Louisiana Tech University, Chemistry 102 POGIL (Process Oriented Guided Inquiry Learning) Exercise on Chapter 13(2). Chemical Kinetics 2 Why?

Size: px
Start display at page:

Download "Louisiana Tech University, Chemistry 102 POGIL (Process Oriented Guided Inquiry Learning) Exercise on Chapter 13(2). Chemical Kinetics 2 Why?"

Transcription

1 Louisiana Tech University, Chemistry 102 POGIL (Process Oriented Guided Inquiry Learning) Exercise on Chapter 13(2). Chemical Kinetics 2 Why? Chemical kinetics is important because it provides new models, concepts, and parameters to study the rates of chemical reactions. Graphical and method of initial rates have been used to determine the rate law of a chemical reaction. It is important to know different ways of expressing rate laws. The rate law in differential gives the order of reactants, and in the integral form rate constant and concentration of initial and final reactants. The half-life (t ½ ) from is way to easily find how long it will take-to complete a reaction. Most of the chemical reactions follow 1 st order rate law; therefore we focus more on first order reactions. All nuclear reactions also follow first order kinetics, i.e. decay of a radioactive material is directly proportional to the number or nuclei of the element. Half-life (t ½ ) from is used more frequently for radioactive decay in place of rate constant (k). Learning Objectives Understand rate laws 3. Determine reaction orders from a rate law, and use the integrated rate and initial rates methods to obtain orders and rate constants (Section 13-3). 4. Calculate concentration from time, time to reach a certain concentration, half-life for a first-order reaction (Section 13-3). Success Criteria Identify rate law for a chemical reaction ( zero, first, or second order) from kinetic data using graphical and initial rate methods. Calculations of reaction time, and final concentration of reactants given initial concentration and vice versa. Resources Chemistry: The Molecular Science 4rd Edition, John W. Moore, Conrad L. Stanitski, Peter C. Jurs -ISBN-10: ISBN-13: Prerequisites New Concepts Rate Law The rate law is an expression that relates the rate of a chemical reaction to a constant (rate constant) and concentration of reactants raised to a power. The power of a concentration is called the order with respect to the particular reactant. Every chemical reaction has a rate equation based on the rate law. The rate of a chemical reaction is directly proportional to the concentration of reactants raised to a power, which could be an integer: 0, 1, 2, or 3. E.g. a A + b B -----> c C rate [A] l [B] m rate k [A] l [B] m k = rate constant [A] = concentration of A [B] = concentration of B l = order with respect to A ( nothing to do with a, the stoichiometric coefficient) m = order with respect to B First-Order Reactions A first order reaction (order = 1) has a rate proportional to the concentration of one of the reactants. rate = k[a] (or B instead of A), Second-Order Reactions A second-order reaction (order = 2) has a rate proportional to the concentration of the square of a single reactant or the product of the concentration of two reactants: rate = k[a] 2 (or rate = k[a] [B])

2 Mixed-Order or Higher-Order Reactions Mixed-order reactions have a fractional order for their rate: e.g., rate = k[a] 1/3 Orders of reactants have to be experimentally determined. There are two way to get it. Graphical method: Reaction: a A b B Order Differential Rate Law Integrated Rate Law y =mx + b Graph (y) vs. (x) Slope Half-life form t½ 0 rate = k [A] t = -kt + [A] 0 [A] t vs. t -k t ½ = [A] 0 /2k 1 rate = k[a] ln[a] t = -kt + ln[a] 0 ln[a] t vs. t -k t ½ = 0.693/k 2 rate=k[a] 2 1/[A] t = kt + 1/[A] 0 1/[A] t vs. t k t ½ = [A] 0 /2k For simple reactions we can plot kinetic data. [A] vs. t to get a liner graph For simple reactions we can plot kinetic data E. g. 2 N 2 O > 4 NO 2 + O time [A] time [A] vs. t ln [A] vs. t Reaction rate law is: rate = k [N 2 O 5 ] ; which is first order. Method of Initial Rates: Rate law of more complex reactions involving more than one reactant requires changing concentration of one reactant while holding the other one to see the effect of order on the rate. E.g. For the chemical reaction: A + B ----> C Using the initial rates data given below deduce: [A],mol/L [B],mol/L rate,mol/ls 4.6 x x x x x x x x x 10-2 The rate law : rate = k [A] x [B] y a) the order of each reactant Oder of A: 4 = (9.2 x 10-4 /(4.6 x 10-4 ) x = 2 x 4 = 2 x x = 2 Therefore, the order with respect to A is two or second order. Order of B: The rate law : rate = k [A] x [B] y ln[a]

