NANOTECHNOLOGY SUSTAINABILITY

Size: px
Start display at page:

Download "NANOTECHNOLOGY SUSTAINABILITY"

Transcription

1 NANOTECHNOLOGY THE KEY TO SUSTAINABILITY Ankara, Oct. 4, 2010

2 THIS IS NOT MEANT TO BE A GREEN CRUSADE IT IS A REMINDER THAT SCIENCE PROVIDES WHAT MANKIND NEEDS BUT MANKIND HAS TO MAKE THE CHOICE

3 WORKING AT AN EVER SMALLER SCALE SHAPED THE TECHNICAL REVOLUTIONS OF THE PAST

4 TECHNICAL REVOLUTIONS & MINIATURIZATION GEO REVOLUTION 1492 THE WORLD SCALE INDUSTRIAL REVOLUTION FROM MACRO- TO MICRO SCALE MECHANICS, ELECTRICITY 1698, 1769 IT REVOLUTION 1925, 1934, 1945, 1947 MICRO SCALE MICRO-ELECTRONICS, MICRO-MECHANICS NANO REVOLUTION? NANO SCALE NANO-ELECTRONICS, -MECHANICS, -CHEMISTRY, -BIOLOGY.

5 TECHNICAL REVOLUTIONS GEO REVOLUTION EXPLORE THE WORLD THE WORLD SCALE INDUSTRIAL REVOLUTION FROM MACRO- TO MICRO SCALE MECHANICS, ELECTRICITY IT REVOLUTION PHYSICAL TASKS SIMPLE MENTAL TASKS MICRO SCALE MICRO-ELECTRONICS, MICRO-MECHANICS NANO REVOLUTION? COMPLEX MENTAL TASKS NANO SCALE NANO-ELECTRONICS, -MECHANICS, -CHEMISTRY, -BIOLOGY.

6 THE CONFUSION ABOUT SUSTAINABILITY RESOURCES: LESS RESOURCES IN A NO GROWTH WORLD? STAGNANT RESOURCES IN A GROWING WORLD? A LITTLE BIT MORE RESOURCES FOR MUCH GROWTH? MUCH LESS RESOURCES FOR NEGATIVE GROWTH? WORK: DO A JOB MORE EFFICIENTLY DON T DO SOMETHING AT ALL LIFE: IS POPULATION GROWTH SUSTAINABLE? IS AGING SUSTAINABLE

7 SMALL IS POWERFUL SMALL RULES LARGE

8 MICRO (ELECTRONICS) RULES TODAY s TECHNICAL WORLD NANO IS THE SCALE OF ATOMS AND MOLECULES AND RULES LIVING NATURE

9 NATURE is the PERFECT NANO-SYSTEM THE FUNDAMENTAL SHAPES, MOTIONS, PROCESSES HAPPEN TO BE ON the nm SCALE AND ARE SYNTHEZISED TO MICRO- AND MACRO- SHAPES, MOTIONS, PROCESSES THE TECHNICAL STRATEGY OF LIVINGATURE IS SENSE & ACTUATE: SMALL BY SMALL WEAK BY WEAK MANY BY MANY } AT THE NANO LEVEL e.g. ARRAYS OF NANOSENSORS

10 SMALL IS POWERFUL SMALL RULES LARGE SMALL IS SUSTAINABLE

11 SMALL MEANS SUSTAINABLE LITTLE ENERGY CONSUMPTION

12 REDUCTION OF ENERGY PER LOGIC OPERATION: 10 12

13 Nevertheless THE ENERGY BILL OF DATA PROCESSING INCREASED to: 300 BILLION USD / YEAR TOTAL ENERGY REQUIREMENT of a PERSON: 120 USD/YEAR THINKING of a THINKER: 15 USD/YEAR

14 SMALL MEANS SUSTAINABLE LITTLE ENERGY CONSUMPTION LITTLE BUT BEST SUITED MATERIAL

15 YEARLY PRODUCTION OF TRANSISTORS: QUINTILLION 1 BILLION PER PERSON WITH THE SMALLEST RADIO TUBES WE WOULD STAND KNEE-HIGH IN THEM

16 YEARLY ENERGY CONSUMPTION OF RADIO TUBES OF 1 WATT 2 x J 700 x YEARLY WORLD ENERGY CONSUMPTION

17 SMALL MEANS SUSTAINABLE EXAMPLE: COMPUTING LITTLE ENERGY CONSUMPTION LITTLE AND BEST SUITED MATERIAL SMALL FOR EXCELLENT PERFORMANCE

18 SMALL FOR EXCELLENT PERFORMANCE: SUCCESS of MICRO-ELECTRONICS SMALLER, FASTER, CHEAPER SMALLER : FASTER : CHEAPER :

19 HEAT DISSIPATION PER LOGIC OPERATION JOULE CONTINUATION of MINIATURIZATION MINIATURIZATION IN DATA PROCESSING THE SUCCES OF THE PAST THE CHALLENGE END

20 WORKING AT AN EVER SMALLER SCALE COMES TO AN END WHAT NEXT?

21 NANO CANNOT BE JUST AN EXTENSION FROM THE MICRO- TO THE NANO-METER SCALE, IT HAS TO OFFER FUNDAMENTALLY NEW PROSPECTS IN ORDER TO SPARK A REVOLUTION AND IT DOES INDEED!

