Chemical Kinetics: Integrated Rate Laws. ** updated Procedure for Spec 200 use **

Size: px
Start display at page:

Download "Chemical Kinetics: Integrated Rate Laws. ** updated Procedure for Spec 200 use **"

Transcription

1 Chemical Kinetics: Integrated Rate Laws ** updated Procedure for Spec 200 use ** *DISCLAIMER: It is highly recommended that students bring in their own computers to lab this week to use excel. There may be places, like UGL, where students may be able to borrow a laptop for a certain amount of time. Procedure: Note: For each stage of the experiment, use the WASH, RINSE, FILL technique to clean the cuvette and minimize sample contamination. Part 1: Determination of the order of the reaction with respect to [P 2 ] In this part of the experiment, the rate of disappearance of P 2 in the presence of an excess of [OH ] will be recorded as a function of reaction time. One method used to simplify the determination of the order of a reaction with respect to one of the species is to set up conditions so that the other reactant is present in large excess. Therefore, during the reaction, the concentration of that species remains essentially constant. In our experiment we will add an excess of OH. Under these conditions, the rate equation can be rewritten as: rate = k [P 2 ] m The apparent rate constant k is related to the true rate constant, k, by the equation k = k[oh ]. Measuring the change in concentration of phenolphthalein with time under these conditions will allow you to determine the order of the reaction with respect to phenolphthalein, m. The experiment can then be repeated at a different concentration of OH and a value determined for n, the order of the reaction with respect to [OH ]. 1. Turn on the spec 200. Once it has loaded select the Spec 200modern interface. 2. On the first window keep the measurement mode on Abs for absorbance but change the wavelength to 550 nm. Note: To change the wavelength by units of 10 rotate the knob. To change by units of 1 press the knob down and rotate at the same time.

2 3. Pour about 10mL of the 0.3M sodium hydroxide solution into a 50mL beaker and cut a few small squares of parafilm for later use. The parafilm should be the correct size to cover the top of a cuvette. 4. Using a mohr pipet and bulb, pipet 4 ml of the sodium hydroxide solution into a square cuvette. (NOTE: Make sure you are following the graduations on the mohr pipet; the solution should not run below the last line) 5. Wipe the outside of the cuvette that contains the sodium hydroxide solution with a kimwipe then insert the cuvette into the sample compartment on the Spec Press the auto zero button (0.00) to blank the spec 200 with the sodium hydroxide solution. 7. Remove the cuvette from the compartment and add one drop of the kinetics phenolphthalein solution. Cover the top of the cuvette with the parafilm and carefully invert the cuvette to mix. 8. Remove the parafilm, wipe the outside of the cuvette with a kimwipe and insert it into the sample compartment. 9. Allow the absorbance to drop to 0.8 before you begin your timer and start recording data readings. If the absorbance is lower than 0.8 when you first insert the cuvette, start recording data readings immediately. If the absorbance is lower than 0.55, remake the solution in the cuvette as in step 4, add a new drop of phenolphthalein, and begin again. 10. Keep the cuvette in the compartment and continue to write down the absorbance once every 15 seconds in your lab notebook until the absorbance drops below 0.2. Record this data in the second column of table If you have a computer, follow the excel directions to finish the analysis for this part. If you do not have access to a computer, use the Hand drawn graph instructions. EXCEL Directions: 1. Open Microsoft excel on your computer 2. In column A and box A1 type time. In the boxes below, enter your time values starting from zero and ending when your absorbance consistently read 0.2 in 15 second increments. 3. Title column B, in box B1 Absorbance and enter in the values that you recorded. 4. Copy and paste the Times into a new column, such as Column D, with the titles time in box D1 and title column E ln (A). 5. In box E2 type in =LN(B2). A blue box should form around your initial absorbance reading and the E2 box will be outlined darker in black. 6. Hover over the bottom right of box E2 until that corner shows a darkened black square and your cursor is a + sign. Pull down the box until it is outlined in black through the entire E column where you have times in the D column. You should get a column filled with numbers as excel calculated the values based off of your absorbance. 7. Copy and paste your time values again into column G and title column H 1/A.

