate of reaction and their kinetics. objectives DESCRIBE

More information

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Mass Transfer Lab

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Mass Transfer Lab DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore Mass Transfer Lab Introduction Separation equipments account for a major part of the capital investment in process industry.

More information

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as:

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rates of Reaction Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rate = change in concentration units: mol

More information

Level 4: General structure of separation system

Level 4: General structure of separation system Level 4: General structure of separation system Cheng-Ching Yu Dept of Chem. Eng. National Taiwan University ccyu@ntu.edu.tw 02-3365-1759 1 Separation Systems Typical reaction/separation structure Remark:

More information

INDUSTRIAL CHEMISTRY THE PRODUCTION OF NITRIC ACID

INDUSTRIAL CHEMISTRY THE PRODUCTION OF NITRIC ACID INDUSTRIAL CHEMISTRY THE PRODUCTION OF NITRIC ACID Many reactions proceed too slowly under normal conditions of temperature and pressure. Some reactions proceed at very fast rates but produce very small

More information

Chemicals and petroleum industries account for 50% of industrial energy usage.

Chemicals and petroleum industries account for 50% of industrial energy usage. Chemicals and petroleum industries account for 50% of industrial energy usage. ~1/4 of the energy used is consumed in distillation and drying processes. 15 Biomaterials [Carbohydrates, Proteins, Lipids]

More information

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts Handouts Handout 1: Practical reactor performance deviates from that of ideal reactor s : Packed bed reactor Channeling CSTR & Batch Dead Zones, Bypass PFR deviation from plug flow dispersion Deviation

More information

MODULE 5: DISTILLATION

MODULE 5: DISTILLATION MOULE 5: ISTILLATION LECTURE NO. 3 5.2.2. Continuous distillation columns In contrast, continuous columns process a continuous feed stream. No interruptions occur unless there is a problem with the column

More information

General Separation Techniques

General Separation Techniques ecture 2. Basic Separation Concepts (1) [Ch. 1] General Separation Techniques - Separation by phase creation - Separation by phase addition - Separation by barrier - Separation by solid agent - Separation

More information

2Fe 2 O 3 +3H 2 S FeS+FeS x +S+3H 2 O

2Fe 2 O 3 +3H 2 S FeS+FeS x +S+3H 2 O Elemental analysis of hydrocarbon streams using Dry colorimetry analyzers, a catalyst saviour Bushra Dawood, Application Coordinator C.I. Analytics www.cianalytics.com The Petrochemical industry has refined

More information

Removal of suspended and dissolved organic solids

Removal of suspended and dissolved organic solids Removal of suspended and dissolved organic solids Types of dissolved solids The dissolved solids are of both organic and inorganic types. A number of methods have been investigated for the removal of inorganic

More information

THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti

THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti Unit of Medicinal Chemistry LIFE-EDESIA workshop Milan, Dicember 10 th 2014 THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti Università degli

More information

In terms of production, nitric acid is the third most widely produced acid across the world.

In terms of production, nitric acid is the third most widely produced acid across the world. In terms of production, nitric acid is the third most widely produced acid across the world. It has a wide range of uses in agriculture, industry and medicine where it is used as a fertiliser and in the

More information

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Outline: Introduction to multicomponent distillation Phase Equilibria in Multicomponent Distillation (Pg. 737) Bubble-point and dew-point calculation

More information

Structure of the chemical industry

Structure of the chemical industry CEE-Lectures on Industrial Chemistry Lecture 1. Crystallization as an example of an industrial process (ex. of Ind. Inorg. Chemistry) Fundamentals (solubility (thermodynamics), kinetics, principle) Process

More information

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00 10.551 Systems Engineering Spring 2000 Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant Date: 2/25/00 Due: 3/3/00 c Paul I. Barton, 14th February 2000 At our Nowhere City

More information

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1 (Refer Slide Time: 00:19) Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay Lecture - 03 Design Equations-1 We are looking at advanced reaction engineering;