3 2 = (6.2 x 10-5 /3.1 x 10-5 ) y = 2 y 2 = 2 y y = 1 Therefore, the order with respect to B is one or first order. Rate law of the reaction: rate = k [A] 2 [B] Total order of the reaction 3 or third order. b) the rate constant The rate law for the reaction : A + B ----> C rate = k [A] 2 [B] 1 plugging the values from one of the experiments: rate = k [A] 2 [B] x 10-3 = k (4.6 x 10-4 ) x (3.1 x 10-5 ) y 2.08 x 10-3 = k (4.6 x 10-4 ) 2 (3.1 x 10-5 ) x 10-3 k = = 3.17 x 10 8 (4.6 x 10-4 ) 2 x (3.1 x 10-5 ) 1 k = 3.17 x 10 8 L 2 /mol 2 s The rate constant for the reaction is 3.17 x 10 8 L 2 /mol 2 s. Calculation using half-life t 1/2 form: Half-life is the time required for a reactant to reach half its original concentration ( [A] t = ½ [A] 0 First-order reaction is t ½ = 0.693/k. The half-life of a first order reaction does not depend on concentration. Integrated rate law: ln[a] t = -kt + ln[a] 0; ln(½ [A] 0 ) = -kt + ln[a] 0; ln ([A] 0 /2)= ln [A] 0 ln 2 = -kt + ln[a] 0 ; ln 2 = kt; = k t ½ ; t ½ = 0.693/k Zero-order rate law is given as t ½ = [A] 0 /2k. Second-order reaction is t ½ = 1/(k[A] 0 ).

4 GHW#2 Printed Name: Group Name: Chapter 13 (2) Key Questions (relatively simple to answer using the Focus Information) 1. The reaction A ---> B + C is known to follow the rate law: rate = k [A] 1 What are the differential, integral and half-life (t ½ ) form of this rate law? 2. Using graphical method, show that 2 N 2 O 5 ---> 4 NO 2 + O 2, is a first order reaction. Time / min [N 2 O 5 ] / moldm For the reaction: A ---> D, Find the order of [A] for each case. It was found in separate experiments that a) The rate doubled when [A] doubled b) The rate tripled when [A] tripled c) The rate quadrupled when [A] doubled d) The rate increased 8 times when [A] doubled 4. For the chemical reaction: A + B ----> C Using the following initial data to deduce: a) Order of each reactant b) Rate constant [A],mol/L [B],mol/L rate,mol/ls

5 Exercises involving chemical and nuclear reactions 5. The rate constant for the first-order conversion of A to B is 2.22 hr -1. How much time will be required for the concentration of A to reach 75% of its original value? 6. The half-life of a radioactive (follows first order rate law) isotope is 10 days. How many days would be required for the isotope to degrade to one eighth of its original radioactivity? 7. The rate constant for the first order decomposition of SO 2 Cl 2 (SO 2 Cl 2 -> SO 2 +Cl 2 ) at very high temperature is min -1. If the initial concentration is M, predict the concentration after five hours (300 min).

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

Unit #10. Chemical Kinetics

Unit #10. Chemical Kinetics Unit #10 Chemical Kinetics Zumdahl Chapter 12 College Board Performance Objectives: Express the rate of a reaction in terms of changes in the concentration of a reactant or a product per time. Understand

More information

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products 3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: Page 1 of 9 AP Multiple Choice Review Questions 1 16 1. The reaction rate is defined as the change in concentration of a reactant

More information

Understanding Organic Reactions

Understanding Organic Reactions Understanding Organic Reactions Energy Diagrams For the general reaction: The energy diagram would be shown as: Understanding Organic Reactions Energy Diagrams Energy Diagrams Understanding Organic Reactions

More information

AP CHEMISTRY CHAPTER 12 KINETICS

AP CHEMISTRY CHAPTER 12 KINETICS AP CHEMISTRY CHAPTER 12 KINETICS Thermodynamics tells us if a reaction can occur. Kinetics tells us how quickly the reaction occurs. Some reactions that are thermodynamically feasible are kinetically so

More information

Downloaded from

Downloaded from Question 4.1: For the reaction R P, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee Numerical Methods Exponential and Logarithmic functions Jaesung Lee Exponential Function Exponential Function Introduction We consider how the expression is defined when is a positive number and is irrational.