3 8. In box H2 type in =1/(B2). And repeat the rest as you did in the later part of step 5 and all of step 6. Use the values calculated to fill out the rest of table To create a graph hold down the left mouse button and drag your cursor over the data table you created. Then go to the top left insert tab, then the charts area in the top rectangle, and select scatter with straight lines and markers. 10. Right click on the data points in the graph and select Add trend line. In the Format trend line box that shows up select the boxes next to Display Equation on chart and Display R-squared value on chart. 11. Repeat steps 9 and 10 for the other two data tables. 12. Use the values from the equations to fill in table 9-2 and determine from the data which graph is the most linear HAND DRAWN graph instruction 1. Using a calculator convert your absorbance values to ln[a] and 1/[A] to fill out the rest of table Graph your values with time, the independent value, on the x- axis and the Absorbance, natural log A, or reciprocal A, respectively on the y- axis. Each graph should take up about a page so you can see all the data clearly. These data points should be connected with a smooth line. 3. Once you have graphed your points use a ruler to draw a best fit line. The best fit line will have the same number of data points above and below it. Some points may be quite far from the best fit while others may be directly over it as well. 4. Calculate the slope of the line by picking two places on the line that are NOT data points and locating the x, y values for each point. The values can be obtained by dropping a line straight down from one of the points to hit the x-axis as well as straight over to the y- axis, (x1,y1) and then repeating this process for the second point (x2,y2). Use the equation m = (y2 y1) / (x2 x1) to solve for m. 5. Calculate the y-intercept using y = mx + b. Solve for b by using the calculated slope value and any point on the trend line. Again, the point should NOT be an actual data point. 6. To calculate the RMSE value find the corresponding y- value on the best-fit line at the times you took the absorbance. Subtract the actual absorbance value from the best fit line value, then square that number. Repeat this for each data point and then add them all together. Divide the sum of those by the total number of data points that you took then take the square root of that value. 7. Use these values to complete table 9-2 and determine from the data which graph is most linear.

4 Part 1 continued analysis instructions 1. After deciding which graph is the most linear, draw the graph in your lab notebook, noting the axis labels and the slope, intercept, and RMSE. Enter your data into table Have your TA look over y o u r d a t a i n t a b l e 9-2 and initial your results in the space provided. 3. Analysis of this data will allow you to determine the order of the reaction with respect to [P 2 ] PART 2: Determination of the order of the reaction with respect to [OH - ] 1. Recalibrate the spec 200 by following steps 4-6 in part Pipet 4 ml of 0.3 M NaOH and 4 ml of 0.3 M NaCI into a clean, dry test tube and mix thoroughly. Rinse your cuvette with a small amount of this soluti on, then pipet 4 ml of the mixed solution into the cuvette. Check that the spectrophotometer is st ill calibrated. NOTE: The [OH] is half as large as in the first experiment, but the ionic strength of the solutions is the same due to the addition of the NaCl solution. 3. Add 1 drop of phenolphthalein, P 2-. Wipe the outside of the cuvette with a Kimwipe. Invert the stoppered cuvette several times to mix, and then place it i n the spectrophotometer (Remember to be quick!). Close the sample compartment. 4. Begin collecting data by following the same procedure as used in steps 9 and 10 of Part 1. Record your data in the second column of Table If from part 1 you choose a zero order reaction you will only need to fill out the absorbance column of table 9-3. If you believed it to be a first order reaction you will only fill out the column for both absorbance and ln (A). If you believed it to be a second order reaction you will only fill out the columns for absorbance and 1/(A). 6. Follow the same analysis procedure (excel or hand drawn) to find the slope and fill out table Again, sketch the results in your notebook, including the slope, intercept, and correlation. Have your TA initial your results. Part 3: Effect of temperature 1. Pipet 4mL of the 0.3M Sodium hydroxide solution into a clean cuvette. Place the cuvette in an ice and water bath and let it cool for about 10 minutes. 2. With the chilled solution recalibrate the spec 200 following the steps in part Replace the cuvette in the ice bath for another minute or two. Be careful that it does not spill over. This might be a good time to take note of the temperature of the ice bath and the temperature of the room.