22 THE CONTINUATION OF MINIATURIZATION FROM MICRO TO NANO IS DISCONTINUOUS IT HAPPENS IN DISRUPTIVE STEPS

23 NANO is DIFFERENT IT IS THESE DISRUPTIVE STEPS WHICH MAKE THE DIFFERENCE AND POSE THE CHALLENGES

24 DISRUPTIVE STEPS FROM MICRO TO THE ATOMIC AND MOLECULAR NANO SCALE ANALYTICS COMPONENT SIZE

25 DISRUPTIVE STEP in COMPONENT SIZE TRANSISTOR SCALABLE MACRO 30 nm? NEW NANO ELECTRONIC COMPONENTS are INTRINSICALLY MUCH SMALLER: SINGLE ELECTRON TRANSISTOR ( at R.T.) BALLISTIC TRANSPORT (at R.T.) SPIN BALISTICS, SPINTRONICS MOLECULAR ELECTRONICS 1-3 nm 1-5 nm 1-2 nm 1-5 nm NOT SCALABLE

26 DISRUPTIVE STEPS FROM MICRO TO THE ATOMIC AND MOLECULAR NANO SCALE ANALYTICS COMPONENT SIZE PROPERTIES & FUNCTIONS

27 DISRUPTIVE STEPS in PROPERTIES & FUNCTIONS d < MEAN FREE PATH l m : d < WAVE LENGTH : d < l m, : d < e2/kt: ADHESION > GRAVITY : BALLISTIC REGIME, SPIN-TRONICS NEAR FIELD, Q-WELLS,- WIRES, - DOTS QUANTUM CONDUCTION COULOMBE BLOCKADE (d RT 2nm) ATOM & MOLECULE MANIPULATION N BULK N SURF N EDGE : NOVEL MECHANICAL, CHEMICAL, ELECTRICAL PROPERTIES d ~ nm-range : REVERSIBLE PLASTIC DEFORMATION, ANTI-WETTING THROUGH NANO ROUGHNESS

28 CHANGE OF PARADIGMS SOLID STATE SILICON, METALS, OXIDES TO MOLECULAR MATERIALS CARBON NANOTUBES, MOL.TRANSISTORS, -SWITCHES

29 CHANGE OF PARADIGMS MINIATURIZATION TO (SELF) ASSEMBLY

30 ISSUES AND CHALLENGES NANO SCALE MATERIAL SCIENCE LOCAL GROWTH, NANO-PARTICLES,

31 NANO FOR NANO THE CENTRAL CHALLENGE OF NANOSCALE MATERIAL SCIENCE: GROWTH & FABRICATION OF GIVEN STRUCTURES OR COMPONENTS AT GIVEN LOCATIONS FOR GIVEN FUNCTIONS

32 ISSUES AND CHALLENGES NANO SCALE MATERIAL SCIENCE LOCAL GROWTH, NANO-PARTICLES, NANO- INTERFACE INTERFACE AS ACTIVE COMPONENT

33 INTERFACE, THE FACE OF ACTION N INTERFACE = ½ N PHASE (N PHASE - 1) NON-INVASIV - FUNCTIONALITY PROTECTING - TRANSPARENT

34 THE TUNNELING INTERFACE DECOUPLES ELECTRONIC WAVEFUNCTIONS FROM SUBSTRATE ALLOWS ELECTRON TRANSFER TO SUBSTRATE molecular switch - Electronic properties of atoms/molecules - Catalytic processes on insulators - Metallic nanostructures MEYER, IBM ZURICH RESEARCH

35 INTERFACE, THE FACE OF ACTION N INTERFACE = ½ N PHASE (N PHASE - 1) NON-INVASIV - FUNCTIONALITY PROTECTING - TRANSPARENT COLORFUL - FLAT CONTACTS: CLASSICAL, QUANTUM ELECTRICAL, CHEMICAL, MECHANICAL

36 OMPONENT ONNECTION CONTACT MACRO & MICRO SCALE: - BUILD COMPONENTS & CONNECT THEM NANO SCALE: - CONTACTING AND CONNECTING BECOMES VERY DELICATE - CONTACTS HAVE THEIR OWN FUNCTIONALITY BUILD CONNECTION NETWORK AND GROW COMPONENTS AT CONNECTION NODES - (e.g. TUNNELING JUNCTION)

37 INTERFACE, THE FACE OF ACTION N INTERFACE = ½ N PHASE (N PHASE - 1) NON-INVASIV - FUNCTIONALITY PROTECTING - TRANSPARENT COLORFUL - FLAT CONTACTS: CLASSICAL, QUANTUM ELECTRICAL, CHEMICAL, MECHANICAL FUNCTIONAL ACTION FUNCTIONAL INTERFACE SCIENCE : THE MODERN MATERIALS SCIENCE