More information

Calculations In Chemistry

Calculations In Chemistry Calculations In Chemistry Module 27 Kinetics: Rate Laws Module 27 Kinetics: Rate Laws...773 Lesson 27A: Kinetics Fundamentals...771 Lesson 27B: Rate Laws...778 Lesson 27C: Integrated Rate Law --Zero Order...787

More information

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION CHEMICAL KINETICS the study of rates of chemical reactions and the mechanisms by which they occur FACTORS WHICH AFFECT REACTION RATES 1. Nature

More information

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions 14.1 Focusing on Reaction Rate 14.2 Expressing the Reaction Rate 14.3 The Rate Law and Its Components 14.4 Integrated Rate Laws: Concentration

More information

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS.

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS. !! www.clutchprep.com CONCEPT: RATES OF CHEMICAL REACTIONS is the study of reaction rates, and tells us the change in concentrations of reactants or products over a period of time. Although a chemical

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Reaction Rate Change in concentration of a reactant or product per unit time. Rate = concentration of A at time t t 2 1 2 1 concentration of A at

More information

Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2

Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2 Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2 Why? A different form of the rate law for a reaction allows us to calculate amounts as a function of time. One variation on this gives us the concept

More information

Chapter 15: Phenomena

Chapter 15: Phenomena Chapter 5: Phenomena Phenomena: The reaction A(aq) + B(aq) C(aq) was studied at two different temperatures (298 K and 350 K). For each temperature the reaction was started by putting different concentrations

More information

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 30 Chemical Kinetics 1 Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chemists have three fundamental questions in mind when they study chemical reactions: 1.) What happens?

More information

CH302 Unit7 Day 8 Activity Unit 7 Readiness Assessment Activity

CH302 Unit7 Day 8 Activity Unit 7 Readiness Assessment Activity CH302 Unit7 Day 8 Activity Unit 7 Readiness Assessment Activity Spring 2013 VandenBout/LaBrake Name: KEY UT EID: Please work in small groups and be prepared to answer via clicker. Discussion Point I: Thinking

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Kinetics: Rate of Chemical Reactions The diagram below depicts the progress of a reaction. Each shape and color represents a different substance. The three boxes represent the concentrations of each substance

More information

It must be determined from experimental data, which is presented in table form.

It must be determined from experimental data, which is presented in table form. Unit 10 Kinetics The rate law for a reaction describes the dependence of the initial rate of a reaction on the concentrations of its reactants. It includes the Arrhenius constant, k, which takes into account

More information

Lecture (8) Effect of Changing Conditions on the Rate Constant

Lecture (8) Effect of Changing Conditions on the Rate Constant Lecture (8) Effect of Changing Conditions on the Rate Constant The relationship between the rate of a chemical reaction and the concentration of the reactants is shown by the rate equation of the reaction.

More information

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics A. Chemical Kinetics - chemistry of reaction rates 1. Reaction Rates a. Reaction rate- the change in concentration

More information

Unit 12: Chemical Kinetics

Unit 12: Chemical Kinetics Unit 12: Chemical Kinetics Author: S. Michalek Introductory Resources: Zumdahl v. 5 Chapter 12 Main Ideas: Integrated rate laws Half life reactions Reaction Mechanisms Model for chemical kinetics Catalysis

More information

1 The nuclear binding energy is the amount of energy consumed during. 2 An unstable isotope of Ga-73 undergoes radioactive decay to Ga-73

1 The nuclear binding energy is the amount of energy consumed during. 2 An unstable isotope of Ga-73 undergoes radioactive decay to Ga-73 version: master Exam 3 - REVIEW This exam should have 27 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your score is based on what

More information

Physical Chemistry Chapter 6 Chemical Kinetics

Physical Chemistry Chapter 6 Chemical Kinetics Physical Chemistry Chapter 6 Chemical Kinetics by Azizul Helmi Sofian Faculty of Chemical & Natural Resources Engineering azizulh@ump.edu.my Chapter Description Aims To define rate laws accordingly To

More information

Chem 116 POGIL Worksheet - Week 6 Kinetics - Concluded

Chem 116 POGIL Worksheet - Week 6 Kinetics - Concluded Chem 116 POGIL Worksheet - Week 6 Kinetics - Concluded Why? The half-life idea is most useful in conjunction with first-order kinetics, which include many chemical reactions and all nuclear decay processes.