5 LAB 9 4. Remove the cuvette from the ice bath, add one drop of phenolphthalein, and cover with parafilm and invert to mix. Then take off the parafilm, wipe the outside with a Kimwipe and place the cuvette in the sample compartment of the spec Take note of the absorbance value. 6. Immediately after getting an absorbance remove the cuvette from the spec 200 and return it to the ice bath. 7. Take readings in this manner every minute for 5 minutes. And fill out the absorbance column in table Analyze your data the same way as you did in parts 1 and Be sure to record the temperatures of the ice bath and room as you will use these to estimate the activation energy of the reaction.

6 Table 9-1 Time (in seconds) Absorbance ln(a) 1/A Table 9-2 Data to determine order with respect to phenolphthalein [A] vs. T Ln[A] vs. T 1/[A] vs. T TA initials Equation in form of y=mx+b Slope of best fit line Intercept of best fit line RMSE of best fit line

7 Table 9-3 Time (in seconds) Absorbance ln(a) 1/A

8 Table 9-4 Data to determine order with respect to hydroxide Slope of best fit line Table 9-5 Time (in second) absorbance Ln(A) 1/A Table 9-6 Data to determine the activation energy Room temperature ( C) Temperature of ice bath ( C) Slope of best fit line Intercept of best fit line

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Using a Buret and Volumetric Flask: 2.06 ml of solution delivered 2.47 ml of solution delivered 50.00 ml Volumetric Flask Reading a buret: Burets are

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Using a Buret and Volumetric Flask: 2.06 ml of solution 2.47 ml of solution 50.00 ml delivered delivered Volumetric Flask Reading a buret: Burets are

More information

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Introduction A common challenge in chemical kinetics is to determine the rate law for a reaction with multiple reactants.

More information

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013 Absorbance Experiment 13 Dilutions and Data Handling in a Spreadsheet rev 1/2013 GOAL: This lab experiment will provide practice in making dilutions using pipets and introduce basic spreadsheet skills

More information

CH 112 Special Assignment #4 Chemistry to Dye for: Part C

CH 112 Special Assignment #4 Chemistry to Dye for: Part C CH 112 Special Assignment #4 Chemistry to Dye for: Part C PRE-LAB ASSIGNMENT: Make sure that you read this handout and bring the essentials to lab with you. Review Light, energy and color (pp 17-18), Measuring

More information

Determining the Rate Law and Activation Energy for the Methyl Blue Reaction:

Determining the Rate Law and Activation Energy for the Methyl Blue Reaction: Experiment 4 Determining the Rate Law and Activation Energy for the Methyl Blue Reaction: Pre-lab Assignment Before coming to lab: Read the lab thoroughly. An exercise in experimental design Answer the

More information

CHEMISTRY 206 Experiment 4: A KINETIC STUDY

CHEMISTRY 206 Experiment 4: A KINETIC STUDY CHEMISTRY 206 Experiment 4: A KINETIC STUDY Instructor s Informal Preamble Chemists are interested in figuring out how reactions happen (i.e., mechanisms), and how quickly they occur (i.e., rates). Both

More information

Rate Law Determination of the Crystal Violet Reaction. Evaluation copy

Rate Law Determination of the Crystal Violet Reaction. Evaluation copy Rate Law Determination of the Crystal Violet Reaction Computer 30 In this experiment, you will observe the reaction between crystal violet and sodium hydroxide. One objective is to study the relationship

More information

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Rate Law Determination of Crystal Violet Hydroxylation Revised 5/22/12 RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997

More information

Exp 03 - Reaction Rate

Exp 03 - Reaction Rate GENERAL CHEMISTRY II CAÑADA COLLEGE SUMMER 2018 Exp 03 - Reaction Rate How the speed at which quantities change during a chemical reaction can be measured, predicted and used to understand the mechanism

More information

Determination of the Rate of a Reaction, Its Order, and Its Activation Energy

Determination of the Rate of a Reaction, Its Order, and Its Activation Energy Determination of the Rate of a Reaction, Its Order, and Its Activation Energy Reaction kinetics is defined as the study of the rates of chemical reactions and their mechanisms. Reaction rate is simply

More information

Kinetics of Crystal Violet Bleaching

Kinetics of Crystal Violet Bleaching Kinetics of Crystal Violet Bleaching Authors: V. C. Dew and J. M. McCormick* From Update March 12, 2013 with revisions Nov. 29, 2016 Introduction Chemists are always interested in whether a chemical reaction