38 ISSUES AND CHALLENGES NANO SCALE MATERIAL SCIENCE LOCAL GROWTH, NANO-PARTICLES, NANO- INTERFACE INTERFACE AS ACTIVE COMPONENT THE SOLID LIQUID INTERFACE AMBIENT, NATURE, ELECTROCHEMISTRY

39 LIQUID-SOLID, THE POWER INTERFACE INDISPENSIBLE FOR: ASSEMBLY SCENARIOS BIOLOGY / MEDICINE FUNCTIONALIZATION OF SURFACES EASE THE SURFACE TRAFFIC CONGESTION

40 NANO SMALL ULTRAHIGH DENSITIES: COMPONENTS, ENERGY INTENSITIES: CURRENTS, FLUXES, FIELDS, SPEED: SENSITIVITY: MECHANICS, RATES MOLECULAR RECOGNITION NANO SMALL : SMALL NUMBERS

41 ISSUES AND CHALLENGES NANO SCALE MATERIAL SCIENCE LOCAL GROWTH, NANO-PARTICLES, NANO- INTERFACE INTERFACE AS ACTIVE COMPONENT THE SOLID LIQUID INTERFACE AMBIENT, NATURE, ELECTROCHEMISTRY THE 1/ N ISSUE SMALL N

42 THE 1/ N ISSUE FLUCTUATION OF DOPANTS: 1/ N 3% N 1000 DOPANTS DOPING LEVEL: cm -3, VOLUME: 30x30x30 nm 3 THE POSITIONS OF THE DOPANTS BECOME IMPPORTANT : ORDERED DOPING ATOMS FLUCTUATION OF CURRENTS: 1/ N 3% N 1000 ELECTRONS ps I 100 μa ; R contact ~ 1 kω Q 10 μj, (V 100mV) ns I 100 na Q 10 pj, (V 100μV) CONTROL by COUNTING

43 NANO SMALL ULTRAHIGH DENSITIES: COMPONENTS, ENERGY INTENSITIES: CURRENTS, FLUXES, FIELDS, SPEED: SENSITIVITY: MECHANICS, RATES MOLECULAR RECOGNITION NANO SMALL : SMALL NUMBERS LARGE SYSTEMS : ULTRALARGE NUMBERS OF COMPONENTS

44 ISSUES AND CHALLENGES NANO SCALE MATERIAL SCIENCE LOCAL GROWTH, NANO-PARTICLES, NANO- INTERFACE INTERFACE AS ACTIVE COMPONENT THE SOLID LIQUID INTERFACE AMBIENT, NATURE, ELECTROCHEMISTRY THE 1/ N ISSUE SMALL N THE ENERGY DISSIPATION ISSUE WE HAVE BEEN THERE BEFORE

45 The power problem: we've been here before! STEAM IRON

46 THE CRUCIAL ISSUE OF POWER DISSIPATION POWER DISSIPATION IN PRESENT CMOS TECHNOLOGY: 50% BY ACTIVE COMPONENTS, 50 % BY LEAKAGE CURRENTS OFF -STATE DISSIPATES SAME OR MORE THAN ON -STATE NUMBER OF COMPONENTS : ~ d -2 LEAD RESISTANCE : ~ d -2 CONTACT RESISTANCE R Q : ~d -4 LEAKAGE CURRENTS : exp (d)

47 NONVOLATILE SWITCHES BASED ON BISTABLE NANOSTRUCTURES FOR MEMORIES AND PROCESSORS CRITICAL ISSUE is SPEED REVIVAL OF TWO TERMINAL DEVICES DOES NOT DOWNGRADE AN AMPLIFIER TO A SWITCH

48 MAGNETISM & FERROELECTRICS e.g. MRAM s, FRAM s MECHANICS & CHEMISTRY ATOMIC & MOLECULAR SWITCHES CANTILEVERS and ALIKE

49 Atom Switch D.M. Eigler, C.P. Lutz and W.E. Rudge, Nature 352, 600 (1991).

50 Atomic Switch Realized with Ag 2 S) Ag wire Ag 2 S coating Platinum wire Terabe, Hasegawa,Nakayama, Aono Nanomaterials Laboratory, NIMS, Japan

51 FURTHER BISTABLE COMPONENTS CONFORMATION CHANGE GRANULAR FILAMENTS.. AND OTHERS

52 THE CHALLENGE GRANULAR FILAMENT OVONICS (OVSHINSKY) EXPERIMENTS of Andreas Moser + HR, 1974 Rh SiO 2 GaAs Rh FILAMENT FORMATION: DISCHARGE E > Ecrit FILAMENT: Ga + CONTACT - GRAINS in As MATRIX ELECTRICALLY ISOLATED FROM GaAs

53

54 FURTHER BISTABLE COMPONENTS CONFORMATION CHANGE GRANULAR FILAMENTS.. AND OTHERS MECHANICS, MECHANICS, MECHANICS,.

55 MANY NONVOLATILE, BISTABLE SWITCHES HAVE MECHANICAL COMPONENTS ALL-ELECTRONICS TO ELECTRONIC-MECHANICAL SYSTEMS REVIVAL OF MECHANICS