More information

Chemical Kinetics Ch t ap 1 er

Chemical Kinetics Ch t ap 1 er Chemical Kinetics Chapter 13 1 Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction proceed? Reaction rate is the change in the concentration of a reactant or

More information

The rate equation relates mathematically the rate of reaction to the concentration of the reactants.

The rate equation relates mathematically the rate of reaction to the concentration of the reactants. 1.9 Rate Equations Rate Equations The rate equation relates mathematically the rate of reaction to the concentration of the reactants. For the following reaction, aa + bb products, the generalised rate

More information

Student Worksheet for Kinetics

Student Worksheet for Kinetics Student Worksheet for Attempt to work the following practice problems after working through the sample problems in the videos. Answers are given on the last page(s). Relevant Equations Average Reaction

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

IB Physics SL Y2 Option B (Quantum and Nuclear Physics) Exam Study Guide Practice Problem Solutions

IB Physics SL Y2 Option B (Quantum and Nuclear Physics) Exam Study Guide Practice Problem Solutions IB Physics SL Y2 Option B (Quantum and Nuclear Physics) Exam Study Guide Practice Problem Solutions Objectives: 1. Describe the photoelectric effect. (B.1.1) 2. Describe the concept of the photon and use

More information

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes.

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes. REACTION KINETICS Study of reaction rates Why? Rates of chemical reactions are primarily controlled by 5 factors: the chemical nature of the reactants 2 the ability of the reactants to come in contact

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

AP * Chemistry. Kinetics: Integrated Rate Law & Determining Ea. René McCormick

AP * Chemistry. Kinetics: Integrated Rate Law & Determining Ea. René McCormick AP * Chemistry Kinetics: Integrated Rate Law & Determining Ea René McCormick *AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this

More information

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2 Questions 1-3 relate to the following reaction: 2N2O5(g) 4NO2(g) + O2(g) 1. The rate law for decomposition of N2O5(g) in the reaction above A. is rate = k[n2o5] B. is rate = k[n2o5] 2 C. is rate = [NO2]

More information

CHEM 116 Collision Theory and Reaction Mechanisms

CHEM 116 Collision Theory and Reaction Mechanisms CHEM 116 Collision Theory and Reaction Mechanisms Lecture 13 Prof. Sevian Note: If there is anything we do not finish about reaction mechanisms today, that is where we will start on Tuesday with Lecture

More information

GHW#3 Louisiana Tech University, Chemistry 281. POGIL exercise on Chapter 2. Covalent Bonding: VSEPR, VB and MO Theories. How and Why?

GHW#3 Louisiana Tech University, Chemistry 281. POGIL exercise on Chapter 2. Covalent Bonding: VSEPR, VB and MO Theories. How and Why? GHW#3 Louisiana Tech University, Chemistry 281. POGIL exercise on Chapter 2. Covalent Bonding: VSEPR, VB and MO Theories. How and Why? How is Valence Shell Electron Pair Repulsion Theory developed from

More information

, but bursts into flames in pure oxygen.

, but bursts into flames in pure oxygen. Chemical Kinetics Chemical kinetics is concerned with the speeds, or rates of chemical reactions Chemical kinetics is a subject of broad importance. How quickly a medicine can work The balance of ozone

More information

COURSE OUTLINE Last Revised and Approved: 11/05/2010 CHEM GENERAL CHEMISTRY Units Total Total Hrs Lab

COURSE OUTLINE Last Revised and Approved: 11/05/2010 CHEM GENERAL CHEMISTRY Units Total Total Hrs Lab CHEM 111 - GENERAL CHEMISTRY Units Lecture Total Hrs Lecture 3.00 Units Lab 2.00 Units Total 5.00 49.50 Total Hrs Lab 99.00 Total Course Hrs 148.50 COURSE DESCRIPTION This continuation of Chemistry 110

More information

General Chemistry I Concepts

General Chemistry I Concepts Chemical Kinetics Chemical Kinetics The Rate of a Reaction (14.1) The Rate Law (14.2) Relation Between Reactant Concentration and Time (14.3) Activation Energy and Temperature Dependence of Rate Constants