More information

Chemistry 213. A KINETIC STUDY: REACTION OF CRYSTAL VIOLET WITH NaOH LEARNING OBJECTIVES

Chemistry 213. A KINETIC STUDY: REACTION OF CRYSTAL VIOLET WITH NaOH LEARNING OBJECTIVES Chemistry 213 A KINETIC STUDY: REACTION OF CRYSTAL VIOLET WITH NaOH The objectives of this experiment are to... LEARNING OBJECTIVES study the reaction rate of crystal violet with NaOH using a Spectronic

More information

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1 Determining the Concentration of a Solution: Beer s Law Computer 17 The primary objective of this experiment is to determine the concentration of an unknown copper (II) sulfate solution. You will use a

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Saddleback College Dr. White 1 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To

More information

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Rate Law Determination of Crystal Violet Hydroxylation Revised 10/21/14 RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Dr. White 11 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To prepare a Beer s

More information

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1 Experiment 13H 08/03/2017 AHRM THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES:

More information

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Introduction In this experiment, you will observe the reaction between crystal violet and sodium hydroxide. Crystal violet

More information

Experiment 13I THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 13I THE REACTION OF RED FOOD COLOR WITH BLEACH 1 Experiment 13I FV 1/11/16 THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES: By

More information

Experimental Procedure Lab 402

Experimental Procedure Lab 402 Experimental Procedure Lab 402 Overview One set of solutions having known molar concentrations of FeNCS 2+ is prepared for a calibration curve, a plot of absorbance versus concentration. A second set of

More information

MEASUREMENT: PART II

MEASUREMENT: PART II 1 MEASUREMENT: PART II Copyright: Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, 2013. INTRODUCTION Read and/or review Section 1.7 and Figure 7.5 in your textbook. The first part

More information

Introduction. Concepts Kinetics Order of reaction Reaction rate Colorimetry. Background

Introduction. Concepts Kinetics Order of reaction Reaction rate Colorimetry. Background Introduction Phenolphthalein is a dye that is used as an acid-base indicator. It is colorless in acidic or neutral solutions and turns bright red-violet (fuschia) as the solution becomes basic. In strongly

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Introduction The goal of this lab is to determine the unknown concentration of two different copper solution samples, taken from fictitious mining sites

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Absorbance Introduction to Spectroscopy: Analysis of Copper Ore Introduction The goal of this lab is to determine the unknown concentration of two different copper solution samples, taken from fictitious

More information

Determination of an Equilibrium Constant

Determination of an Equilibrium Constant Last updated 1/29/2014 - GES Learning Objectives Students will be able to: Determine the numerical value of an equilibrium constant from measured concentrations of all reaction species. Use an absorption

More information

EXPERIMENT 5: PHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT

EXPERIMENT 5: PHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT EXPERIMENT 5: PHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT The following preparatory questions should be answered before coming to class. They are intended to introduce you to several ideas important

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Thousands of years ago, copper was abundant enough in quantity that it could be found on the Earth s surface. Prospecting for copper then was relatively

More information

For this lab, you will determine the purity of the aspirin by titration and by spectrophotometric analysis.

For this lab, you will determine the purity of the aspirin by titration and by spectrophotometric analysis. Introduction: ommercially prepared aspirin tablets are not considered 100% pure acetylsalicylic acid. Most aspirin tablets contain a small amount of binder which helps prevent the tablets from crumbling.

More information

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer Computer The Determination of 0 an Equilibrium Constant Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant,

More information

Examining the Effect of Temperature on Reaction Rate

Examining the Effect of Temperature on Reaction Rate 1 Purpose: To measure reaction rate at different temperatures for the reaction between persulfate ions, S2O8-2, and iodide ions, I -, and thereby determine the activation energy and frequency factor for

More information

2 (aq) [FeSCN [Fe 3JSCN] Figure 1

2 (aq) [FeSCN [Fe 3JSCN] Figure 1 The Determination of an Equilibrium Constant Computer Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant,

More information

AP CHEMISTRY LAB RATES OF CHEMICAL REACTIONS (II)

AP CHEMISTRY LAB RATES OF CHEMICAL REACTIONS (II) PURPOSE: Observe a redox reaction. AP CHEMISTRY LAB RATES OF CHEMICAL REACTIONS (II) Apply graphing techniques to analyze data. Practice computer skills to develop a data table. Determine the order of