More information

STATE OF COLORADO DESIGN CRITERIA FOR POTABLE WATER SYSTEMS WATER QUALITY CONTROL DIVISION. Price: $5.00. Revised March 31, 1997

STATE OF COLORADO DESIGN CRITERIA FOR POTABLE WATER SYSTEMS WATER QUALITY CONTROL DIVISION. Price: $5.00. Revised March 31, 1997 STATE OF COLORADO DESIGN CRITERIA FOR POTABLE WATER SYSTEMS WATER QUALITY CONTROL DIVISION Revised March 31, 1997 Price: $5.00 a. an arrangement where the water pipe to be injected with chlorine enters

More information

CHLORINE RECOVERY FROM HYDROGEN CHLORIDE

CHLORINE RECOVERY FROM HYDROGEN CHLORIDE CHLORINE RECOVERY FROM HYDROGEN CHLORIDE The Project A plant is to be designed for the production of 10,000 metric tons per year of chlorine by the catalytic oxidation of HCl gas. Materials Available 1.

More information

Figure 1. Pore size distribution

Figure 1. Pore size distribution Product Information '2:(;Ã237,325(Ã/ÃDQGÃ9 Polymeric Adsorbents Dow has developed a new polymeric adsorbent type for the concentration of organics from air and water. Key features of these adsorbents are:

More information

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR Stephen A. Birdsell and R. Scott Willms Los Alamos National Laboratory MS C348, Los Alamos, New Mexico 87545 ABSTRACT A large quantity of

More information

Lecture 6: 3/2/2012 Material Balances

Lecture 6: 3/2/2012 Material Balances Lecture 6: 3/2/2012 Material Balances 1 Chapter 6: Introduction to Material Balance Objectives: 1. Understand the features of process, system, open, closed, steady-state, and unsteady-state systems. 2.

More information

Chemical Oxidation Oxidizing agents

Chemical Oxidation Oxidizing agents Chemical Oxidation CENG 4710 Environmental Control Chemical oxidation is used to detoxify waste by adding an oxidizing agent to chemically transform waste compounds. It is capable of destroying a wide

More information

Integrated Knowledge Based System for Process Synthesis

Integrated Knowledge Based System for Process Synthesis 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Integrated Knowledge Based System for Process Synthesis

More information

Complex Compounds Background of Complex Compound Technology

Complex Compounds Background of Complex Compound Technology Complex Compounds For more than 20 years, Rocky Research has been a pioneer in the field of sorption refrigeration utilizing complex compounds. Our technology earned special recognition from NASA in 1999.

More information

GREEN ENGINEERING PRINCIPLE

GREEN ENGINEERING PRINCIPLE GREEN ENGINEERING INNOVATIVE ION EXCHANGE TECHNOLOGY FOR TREATMENT OF AQUEOUS EFFLUENT STREAMS & DEVELOPING GREENER PROCESSES THROUGH RECOVERY & REUSE OF VALUABLE PRODUCTS. C. NANDI NOCIL LTD. GREEN ENGINEERING

More information

Development of Technologies for Recovery and Removal of Fluorinated Compounds Causing Global Warming Abstract of the Report

Development of Technologies for Recovery and Removal of Fluorinated Compounds Causing Global Warming Abstract of the Report Global Environment Research Coordination System Development of Technologies for Recovery and Removal of Fluorinated Compounds Causing Global WarmingAbstract of the Report Contact person Shigeru Futamura

More information

Lecture 29.Manufacture of Ethanol from Molasses

Lecture 29.Manufacture of Ethanol from Molasses Lecture 29.Manufacture of Ethanol from Molasses 29.1 Introduction Ethanol is a volatile, flammable, clear, colourless liquid. Ethanol is a good solvent. It is also used as a germicide, beverage, antifreeze,

More information

ADSORPTION. Briefly, adsorption is the surface accumulation of material.