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

CHAPTER 12 CHEMICAL KINETICS

CHAPTER 12 CHEMICAL KINETICS 5/9/202 CHAPTER 2 CHEMICAL KINETICS CHM52 GCC Kinetics Some chemical reactions occur almost instantaneously, while others are very slow. Chemical Kinetics - study of factors that affect how fast a reaction

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 7/10/003 Chapter 14 Chemical Kinetics 14-1 Rates of Chemical Reactions 14- Reaction Rates and Concentrations 14-3 The Dependence of Concentrations on Time 14-4 Reaction Mechanisms 14-5 Reaction Mechanism

More information

Chemical Kinetics. Reaction Mechanisms

Chemical Kinetics. Reaction Mechanisms Chemical Kinetics Kinetics is a study of the rate at which a chemical reaction occurs. The study of kinetics may be done in steps: Determination of reaction mechanism Prediction of rate law Measurement

More information

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary:

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary: Summary: Lecture (3) The expressions of rate of reaction and types of rates; Stoichiometric relationships between the rates of appearance or disappearance of components in a given reaction; Determination

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

THE RATE EQUATION. might have a rate equation like this r = k [A] [B] 2

THE RATE EQUATION. might have a rate equation like this r = k [A] [B] 2 Kinetics 2813 2816 9 THE RATE EQUATION Format is an equation that links the rate of reaction to the concentration of reactants can only be found by doing actual experiments cannot be found by just looking

More information

Reaction Kinetics: Elementary Ideas

Reaction Kinetics: Elementary Ideas Reaction Kinetics: Elementary Ideas 5th February 00 Rate Laws Returning to our hypothetical model reaction: ν i i + ν j j ν k k + ν l l In practice, the rate of reaction is treated as follows, thus introducing

More information

13.2 0th, 1st and 2nd Order Reaction

13.2 0th, 1st and 2nd Order Reaction 13.2 0th, 1st and 2nd Order Reaction Factors Affecting Reaction Rates Fred Omega Garces Chemistry 201 Miramar College 1 0th, 1st and 2nd Order Reaction Outline Rate Laws: Differential Rate Law Integrated

More information

12.1 Reaction Rates. Reaction rate is defined as the change in concentration of a reactant or product per time. 2NO2 2NO + O2. In terms of reactants:

12.1 Reaction Rates. Reaction rate is defined as the change in concentration of a reactant or product per time. 2NO2 2NO + O2. In terms of reactants: Kinetics Unit 5 12.1 Reaction Rates Reaction rate is defined as the change in concentration of a reactant or product per time. 2NO2 2NO + O2 In terms of reactants: The rate will be negative because the

More information

ALE 2. Rate Laws: Expressing and Quantifying the Rate of Reaction

ALE 2. Rate Laws: Expressing and Quantifying the Rate of Reaction Name Chem 163 Section: Team Number: ALE 2. Rate Laws: Expressing and Quantifying the Rate of Reaction (Reference: 16.3 Silberberg 5 th edition) How are concentrations of reactants related to the rate of

More information

The Rate Expression. The rate, velocity, or speed of a reaction

The Rate Expression. The rate, velocity, or speed of a reaction The Rate Expression The rate, velocity, or speed of a reaction Reaction rate is the change in the concentration of a reactant or a product with time. A B rate = - da rate = db da = decrease in concentration

More information

Performance Task: Concentration vs. Time

Performance Task: Concentration vs. Time NAME DATE : Concentration vs. Time Goal of task Target concept: Understand reaction rates in both qualitative and quantitative terms For this task you will be evaluated on your ability to: Construct an

More information

Downloaded from

Downloaded from CHAPTER --4:- --.CHEMICAL KINETICS (1 MARK QUESTIONS) 1. What do you understand by the rate determining step of a reaction? 2. Find the molecularity of following reaction. RCOOR + H 2O -------- H+ RCOOH

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 4//004 Chapter 4 Chemical Kinetics 4- Rates of Chemical Reactions 4- Reaction Rates and Concentrations 4-3 The Dependence of Concentrations on Time 4-4 Reaction Mechanisms 4-5 Reaction Mechanism and Rate

More information

where a + b = 2 (this is the general case) These all come from the fact that this is an overall second order reaction.