More information

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Many substances absorb light. When light is absorbed, electrons in the ground state are excited to higher energy levels. Colored

More information

EXPERIMENT 6: Photometric Determination of an Equilibrium Constant

EXPERIMENT 6: Photometric Determination of an Equilibrium Constant EXPERIMENT 6: Photometric Determination of an Equilibrium Constant The following preparatory questions should be answered before coming to class. They are intended to introduce you to several ideas important

More information

C q T q C T. Heat is absorbed by the system H > 0 endothermic Heat is released by the system H < 0 exothermic

C q T q C T. Heat is absorbed by the system H > 0 endothermic Heat is released by the system H < 0 exothermic PLEASE REORD ALL DATA DIRETLY INTO YOUR LAB NOTEBOOKS Introduction Heating a substance is one of the simplest processes carried out in the chemical laboratory, and is usually accompanied by a rise in the

More information

CHEMICAL KINETICS E + 2B 2C + D (1)

CHEMICAL KINETICS E + 2B 2C + D (1) CHEMICAL KINETICS Chemical kinetics is the branch of chemistry that is concerned with the study of the rates and mechanisms of chemical reactions. The rate of a reaction is a measure of its speed. Consider

More information

Acid-Base Titration Curves Using a ph Meter

Acid-Base Titration Curves Using a ph Meter Acid-Base Titration Curves Using a ph Meter Introduction: In this experiment you will use a ph sensor to collect volume and ph data as you titrate two acids with sodium hydroxide. You will obtain titration

More information

Determination of an Equilibrium Constant

Determination of an Equilibrium Constant 7 Determination of an Equilibrium Constant Introduction When chemical substances react, the reaction typically does not go to completion. Rather, the system goes to some intermediate state in which the

More information

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM 1 Purpose: To determine the equilibrium constant K c for an equilibrium system using spectrophotometry to measure the concentration of a colored complex ion.

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Computer 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq)

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Calculator 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

HONORS CHEMISTRY THE LIMITING REACTANT JOB S METHOD OF CONTINUOUS VARIATION

HONORS CHEMISTRY THE LIMITING REACTANT JOB S METHOD OF CONTINUOUS VARIATION HONORS CHEMISTRY THE LIMITING REACTANT JOB S METHOD OF CONTINUOUS VARIATION PURPOSE: Determine through stoichiometry which reactant is in excess. Practice data analysis through graphical methods. Confirm

More information

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Abstract: This lab was performed to synthesize acetyl salicylic acid or aspirin from a carboxylic acid and an alcohol. We had learned in class

More information

Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex

Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex The data for this lab will be taken as a class to get one data set for the entire class. I. Introduction A. The Spectrophotometer

More information

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16 Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16 I. Introduction Equilibrium Consider the following situation: It is rush hour

More information

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Purpose: The equilibrium constant for the formation of iron(iii) thiocyanate complex ion is to be determined. Introduction: In the previous week,

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Experiment 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN -

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Lab 5: Calculating an equilibrium constant

Lab 5: Calculating an equilibrium constant Chemistry 162 The following write-up is inaccurate for the particular chemicals we are using. Please have all sections up through and including the data tables ready before class on Wednesday, February

More information

DETERMINATION OF AN EQUILIBRIUM CONSTANT

DETERMINATION OF AN EQUILIBRIUM CONSTANT DETERMINATION OF AN EQUILIBRIUM CONSTANT In this experiment the equilibrium properties of the reaction between the iron(iii) ion and the thiocyanate ion will be studied. The relevant chemical equation

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Chemistry 102 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Experiment 7A ANALYSIS OF BRASS

Experiment 7A ANALYSIS OF BRASS Experiment 7A ANALYSIS OF BRASS FV 10/21/10 MATERIALS: Spectronic 20 spectrophotometers, 2 cuvettes, brass sample, 7 M HNO 3, 0.100 M CuSO 4, 2 M NH 3, two 50 ml beakers, 100 ml beaker, two 25 ml volumetric

More information

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract:

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract: Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert Abstract: This lab was performed to find the chemical equilibrium constant K c for the reaction Fe 3+ + SCN FeSCN 2+ using