56 MECHANICAL COMPONENTS CANTILEVER OR SIMILAR THE CHALLENGE S EXCURSION S FORCE STRAIN FREQUENCY r : FORCE GRADIENT : DISSIPATION KEY CHALLENGE: FUNCTIONALIZATION OF CANTILEVER ADJUSTABLE HOLES close open SWITCH GATE SIEVE COUNTING GUIDES (RAILS, TUBES) CONTROLLED TRANSPORT

57 MICRO WAS THE DOMAIN OF ELECTRONICS NANO : MECHANICS PLAYS A DOMINANT ROLE MECHANICS UNDERSTOOD AS MOTION OF ATOMIC CORES (or generally MASS ) AND DEFORMATION OF THEIR ARRANGEMENT

58 ISSUES AND CHALLENGES NANO SCALE MATERIAL SCIENCE LOCAL GROWTH, NANO-PARTICLES, NANO- INTERFACE INTERFACE AS ACTIVE COMPONENT THE SOLID LIQUID INTERFACE AMBIENT, NATURE, ELECTROCHEMISTRY THE 1/ N ISSUE SMALL N THE ENERGY DISSIPATION ISSUE WE HAVE BEEN THERE BEFORE ENERGY SUPPLY and INFORMATION TRANSFER LOCAL CHEMICAL ENERGY, FIELDS

59 WIRELESS ENERGY SUPPLY TO AUTONOMOUS NANO- SYSTEMS NANO ENERGY HARVESTING WIRELESS COMMUNICATION BETWEEN & WITH AUTONOMOUS NANO- SYSTEMS FIELDS, MESSENGERS

60 FUTURE LARGE SYSTEMS : ULTRALARGE NUMBER OF COMPONENTS e.g. GIGA-COMPONENTS / CHIP, PETA- BYTE STORAGE SMALL SYSTEMS : MODERATE NUMBER OF COMPONENTS e.g. NANO ROBOTS, LOCAL SENSOR - ACTUATION - PROCESSOR SYSTEMS POCKET SIZE TERABITS ULTIMATE GOAL PERVASIVE BRIDGES BETWEEN THE REAL WORLD OF ACTION & VIRTUAL WORLD OF DATA PROCESSING

61 ISSUES AND CHALLENGES NANO SCALE MATERIAL SCIENCE LOCAL GROWTH, NANO-PARTICLES, NANO- INTERFACE INTERFACE AS ACTIVE COMPONENT THE SOLID LIQUID INTERFACE AMBIENT, NATURE, ELECTROCHEMISTRY THE 1/ N ISSUE SMALL N THE ENERGY DISSIPATION ISSUE WE HAVE BEEN THERE BEFORE ENERGY SUPPLY and INFORMATION TRANSFER LOCAL CHEMICAL ENERGY, FIELDS THEORY COMPUTATIONAL SCIENCES

62 COMPUTATIONAL METHODS ARE THE THEORY OF NANO

63 COMPUTATIONAL METHODS FOR NANO: AT THE TRANSITION OF CONDENSED MATTER BEHAVIOR TO ATOMIC AND MOLECULAR ROPERTIES NO A PRIORE DIMENSION AND SYMMETRY INTERFACING OF VERY DIFFERENT FUNCTIONS PROCESSES COMPLEX SYSTEMS

64 THE CHALLENGE COMPUTERS AND COMPUTATION 10 9 RELATIVE PERFORMANCE (INDEPENDENT SPIN FLIPS PER CPU sec) COMPUTER SPEED

65 NANO & COMPUTATION FROM HARDWARE TO SOFTWARE HARDWARE: COMPONENTS & COMPONENT CLUSTERS SENSORS AND ACTUATORS SOFTWARE (SW): THE WAY TO SOLVE THE PROBLEM SW IN COMPUTATION: DAWN AT THE HORIZON ARCHITECTURES, ALGORITHMS, PROGRAM BRAINCELLS INSTEAD OF PETA-FLOPS SW IN NANO: A LONG WAY TO GO UNTIL DAWN SENSOR, ACTUATOR, AND PROCESSOR SYSTEMS STRAGIES OF NATURE

66 ISSUES AND CHALLENGES NANO SCALE MATERIAL SCIENCE LOCAL GROWTH, NANO-PARTICLES, NANO- INTERFACE INTERFACE AS ACTIVE COMPONENT THE SOLID LIQUID INTERFACE AMBIENT, NATURE, ELECTROCHEMISTRY THE 1/ N ISSUE SMALL N THE ENERGY DISSIPATION ISSUE WE HAVE BEEN THERE BEFORE ENERGY SUPPLY and INFORMATION TRANSFER LOCAL CHEMICAL ENERGY, FIELDS THEORY COMPUTATIONAL SCIENCES COMPLEX NANOSYSTEMS CELLS (SYSTEMS BIOLOGY),

67 CELL, THE NANO-WORLD OF SMART SENSORS SMART ACTUATORS PROCESS CONTROL WITHOUT CENTRAL PROCESSOR

68 Cell Odyssey Project Conductive tip Understanding signal transmission in single cells Near field optical fiber Light emission Ultra thin carbon nanotube Current Photochemical reaction Ion transport Nakayama, Aono Nanomaterials Laboratory, NIMS, Japan