ADSORPTION. Briefly, adsorption is the surface accumulation of material. ADSORPTION Briefly, adsorption is the surface accumulation of material. Adsorption is a unit operation in which dissolved constituents are removed from the solvent (water) by transfer to the surfaces of

More information

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM I-Lung Chien and Kai-Luen Zeng Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei

More information

International Journal of Scientific Research and Modern Education (IJSRME) ISSN (Online): (www.rdmodernresearch.com) Volume I, Issue I,

International Journal of Scientific Research and Modern Education (IJSRME) ISSN (Online): (www.rdmodernresearch.com) Volume I, Issue I, OXYGEN CONCENTRATORS A STUDY Mohammed Salique*, Nabila Rumane**, RohanBholla***, Siddharth Bhawnani**** & Anita Kumari***** Chemical Engineering Department, Thadomal Shahani Engineering College, Off Linking

More information

Prof. Em. E.F. Vansant

Prof. Em. E.F. Vansant EASTERN MACEDONIA AND THRACE INSTITUTE OF TECHNOLOGY HEPHAESTUS ADVANCED LABORATORY Prof. Em. E.F. Vansant University of Antwerp Department of Chemistry Material Science Lab Director Hephaestus Adv. Lab.

More information

Steady-State Molecular Diffusion

Steady-State Molecular Diffusion Steady-State Molecular Diffusion This part is an application to the general differential equation of mass transfer. The objective is to solve the differential equation of mass transfer under steady state

More information

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS Mario Roza, Eva Maus Sulzer Chemtech AG, Winterthur, Switzerland; E-mails: mario.roza@sulzer.com, eva.maus@sulzer.com

More information

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press I i Green Chemical Engineering An Introduction to Catalysis, Kinetics, and Chemical Processes S. Suresh and S. Sundaramoorthy CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an

More information

Steady State Multiplicity and Stability in a Reactive Flash

Steady State Multiplicity and Stability in a Reactive Flash Steady State Multiplicity and Stability in a Reactive Flash Iván E. Rodríguez, Alex Zheng and Michael F. Malone Department of Chemical Engineering University of Massachusetts Amherst, MA 01003 Abstract

More information

OCR Chemistry Checklist

OCR Chemistry Checklist Topic 1. Particles Video: The Particle Model Describe the main features of the particle model in terms of states of matter. Explain in terms of the particle model the distinction between physical changes

More information

Engineering Theory of Leaching

Engineering Theory of Leaching Engineering Theory of Leaching An approach to non-ideal reactors and scale- up of pressure leaching systems Presented by Lynton Gormely, P.Eng., Ph.D. The Problem given lab scale batch results, predict

More information

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net More reactors So far we have learned about the three basic types of reactors: Batch, PFR, CSTR.

More information

VOLATILE ORGANIC COMPOUNDS (VOC) REMOVAL BY PERVAPORATION IN A TUBULAR TYPE MEMBRANE MATHEMATICAL MODELLING AND PRELIMINARY TESTS

VOLATILE ORGANIC COMPOUNDS (VOC) REMOVAL BY PERVAPORATION IN A TUBULAR TYPE MEMBRANE MATHEMATICAL MODELLING AND PRELIMINARY TESTS VOLATILE ORGANIC COMPOUNDS (VOC) REMOVAL BY PERVAPORATION IN A TUBULAR TYPE MEMBRANE MATHEMATICAL MODELLING AND PRELIMINARY TESTS Ramin Nikpour Khoshgrudi a, Aleksandra Ciosek a, Michał Zalewski a, Maciej

More information

III Component Separation Fundamental

III Component Separation Fundamental III Component Separation Fundamental Outline Heterogeneous Separation: 1. Gas-liquid (or vapor liquid) 2. Gas solid (or vapor solid) 3. Liquid liquid (immiscible) 4. Liquid solid 5. Solid solid. Homogeneous

More information

Course: Practical Science with Chemistry Year: Teacher: Ziccardi

Course: Practical Science with Chemistry Year: Teacher: Ziccardi Course: Practical Science with Chemistry Year: 2015-2016 Teacher: Ziccardi Unit 1: UNIT TITLE: The Chemistry of Cooking Approximate Time Frame: 5-6 weeks Standards Essential Questions Enduring Understandings