where a + b = 2 (this is the general case) These all come from the fact that this is an overall second order reaction. Chapter 7 Problems Page of 6 //007 7. Hydrolysis of ethyl acetate is as follows: EtAc + OH - Ac - + EtOH. At 5 ºC, the disappearance of OH - is used to determine the extent of the reaction, leading to

More information

Reaction Mechanisms. Chemical Kinetics. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms

Reaction Mechanisms. Chemical Kinetics. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms Chemical Kinetics Kinetics is a study of the rate at which a chemical reaction occurs. The study of kinetics may be done in steps: Determination of reaction mechanism Prediction of rate law Measurement

More information

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature Chapter 13 - Chemical Kinetics II Integrated Rate Laws Reaction Rates and Temperature Reaction Order - Graphical Picture A ->Products Integrated Rate Laws Zero Order Reactions Rate = k[a] 0 = k (constant

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2 Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Define the term rate of reaction. 2. Mention the units of rate of reaction. 3. Express the rate of reaction in terms of Br (aq) as reactant

More information

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc. #73 Notes Unit 9: Kinetics and Equilibrium Ch. Kinetics and Equilibriums I. Reaction Rates NO 2(g) + CO (g) NO (g) + CO 2(g) Rate is defined in terms of the rate of disappearance of one of the reactants,

More information

Solutions - Practice Test - CHEM 112 Exam 1

Solutions - Practice Test - CHEM 112 Exam 1 Solutions - Practice Test - CHEM 112 Exam 1 1B. The rates of formation and decomposition are average rates that can be predicted by using the stoichiometry of the balanced equation to get: 1 D[ N 2O5 ]

More information

CH 222 Chapter Twenty-one Concept Guide

CH 222 Chapter Twenty-one Concept Guide CH 222 Chapter Twenty-one Concept Guide 1. Terminology Alpha Radiation (α): Beta Radiation (β): Gamma Radiation (γ): Nuclear Reaction: Nucleons: Radioactive Decay Series: Positrons: Nuclear Binding Energy:

More information

CHEMISTRY NOTES CHEMICAL KINETICS

CHEMISTRY NOTES CHEMICAL KINETICS CHEMICAL KINETICS Rate of chemical reactions The rate of a reaction tells us how fast the reaction occurs. Let us consider a simple reaction. A + B C + D As the reaction proceeds, the concentration of

More information

Slide 1. Slide 2. Slide 3. Integrated Rate Laws. What is a rate? A rate as a derivative. Finally a use for calculus! It s a delta/delta!

Slide 1. Slide 2. Slide 3. Integrated Rate Laws. What is a rate? A rate as a derivative. Finally a use for calculus! It s a delta/delta! Slide 1 Integrated Rate Laws Finally a use for calculus! Slide 2 It s a delta/delta! Rate of reaction = What is a rate? In other words, it is a differential. As you MAY recall from calculus, if you take

More information

Chapter 14 Homework Answers

Chapter 14 Homework Answers Chapter 14 Homework Answers 14.47 The slope of the tangent to the curve at each time is the negative of the rate at each time: Rate 60 = 8.5 10 4 mol L 1 s 1 Rate 120 = 4.0 10 4 mol L 1 s 1 14.49 From

More information

The rate equation relates mathematically the rate of reaction to the concentration of the reactants.

The rate equation relates mathematically the rate of reaction to the concentration of the reactants. 1.9 Rate Equations Rate Equations The rate equation relates mathematically the rate of reaction to the concentration of the reactants. For the following reaction, aa + bb products, the generalised rate

More information

Date: SCH 4U Name: ENTHALPY CHANGES

Date: SCH 4U Name: ENTHALPY CHANGES Date: SCH 4U Name: ENTHALPY CHANGES Enthalpy (H) = heat content of system (heat, latent heat) Enthalpy = total energy of system + pressure volume H = E + PV H = E + (PV) = final conditions initial conditions

More information

NAME: Chapter 14Chemical Kinetics (Reaction Rate Law Concepts)

NAME: Chapter 14Chemical Kinetics (Reaction Rate Law Concepts) NAME: Chapter 14Chemical Kinetics (Reaction Rate Law Concepts) 1. Go to the website : http://www.chm.davidson.edu/vce/kinetics/index.html, a. Go to reaction rates page, read the introductory paragraphs