69 Neural Network Odyssey Project Conductive tip Understanding signal transmission between cells Near field optical fiber Input signal Ultra thin carbon nanotube Nakayama, Aono Nanomaterials Laboratory, NIMS, Japan

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

RAJASTHAN TECHNICAL UNIVERSITY, KOTA RAJASTHAN TECHNICAL UNIVERSITY, KOTA (Electronics & Communication) Submitted By: LAKSHIKA SOMANI E&C II yr, IV sem. Session: 2007-08 Department of Electronics & Communication Geetanjali Institute of Technical

More information

materials, devices and systems through manipulation of matter at nanometer scale and exploitation of novel phenomena which arise because of the

materials, devices and systems through manipulation of matter at nanometer scale and exploitation of novel phenomena which arise because of the Nanotechnology is the creation of USEFUL/FUNCTIONAL materials, devices and systems through manipulation of matter at nanometer scale and exploitation of novel phenomena which arise because of the nanometer

More information

1. Introduction : 1.2 New properties:

1. Introduction : 1.2 New properties: Nanodevices In Electronics Rakesh Kasaraneni(PID : 4672248) Department of Electrical Engineering EEL 5425 Introduction to Nanotechnology Florida International University Abstract : This paper describes

More information

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application 2011 11th Non-Volatile Memory Technology Symposium @ Shanghai, China, Nov. 9, 20112 MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application Takahiro Hanyu 1,3, S. Matsunaga 1, D. Suzuki

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

There s plenty of room at the bottom! - R.P. Feynman, Nanostructure: a piece of material with at least one dimension less than 100 nm in extent.

There s plenty of room at the bottom! - R.P. Feynman, Nanostructure: a piece of material with at least one dimension less than 100 nm in extent. Nanostructures and Nanotechnology There s plenty of room at the bottom! - R.P. Feynman, 1959 Materials behave differently when structured at the nm scale than they do in bulk. Technologies now exist that

More information

STOCHASTIC LOGIC Architectures for post-cmos switches

STOCHASTIC LOGIC Architectures for post-cmos switches STOCHASTIC LOGIC Architectures for post-cmos switches David S. Ricketts Electrical & Computer Carnegie Mellon University www.ece.cmu.edu/~ricketts Jehoshua (Shuki) Bruck Engineering Electrical Engineering

More information

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI Title GaAs and InGaAs Single Electron Hex Circuits Based on Binary Decision D Author(s) Kasai, Seiya; Hasegawa, Hideki Citation Physica E: Low-dimensional Systems 3(2-4): 925-929 Issue Date 2002-03 DOI

More information

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices?

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices? EECS 498/598: Nanocircuits and Nanoarchitectures Lecture 1: Introduction to Nanotelectronic Devices (Sept. 5) Lectures 2: ITRS Nanoelectronics Road Map (Sept 7) Lecture 3: Nanodevices; Guest Lecture by

More information

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB MEMORY Moores Law for DRAM 2x increase in capacity every 18 months 2006: 4GB Corollary to Moores Law Cost / chip ~ constant (packaging) Cost / bit = 2X reduction / 18 months Current (2008) ~ 1 micro-cent

More information

Challenges for Materials to Support Emerging Research Devices

Challenges for Materials to Support Emerging Research Devices Challenges for Materials to Support Emerging Research Devices C. Michael Garner*, James Hutchby +, George Bourianoff*, and Victor Zhirnov + *Intel Corporation Santa Clara, CA + Semiconductor Research Corporation

More information

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Presenter: Tulika Mitra Swarup Bhunia, Massood Tabib-Azar, and Daniel Saab Electrical Eng. And

More information

Spintronics. Seminar report SUBMITTED TO: SUBMITTED BY:

Spintronics.  Seminar report SUBMITTED TO: SUBMITTED BY: A Seminar report On Spintronics Submitted in partial fulfillment of the requirement for the award of degree of Electronics SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface I have

More information

Nanotechnology: Today and tomorrow

Nanotechnology: Today and tomorrow Nanotechnology: Today and tomorrow Horst-Günter Rubahn NanoSYD Mads Clausen Instituttet Syddansk Universitet Alsion 2 6400 Sønderborg Agenda Alsion A bit about nano Nanoproducts Top down vs. bottom up

More information

Nano-mechatronics. Presented by: György BudaváriSzabó (X0LY4M)

Nano-mechatronics. Presented by: György BudaváriSzabó (X0LY4M) Nano-mechatronics Presented by: György BudaváriSzabó (X0LY4M) Nano-mechatronics Nano-mechatronics is currently used in broader spectra, ranging from basic applications in robotics, actuators, sensors,

More information

are microscopically large but macroscopically small contacts which may be connected to a battery to provide the bias voltage across the junction.

are microscopically large but macroscopically small contacts which may be connected to a battery to provide the bias voltage across the junction. At present, we observe a long-lasting process of miniaturization of electronic devices. The ultimate limit for the miniaturization of electronic components is set by the atomic scale. However, in the case

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

DocumentToPDF trial version, to remove this mark, please register this software.