More information

EXPERIMENT 8 Determining K sp

EXPERIMENT 8 Determining K sp EXPERIMENT 8 Determining K sp Introduction The solubility product constant, or K sp of a compound is an equilibrium constant that describes the degree to which a solid dissolves in water. The K sp is calculated

More information

EXPERIMENT 23. Determination of the Formula of a Complex Ion INTRODUCTION

EXPERIMENT 23. Determination of the Formula of a Complex Ion INTRODUCTION EXPERIMENT 23 Determination of the Formula of a Complex Ion INTRODUCTION Metal ions, especially transition metal ions, possess the ability to form complexes (as shown below) with ions, organic and inorganic

More information

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II) : Absorption Spectroscopy of Cobalt(II) OBJECTIVES In successfully completing this lab you will: prepare a stock solution using a volumetric flask; use a UV/Visible spectrometer to measure an absorption

More information

CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry

CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry Introduction In this lab you will experimentally determine the equilibrium constant with respect

More information

EXPERIMENT 6 Buffer Effects

EXPERIMENT 6 Buffer Effects EXPERIMENT 6 Buffer Effects Introduction Buffers are solutions that contain an acid and its conjugate base that are designed to resist ph changes. This is important in biological systems to maintain proper

More information

of the ferric thiocyanate. This was done by creating the solutions and putting them into a

of the ferric thiocyanate. This was done by creating the solutions and putting them into a Introduction: The equation of the reaction is Fe 3+ (aq) + SCN - (aq) Fe(NCS) 2+ (aq). The objective of this lab was to determine the equilibrium constant (K) for the formation of the ferric thiocyanate.

More information

KINETICS: INITIAL RATES

KINETICS: INITIAL RATES Experiment 6B KINETICS: INITIAL RATES Prepared by Ross S. Nord, Stephen E. Schullery, and Masanobu M. Yamauchi, Eastern Michigan University PURPOSE Learn how to measure initial rates. Determine the order

More information

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law Vernier Spectrometer 1 The primary objective of this experiment is to determine the concentration of an unknown copper (II) sulfate solution. You

More information

Chesapeake Campus Chemistry 111 Laboratory

Chesapeake Campus Chemistry 111 Laboratory Chesapeake Campus Chemistry 111 Laboratory Objectives Calculate the density of a sugar solution. Evaluate lab sources of error and their effect on an experiment. Introduction The density of an object is

More information

KINETICS OF THE PERMANGANATE- ISOPROPYL ALCOHOL REACTION

KINETICS OF THE PERMANGANATE- ISOPROPYL ALCOHOL REACTION Experiment 6A KINETICS OF THE PERMANGANATE- ISOPROPYL ALCOHOL REACTION Prepared by Stephen E. Schullery, Masanobu M. Yamauchi, and Ross S. Nord, Eastern Michigan University PURPOSE Determine the reaction

More information

aa + bb cc + dd Equation 1

aa + bb cc + dd Equation 1 Experiment: The Determination of K eq for FeSCN 2+ Introduction For any reversible chemical reaction at equilibrium, the concentrations of all reactants and products are constant or stable. There is no

More information

Solubility Product Constants

Solubility Product Constants Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS To measure the molar solubility of a sparingly soluble salt in water. To

More information

5-Sep-15 PHYS101-2 GRAPHING

5-Sep-15 PHYS101-2 GRAPHING GRAPHING Objectives 1- To plot and analyze a graph manually and using Microsoft Excel. 2- To find constants from a nonlinear relation. Exercise 1 - Using Excel to plot a graph Suppose you have measured

More information

Chemical Kinetics: Determining Rate Laws for Chemical Reactions

Chemical Kinetics: Determining Rate Laws for Chemical Reactions Chemical Kinetics: Determining Rate Laws for Chemical Reactions v010816 INTRODUCTION It is thought that the birth of chemical kinetics occurred in 1850 when a German chemist, Ludwig Ferdinand Wilhelny,

More information

Acid-Base ph Titration Introduction

Acid-Base ph Titration Introduction Electronic Supplementary Material (ESI) for Chemistry Education Research and Practice. This journal is The Royal Society of Chemistry 2016 Appendix B: Example of Traditional Investigation Acid-Base ph

More information

CHEM 1471 Kinetics of Phenolphthalein Decolorization Fall 2010 (Buckley) Lab Under Development