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.6, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.6, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-490 Vol.8, No.6, pp 750-758, 015 Simulation of Fcc Riser Reactor using Five Lump Model Debashri Paul 1, Raghavendra Singh Thakur,

More information

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia Shortcut Distillation Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia The use of separation column in HYSYS The column utilities in HYSYS can be used to model a wide variety of

More information

Figure 4-1: Pretreatment schematic

Figure 4-1: Pretreatment schematic GAS TREATMENT The pretreatment process consists of four main stages. First, CO 2 and H 2 S removal stage which is constructed to assure that CO 2 would not exceed 50 ppm in the natural gas feed. If the

More information

THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016

THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016 THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016 CHEMICAL PLANT CONTINUOUS FLOW REACTOR The continuous flow reactor is a safe system, running chemical reactions in reduced volume with

More information

Abstract Process Economics Program Report 37B ACETIC ACID AND ACETIC ANHYDRIDE (November 1994)

Abstract Process Economics Program Report 37B ACETIC ACID AND ACETIC ANHYDRIDE (November 1994) Abstract Process Economics Program Report 37B ACETIC ACID AND ACETIC ANHYDRIDE (November 1994) This Report presents preliminary process designs and estimated economics for the manufacture of acetic acid

More information

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 01 Course Overview-1

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 01 Course Overview-1 Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay Lecture - 01 Course Overview-1 (Refer Slide Time: 00:21) Welcome, this is advanced reaction engineering

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

Module: 5. Lecture: 29

Module: 5. Lecture: 29 Module: 5 Lecture: 29 METHYL CHLORIDE and Dichloromethane INTRODUCTION METHYL CHLORIDE Methyl chloride (CH3Cl) which is also known as chloromethane, R-40 or HCC 40, is a chemical compound of the group

More information

Analyzing solubility of acid gas and light alkanes in triethylene glycol

Analyzing solubility of acid gas and light alkanes in triethylene glycol From the SelectedWorks of ali ali 208 Analyzing solubility of acid gas and light alkanes in triethylene glycol ali ali Available at: https://works.bepress.com/bahadori/8/ Journal of Natural Gas Chemistry

More information

Glossary of Common Laboratory Terms

Glossary of Common Laboratory Terms Accuracy A measure of how close a measured value is to the true value. Assessed by means of percent recovery of spikes and standards. Aerobic Atmospheric or dissolved oxygen is available. Aliquot A measured

More information

An Introduction to Pharmaceutical & Chemical Process Technology. Paul Ashall

An Introduction to Pharmaceutical & Chemical Process Technology. Paul Ashall An Introduction to Pharmaceutical & Chemical Process Technology Paul Ashall Aspects of Industrial Chemical Processes Products Types of process Flowsheets Mass balances Energy balances Heat transfer and

More information

Towards intensified separation processes in gas/vapour-liquid systems. Chair of Fluid Process Engineering Prof. Dr.-Ing.

Towards intensified separation processes in gas/vapour-liquid systems. Chair of Fluid Process Engineering Prof. Dr.-Ing. Towards intensified separation processes in gas/vapour-liquid systems Prof. Dr.-Ing. Eugeny Kenig Why intensification? - Requests through global changes Fast population growth Rising life expectations

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Chemical Reaction Engineering Dr. Yahia Alhamed Chemical and Materials Engineering Department College of Engineering King Abdulaziz University General Mole Balance Batch Reactor Mole Balance Constantly

More information

CHALLENGES ASSESSING AND TREATING WASTEWATER FROM BIOTECHNOLOGY SCALE UP OPERATIONS

CHALLENGES ASSESSING AND TREATING WASTEWATER FROM BIOTECHNOLOGY SCALE UP OPERATIONS CHALLENGES ASSESSING AND TREATING WASTEWATER FROM BIOTECHNOLOGY SCALE UP OPERATIONS Wayne Bates PhD, P.E. William Potochniak, P.E. ISPE Product Show Track 3 Session 2 September 26, 2018 Overview > Existing

More information