DocumentToPDF trial version, to remove this mark, please register this software. PAPER PRESENTATION ON Carbon Nanotube - Based Nonvolatile Random Access Memory AUTHORS M SIVARAM PRASAD Sivaram.443@gmail.com B N V PAVAN KUMAR pavankumar.bnv@gmail.com 1 Carbon Nanotube- Based Nonvolatile

More information

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 Superconductivity Theory, The Cooper Pair Application of Superconductivity Semi-Conductor Nano-technology Graphene 1 Announcements Your presentations

More information

MRAM: Device Basics and Emerging Technologies

MRAM: Device Basics and Emerging Technologies MRAM: Device Basics and Emerging Technologies Matthew R. Pufall National Institute of Standards and Technology 325 Broadway, Boulder CO 80305-3337 Phone: +1-303-497-5206 FAX: +1-303-497-7364 E-mail: pufall@boulder.nist.gov

More information

ME 4875/MTE C16. Introduction to Nanomaterials and Nanotechnology. Lecture 2 - Applications of Nanomaterials + Projects

ME 4875/MTE C16. Introduction to Nanomaterials and Nanotechnology. Lecture 2 - Applications of Nanomaterials + Projects ME 4875/MTE 575 - C16 Introduction to Nanomaterials and Nanotechnology Lecture 2 - Applications of Nanomaterials + Projects 1 Project Teams of 4 students each Literature review of one application of nanotechnology

More information

What are Carbon Nanotubes? What are they good for? Why are we interested in them?

What are Carbon Nanotubes? What are they good for? Why are we interested in them? Growth and Properties of Multiwalled Carbon Nanotubes What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? - our vision Where do we stand - our

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information

NANOELECTRONICS beyond CMOS

NANOELECTRONICS beyond CMOS NANOELECTRONICS beyond CMOS David Pulfrey 1 NNI definition of Nanotechnology 1-10 nm is better But Intel prefer... 2 Bourianoff04 1 3 Bourianoff04 4 Moravec04 2 Increasing the Integration Level functional

More information

Nanotechnology. Gavin Lawes Department of Physics and Astronomy

Nanotechnology. Gavin Lawes Department of Physics and Astronomy Nanotechnology Gavin Lawes Department of Physics and Astronomy Earth-Moon distance 4x10 8 m (courtesy NASA) Length scales (Part I) Person 2m Magnetic nanoparticle 5x10-9 m 10 10 m 10 5 m 1 m 10-5 m 10-10

More information

Contents. Preface to the first edition

Contents. Preface to the first edition Contents List of authors Preface to the first edition Introduction x xi xiii 1 The nanotechnology revolution 1 1.1 From micro- to nanoelectronics 2 1.2 From the macroscopic to the nanoscopic world 4 1.3

More information

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology From Spin Torque Random Access Memory to Spintronic Memristor Xiaobin Wang Seagate Technology Contents Spin Torque Random Access Memory: dynamics characterization, device scale down challenges and opportunities

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Emerging Research Devices: A Study of CNTFET and SET as a replacement for SiMOSFET

Emerging Research Devices: A Study of CNTFET and SET as a replacement for SiMOSFET 1 Emerging Research Devices: A Study of CNTFET and SET as a replacement for SiMOSFET Mahmoud Lababidi, Krishna Natarajan, Guangyu Sun Abstract Since the development of the Silicon MOSFET, it has been the

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica Nanotechnology Yung Liou P601 yung@phys.sinica.edu.tw Institute of Physics Academia Sinica 1 1st week Definition of Nanotechnology The Interagency Subcommittee on Nanoscale Science, Engineering and Technology

More information

NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS

NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS SMALLER FASTER MORE SENSETIVE MORE EFFICIENT NANO CONNECT SCANDINAVIA www.nano-connect.org Chalmers University of Technology DTU Halmstad University

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

EE410 vs. Advanced CMOS Structures

EE410 vs. Advanced CMOS Structures EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + poly-si N + poly-si Al/Si alloy LPCVD PSG P + P + N + N + PMOS N-substrate NMOS P-well

More information

Design of Optimized Quantum-dot Cellular Automata RS Flip Flops

Design of Optimized Quantum-dot Cellular Automata RS Flip Flops Int. J. Nanosci. Nanotechnol., Vol. 13, No. 1, March. 2017, pp. 53-58 Design of Optimized Quantum-dot Cellular Automata RS Flip Flops A. Rezaei* 1 Electrical Engineering Department, Kermanshah University

More information

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace Quantum Computing Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September 2010 10:00am PST, Teleplace The Hope All computing is constrained by the laws of Physics and

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

Post Von Neumann Computing

Post Von Neumann Computing Post Von Neumann Computing Matthias Kaiserswerth Hasler Stiftung (formerly IBM Research) 1 2014 IBM Corporation Foundation Purpose Support information and communication technologies (ICT) to advance Switzerland