CHEM 1471 Kinetics of Phenolphthalein Decolorization Fall 2010 (Buckley) Lab Under Development CHEM 1471 Kinetics of Phenolphthalein Decolorization Fall 2010 (Buckley) Lab Under Development Objective: Use spectrophotometry to determine the order of the kinetics of decolorization of phenolphthalein

More information

Instructor s Advance Preparation

Instructor s Advance Preparation INSTRUCTOR'S MANUAL Instructor s Advance Preparation This protocol is designed for 80 workstations of 4 students. Each group will prepare a set of standards, a blank, and 2 milk samples (can be a blind

More information

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law LabQuest 11 The primary objective of this experiment is to determine the concentration of an unknown nickel (II) sulfate solution. You will be using

More information

THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE

THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE INTRODUCTION FACTORS INFLUENCING REACTION RATE: The study of chemical reactions is not complete without a consideration of the rates at which

More information

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide:

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide: Weak Acid Titration v010516 You are encouraged to carefully read the following sections in Tro (3 rd ed.) to prepare for this experiment: Sec 4.8, pp 168-174 (Acid/Base Titrations), Sec 16.4, pp 769-783

More information

Aspirin Synthesis H 3 PO 4

Aspirin Synthesis H 3 PO 4 Aspirin Synthesis Experiment 10 Aspirin is the common name for the compound acetylsalicylic acid, widely used as a fever reducer and as a pain killer. Salicylic acid, whose name comes from Salix, the willow

More information

Experiment #7. Determination of an Equilibrium Constant

Experiment #7. Determination of an Equilibrium Constant Experiment #7. Determination of an Equilibrium Constant Introduction It is frequently assumed that reactions go to completion, that all of the reactants are converted into products. Most chemical reactions

More information

Experiment 11 Beer s Law

Experiment 11 Beer s Law Experiment 11 Beer s Law OUTCOMES After completing this experiment, the student should be able to: determine the wavelength (color) of maximum absorbance for a solution. examine the relationship between

More information

Experiment 11 Beer s Law

Experiment 11 Beer s Law Experiment 11 Beer s Law OUTCOMES After completing this experiment, the student should be able to: determine the wavelength (color) of maximum absorbance for a solution. examine the relationship between

More information

THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT

THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT Experiment 7B THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT Prepared by Ross S. Nord, Chemistry Department, Eastern Michigan University PURPOSE To investigate the relationship between the equilibrium

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Experiment 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq)

More information

Chemistry Determination of Mixed Acids

Chemistry Determination of Mixed Acids Chemistry 3200 Acid-base titration is one of the most common operations in analytical chemistry. A solution containing an unknown amount of ionizable hydrogen can be titrated with a solution of standard

More information

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Pre-lab Assignment: Reading: 1. Chapter sections 3.3, 3.4, 3.7 and 4.2 in your course text. 2. This lab handout. Questions:

More information

Acid-Base Titration Lab

Acid-Base Titration Lab Acid-Base Titration Lab Name Objectives: - To apply knowledge of molarity to properly dilute a concentrated base - To apply knowledge of solution stoichiometry in order to correctly determine the unknown

More information

THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE

THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE INTRODUCTION FACTORS INFLUENCING REACTION RATE: The study of chemical reactions is not complete without a consideration of the rates at which

More information

Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction

Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction Lab 4. Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction Prelab Assignment Before coming to lab: After reading "Lab Notebook Policy and Format for Lab Reports" handout, complete

More information

INTRODUCTION TO ACIDS, BASES AND TITRATION

INTRODUCTION TO ACIDS, BASES AND TITRATION Experiment INTRODUCTION TO ACIDS, BASES AND TITRATION The CCLI Initiative Computers in chemistry Laboratory Instruction LEARNING OBJECTIVES The objectives of this experiment are to... introduce the nature

More information

K = [C]c [D] d [A] a [B] b (5)

K = [C]c [D] d [A] a [B] b (5) Chem 1B Dr. White 19 Experiment 3: Determination of an Equilibrium Constant Objectives To determine the equilibrium constant for a reaction. Introduction Equilibrium is a dynamic state in which, at a given