More information

Ch part 2.notebook. November 30, Ch 12 Kinetics Notes part 2

Ch part 2.notebook. November 30, Ch 12 Kinetics Notes part 2 Ch 12 Kinetics Notes part 2 IV. The Effect of Temperature on Reaction Rate Revisited A. According to the kinetic molecular theory of gases, the average kinetic energy of a collection of gas molecules is

More information

Chapter 13 Rates of Reactions

Chapter 13 Rates of Reactions Chapter 13 Rates of Reactions Chemical reactions require varying lengths of time for completion, depending on the characteristics of the reactants and products. The study of the rate, or speed, of a reaction

More information

Red Hot Half-Life Modeling Nuclear Decay

Red Hot Half-Life Modeling Nuclear Decay Red Hot Half-Life Modeling Nuclear Decay About this Lesson This lesson can be used in multiple places within a chemistry curriculum. It can be used with the atomic structure unit, a nuclear chemistry unit

More information

Chemistry 102 Chapter 14 CHEMICAL KINETICS. The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products

Chemistry 102 Chapter 14 CHEMICAL KINETICS. The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products CHEMICAL KINETICS Chemical Kinetics: The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products The study of Reaction Mechanisms: the steps involved in the change

More information

Chemical Kinetics Lecture/Lession Plan -2

Chemical Kinetics Lecture/Lession Plan -2 Chapter Chemical Kinetics Lecture/Lession Plan - Chemical Kinetics. Rate laws of zero, first and second order reactions.. Zero order reaction Let us consider a reaction: A Product If this reaction follow

More information

There is not enough activation energy for the reaction to occur. (Bonds are pretty stable already!)

There is not enough activation energy for the reaction to occur. (Bonds are pretty stable already!) Study Guide Chemical Kinetics (Chapter 12) AP Chemistry 4 points DUE AT QUIZ (Wednesday., 2/14/18) Topics to be covered on the quiz: chemical kinetics reaction rate instantaneous rate average rate initial

More information

Chemical Kinetics. What Influences Kinetics?

Chemical Kinetics. What Influences Kinetics? Chemical Kinetics Predictions of likelihood for a reaction to occur have been based on difference in energy between products and reactants: Thermodynamics only compares reactants to products, says nothing

More information

Solutions to Problem Assignment 1 (Kinetics) Oxtoby Problems -- see Solutions Manual. Solutions to Lecture Problems I # 1-6

Solutions to Problem Assignment 1 (Kinetics) Oxtoby Problems -- see Solutions Manual. Solutions to Lecture Problems I # 1-6 Solutions to Problem Assignment 1 (Kinetics) Oxtoby Problems -- see Solutions Manual Solutions to Lecture Problems I # 1-6 I-1. This problem illustrates how the differential rate law (DRL) can be simplified

More information

Chapter 12 - Chemical Kinetics

Chapter 12 - Chemical Kinetics Chapter 1 - Chemical Kinetics 1.1 Reaction Rates A. Chemical kinetics 1. Study of the speed with which reactants are converted to products B. Reaction Rate 1. The change in concentration of a reactant

More information

Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 4, 2019 Quiz III. Name KEY Rec. TA/time

Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 4, 2019 Quiz III. Name KEY Rec. TA/time Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 4, 2019 Quiz III Name KEY Rec. TA/time 1. (8 pts) For the following reaction K P = 0.0752 at 480.0 EC. 2 Cl 2 (g) + 2 H 2 O

More information

Chapter 11 Rate of Reaction

Chapter 11 Rate of Reaction William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 11 Rate of Reaction Edward J. Neth University of Connecticut Outline 1. Meaning of reaction rate 2. Reaction

More information

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can t tell how fast. Diamond will spontaneously turn to graphite eventually. Reaction mechanism- the

More information

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc.

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc. Chapter 13 Lecture Lecture Presentation Chapter 13 Chemical Kinetics Sherril Soman Grand Valley State University Ectotherms Lizards, and other cold-blooded creatures, are ectotherms animals whose body

More information

State the main interaction when an alpha particle is scattered by a gold nucleus

State the main interaction when an alpha particle is scattered by a gold nucleus Q1.(a) Scattering experiments are used to investigate the nuclei of gold atoms. In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope

More information

Chemical Kinetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction

More information

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03 Chapter Chemical Kinetics Reaction Rates 0 Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products aa bb Rate = [A] t Rate = [B] t Reaction Rates 0