More information

From Physics to Logic

From Physics to Logic From Physics to Logic This course aims to introduce you to the layers of abstraction of modern computer systems. We won t spend much time below the level of bits, bytes, words, and functional units, but

More information

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Hendrik Bluhm Andre Kruth Lotte Geck Carsten Degenhardt 1 0 Ψ 1 Quantum Computing

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

CHAPTER 11 Semiconductor Theory and Devices

CHAPTER 11 Semiconductor Theory and Devices CHAPTER 11 Semiconductor Theory and Devices 11.1 Band Theory of Solids 11.2 Semiconductor Theory 11.3 Semiconductor Devices 11.4 Nanotechnology It is evident that many years of research by a great many

More information

Electrical and Optical Properties. H.Hofmann

Electrical and Optical Properties. H.Hofmann Introduction to Nanomaterials Electrical and Optical Properties H.Hofmann Electrical Properties Ohm: G= σw/l where is the length of the conductor, measured in meters [m], A is the cross-section area of

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

Nanotechnology Fabrication Methods.

Nanotechnology Fabrication Methods. Nanotechnology Fabrication Methods. 10 / 05 / 2016 1 Summary: 1.Introduction to Nanotechnology:...3 2.Nanotechnology Fabrication Methods:...5 2.1.Top-down Methods:...7 2.2.Bottom-up Methods:...16 3.Conclusions:...19

More information

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS)

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS) Diluted Magnetic Semiconductor (DMS) 1 Properties of electron Useful! Charge Electron Spin? Mass 2 Schematic of a Spinning & Revolving Particle Spinning Revolution 3 Introduction Electronics Industry Uses

More information

& Dirac Fermion confinement Zahra Khatibi

& Dirac Fermion confinement Zahra Khatibi Graphene & Dirac Fermion confinement Zahra Khatibi 1 Outline: What is so special about Graphene? applications What is Graphene? Structure Transport properties Dirac fermions confinement Necessity External

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF PHYSICS QUESTION BANK II SEMESTER PH8252 - PHYSICS FOR INFORMATION SCIENCE (Common to CSE & IT) Regulation 2017 Academic Year

More information

nmos IC Design Report Module: EEE 112

nmos IC Design Report Module: EEE 112 nmos IC Design Report Author: 1302509 Zhao Ruimin Module: EEE 112 Lecturer: Date: Dr.Zhao Ce Zhou June/5/2015 Abstract This lab intended to train the experimental skills of the layout designing of the

More information

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications?

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? Advanced Topics In Solid State Devices EE290B Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? August 28, 2007 Prof. Eli Yablonovitch Electrical Engineering & Computer Sciences

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan Single ion implantation for nanoelectronics and the application to biological systems Iwao Ohdomari Waseda University Tokyo, Japan Contents 1.History of single ion implantation (SII) 2.Novel applications

More information

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite.

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite. Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ 1 Introduction

More information

Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction

Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction November 3-4, 2011 Berkeley, CA, USA Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction Hideo Ohno 1,2 1 Center for Spintronics Integrated Systems, Tohoku University, Japan 2 Laboratory for Nanoelectronics

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Nanostructures. Lecture 13 OUTLINE

Nanostructures. Lecture 13 OUTLINE Nanostructures MTX9100 Nanomaterials Lecture 13 OUTLINE -What is quantum confinement? - How can zero-dimensional materials be used? -What are one dimensional structures? -Why does graphene attract so much

More information

Jeopardy Q $100 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $200 Q $300 Q $300 Q $300 Q $300 Q $300 Q $400 Q $400 Q $400 Q $400 Q $400

Jeopardy Q $100 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $200 Q $300 Q $300 Q $300 Q $300 Q $300 Q $400 Q $400 Q $400 Q $400 Q $400 Jeopardy Size and Scale Nano Products Tools Structure Of Matter Science and Society Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $300 Q $300 Q $300 Q $300

More information

Nanotechnology Nanofabrication of Functional Materials. Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany

Nanotechnology Nanofabrication of Functional Materials. Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany Nanotechnology Nanofabrication of Functional Materials Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany Contents Part I History and background to nanotechnology Nanoworld Nanoelectronics

More information

This is the author s final accepted version.

This is the author s final accepted version. Al-Ameri, T., Georgiev, V.P., Adamu-Lema, F. and Asenov, A. (2017) Does a Nanowire Transistor Follow the Golden Ratio? A 2D Poisson- Schrödinger/3D Monte Carlo Simulation Study. In: 2017 International

More information

Carbonized Electrospun Nanofiber Sheets for Thermophones

Carbonized Electrospun Nanofiber Sheets for Thermophones Supporting Information Carbonized Electrospun Nanofiber Sheets for Thermophones Ali E. Aliev 1 *, Sahila Perananthan 2, John P. Ferraris 1,2 1 A. G. MacDiarmid NanoTech Institute, University of Texas at

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

Quantum Dot Structures Measuring Hamming Distance for Associative Memories

Quantum Dot Structures Measuring Hamming Distance for Associative Memories Article Submitted to Superlattices and Microstructures Quantum Dot Structures Measuring Hamming Distance for Associative Memories TAKASHI MORIE, TOMOHIRO MATSUURA, SATOSHI MIYATA, TOSHIO YAMANAKA, MAKOTO