More information

Enzymes. Lab Exercise 7. Introduction. Contents. Objectives

Enzymes. Lab Exercise 7. Introduction. Contents. Objectives Lab Exercise Enzymes Contents Objectives 1 Introduction 1 Activity.1 Optimal ph 3 Activity.2 Optimal Temperature 4 Activity.3 Reaction Rates 4 Resutls Section 5 Objectives - Appreciate the sensitivity

More information

The thermodynamics of the solubility of borax

The thermodynamics of the solubility of borax Chemistry 1 6 3 The thermodynamics of the solubility of borax Purpose: To determine the thermodynamic quantities ΔH and ΔS for the solvation reaction of borax in water by measuring the solubility product

More information

Experiment 2: The Rate of an Iodine Clock Reaction

Experiment 2: The Rate of an Iodine Clock Reaction Experiment 2: The Rate of an Iodine Clock Reaction Introduction: Some reactions, including most of the ones that you have seen before, occur so rapidly that they are over as soon as the reactants are mixed.

More information

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer Purpose To use spectroscopy to prepare a Beer s Law plot of known dilutions of copper(ii) sulfate so that

More information

Spectrophotometric Determination of pka of Phenol Red

Spectrophotometric Determination of pka of Phenol Red Spectrophotometric Determination of pka of Phenol Red This experiment uses instrumentation to accomplish quantitative analysis. You will get far more experience in this during CH427 if you are a Chemistry

More information

EXPERIMENT 6. Properties of Buffers INTRODUCTION

EXPERIMENT 6. Properties of Buffers INTRODUCTION EXPERIMENT 6 Properties of Buffers INTRODUCTION A chemical buffer is any substance in a solution that tends to stabilize the hydronium ion concentration by neutralizing any added acid or base. Buffers

More information

Chemistry 1B Experiment 17 89

Chemistry 1B Experiment 17 89 Chemistry 1B Experiment 17 89 17 Thermodynamics of Borax Solubility Introduction In this experiment, you will determine the values of H and S for the reaction which occurs when borax (sodium tetraborate

More information

Spectrophotometric Study of Biomolecules: Absorption Spectrum of Hemoglobin and Quantitative Assay of Serum Protein Concentration

Spectrophotometric Study of Biomolecules: Absorption Spectrum of Hemoglobin and Quantitative Assay of Serum Protein Concentration BC2004, Spring 2005 Lab Exercise 1 Spectrophotometric Study of Biomolecules: Absorption Spectrum of Hemoglobin and Quantitative Assay of Serum Protein Concentration Spectrophotometry is a technique frequently

More information

Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION

Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION Purpose: Determine molarity of a solution of unknown concentration by performing acid-base titrations Performance Goals: Apply the concepts

More information

THE IRON(III) THIOCYANATE REACTION SYSTEM

THE IRON(III) THIOCYANATE REACTION SYSTEM Experiment 7 THE IRON(III) THIOCYANATE REACTION SYSTEM Prepared by Ross S. Nord, Chemistry Department, Eastern Michigan University PURPOSE To investigate a novel reaction system by utilizing a spectrophotometer.

More information

AP Chemistry Laboratory #15: Reaction Rate of Crystal Violet and Sodium Hydroxide. Lab days: Thursday and Friday, February 1-2, 2018

AP Chemistry Laboratory #15: Reaction Rate of Crystal Violet and Sodium Hydroxide. Lab days: Thursday and Friday, February 1-2, 2018 AP Chemistry Laboratory #15: Reaction Rate of Crystal Violet and Sodium Hydroxide Lab days: Thursday and Friday, February 1-2, 2018 Lab due: TBD Goal (list in your lab book): The goal of this lab is to

More information

Iodine Clock Part I Chemical Kinetics

Iodine Clock Part I Chemical Kinetics Collect: Iodine Clock Part I Chemical Kinetics (2015/11/17 revised) 50 ml Erlenmeyer flask (10): wash clean, dry, and cool 5 ml graduated pipet (2), pipet filler (1) Cork stopper (6) Stopwatch (1) (given

More information

we might also expect the reaction rate to be influenced by ph. In fact, the rate has been reported to follow the rate law:

we might also expect the reaction rate to be influenced by ph. In fact, the rate has been reported to follow the rate law: KINETICS Objective: The objective of this lab is to measure the rate of iron oxidation, to determine the order of the reaction, and thereby to gain familiarity with rate laws in both the differential and

More information