More information

Appendix A. Common Mathematical Operations in Chemistry

Appendix A. Common Mathematical Operations in Chemistry Appendix A Common Mathematical Operations in Chemistry In addition to basic arithmetic and algebra, four mathematical operations are used frequently in general chemistry: manipulating logarithms, using

More information

ln(k) = ( E a /R) (1/T) + ln(a) Copyright 2018 Dan Dill 1

ln(k) = ( E a /R) (1/T) + ln(a) Copyright 2018 Dan Dill 1 TP For A B, is 0.003/min at 25 o C and 0.025/min at 35. For C D, is 0.003/min at 25 and 0.035/min at 35. Compared to the activation energy of A B, the activation energy of C D is 1. smaller 2. the same

More information

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40 CHEM 1412. Chapter 14. Chemical Kinetics (Homework) Ky40 1. Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation: 2ClO 2 (aq) + 2OH (aq) ClO

More information

Kinetics CHAPTER IN THIS CHAPTER

Kinetics CHAPTER IN THIS CHAPTER CHAPTER 14 Kinetics IN THIS CHAPTER Summary: Thermodynamics often can be used to predict whether a reaction will occur spontaneously, but it gives very little information about the speed at which a reaction

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this Section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics Chapter 14: Chemical Kinetics NOTE THIS CHAPTER IS #2 TOP TOPICS ON AP EXAM!!! NOT ONLY DO YOU NEED TO FOCUS ON THEORY (and lots of MATH) BUT YOU MUST READ THE FIGURES TOO!!! Ch 14.1 ~ Factors that Affect

More information

C H E M I C N E S C I

C H E M I C N E S C I C H E M I C A L K I N E T S C I 4. Chemical Kinetics Introduction Average and instantaneous Rate of a reaction Express the rate of a reaction in terms of change in concentration Elementary and Complex

More information

Use your time wisely. Do not get stuck on one question. WORK MUST BE SHOWN CAREFULLY, WITH UNITS AT EVERY STEP OF SETUP.

Use your time wisely. Do not get stuck on one question. WORK MUST BE SHOWN CAREFULLY, WITH UNITS AT EVERY STEP OF SETUP. Spring 2014 CCBC-Catonsville (Wed 3/12/14) Use your time wisely. Do not get stuck on one question. WORK MUST BE SHOWN CAREFULLY, WITH UNITS AT EVERY STEP OF SETUP. PAGE TOTAL SCORE POSSIBLE YOUR SCORE

More information

26.6 The theory of radioactive decay Support. AQA Physics. Decay constant and carbon dating. Specification reference. Introduction.

26.6 The theory of radioactive decay Support. AQA Physics. Decay constant and carbon dating. Specification reference. Introduction. 6.6 The theory of radioactive Decay constant and carbon dating Specification reference 3.8.1.3 MS 0.1, 0., 0.3, 0.5,.,.3,.4 Introduction You have already studied half-life, the definition and various means

More information

Rate Laws. many elementary reactions. The overall stoichiometry of a composite reaction tells us little about the mechanism!

Rate Laws. many elementary reactions. The overall stoichiometry of a composite reaction tells us little about the mechanism! Rate Laws We have seen how to obtain the differential form of rate laws based upon experimental observation. As they involve derivatives, we must integrate the rate equations to obtain the time dependence

More information

Contents and Concepts. Learning Objectives. Reaction Rates 1. Definition of a Reaction Rate. 2. Experimental Determination of Rate

Contents and Concepts. Learning Objectives. Reaction Rates 1. Definition of a Reaction Rate. 2. Experimental Determination of Rate Contents and Concepts Reaction Rates 1. Definition of Reaction Rate. Experimental Determination of Rate 3. Dependence of Rate on Concentration 4. Change of Concentration with Time 5. Temperature and Rate;

More information

CHAPTER 10 CHEMICAL KINETICS

CHAPTER 10 CHEMICAL KINETICS CHAPTER 10 CHEMICAL KINETICS Introduction To this point in our study of chemistry, we have been concerned only with the composition of the equilibrium mixture, not the length of time required to obtain

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

Applications of Exponential Functions Group Activity 7 STEM Project Week #10

Applications of Exponential Functions Group Activity 7 STEM Project Week #10 Applications of Exponential Functions Group Activity 7 STEM Project Week #10 In the last activity we looked at exponential functions. We looked at an example of a population growing at a certain rate.

More information