More information

Electron transport through molecular junctions and FHI-aims

Electron transport through molecular junctions and FHI-aims STM m metallic surface Electron transport through molecular junctions and FHI-aims Alexei Bagrets Inst. of Nanotechnology (INT) & Steinbuch Centre for Computing (SCC) @ Karlsruhe Institute of Technology

More information

Carbon nanotubes in a nutshell

Carbon nanotubes in a nutshell Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials 29: Nanotechnology What is Nanotechnology? Properties Control and Understanding Nanomaterials Making nanomaterials Seeing at the nanoscale Quantum Dots Carbon Nanotubes Biology at the Nanoscale Some Applications

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Advanced Flash and Nano-Floating Gate Memories

Advanced Flash and Nano-Floating Gate Memories Advanced Flash and Nano-Floating Gate Memories Mater. Res. Soc. Symp. Proc. Vol. 1337 2011 Materials Research Society DOI: 10.1557/opl.2011.1028 Scaling Challenges for NAND and Replacement Memory Technology

More information

Moore s Law Forever?

Moore s Law Forever? NCN Nanotechnology 101 Series Moore s Law Forever? Mark Lundstrom Purdue University Network for Computational Nanotechnology West Lafayette, IN USA NCN 1) Background 2) Transistors 3) CMOS 4) Beyond CMOS

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon Review of Semiconductor Physics Lecture 3 4 Dr. Tayab Din Memon 1 Electronic Materials The goal of electronic materials is to generate and control the flow of an electrical current. Electronic materials

More information

CHAPTER I. Introduction. 1.1 State of the art for non-volatile memory

CHAPTER I. Introduction. 1.1 State of the art for non-volatile memory CHAPTER I Introduction 1.1 State of the art for non-volatile memory 1.1.1 Basics of non-volatile memory devices In the last twenty years, microelectronics has been strongly developed, concerning higher

More information

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

Construction of a reconfigurable dynamic logic cell

Construction of a reconfigurable dynamic logic cell PRAMANA c Indian Academy of Sciences Vol. 64, No. 3 journal of March 2005 physics pp. 433 441 Construction of a reconfigurable dynamic logic cell K MURALI 1, SUDESHNA SINHA 2 and WILLIAM L DITTO 3 1 Department

More information

Addressing Challenges in Neuromorphic Computing with Memristive Synapses

Addressing Challenges in Neuromorphic Computing with Memristive Synapses Addressing Challenges in Neuromorphic Computing with Memristive Synapses Vishal Saxena 1, Xinyu Wu 1 and Maria Mitkova 2 1 Analog Mixed-Signal and Photonic IC (AMPIC) Lab 2 Nanoionic Materials and Devices

More information

CMOS Ising Computer to Help Optimize Social Infrastructure Systems

CMOS Ising Computer to Help Optimize Social Infrastructure Systems FEATURED ARTICLES Taking on Future Social Issues through Open Innovation Information Science for Greater Industrial Efficiency CMOS Ising Computer to Help Optimize Social Infrastructure Systems As the

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Lecture 6 NEW TYPES OF MEMORY

Lecture 6 NEW TYPES OF MEMORY Lecture 6 NEW TYPES OF MEMORY Memory Logic needs memory to function (efficiently) Current memories Volatile memory SRAM DRAM Non-volatile memory (Flash) Emerging memories Phase-change memory STT-MRAM (Ferroelectric

More information

Surface atoms/molecules of a material act as an interface to its surrounding environment;

Surface atoms/molecules of a material act as an interface to its surrounding environment; 1 Chapter 1 Thesis Overview Surface atoms/molecules of a material act as an interface to its surrounding environment; their properties are often complicated by external adsorbates/species on the surface

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

Current and Emergent Developments

Current and Emergent Developments Self Assembly and Biologically Inspired Processes in Applied Nanotechnology: Current and Emergent Developments Charles Ostman VP, Electronics & Photonics Forum chair NanoSig Senior Consultant Silicon Valley

More information

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping.

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Chapter 12 Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Doping yields different

More information

Introduction to Molecular Electronics. Lecture 1: Basic concepts

Introduction to Molecular Electronics. Lecture 1: Basic concepts Introduction to Molecular Electronics Lecture 1: Basic concepts Conductive organic molecules Plastic can indeed, under certain circumstances, be made to behave very like a metal - a discovery for which

More information

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET Device 3D 3D Device Simulator Device 3D is a physics based 3D device simulator for any device type and includes material properties for the commonly used semiconductor materials in use today. The physical

More information

NEUROMORPHIC COMPUTING WITH MAGNETO-METALLIC NEURONS & SYNAPSES: PROSPECTS AND PERSPECTIVES

NEUROMORPHIC COMPUTING WITH MAGNETO-METALLIC NEURONS & SYNAPSES: PROSPECTS AND PERSPECTIVES NEUROMORPHIC COMPUTING WITH MAGNETO-METALLIC NEURONS & SYNAPSES: PROSPECTS AND PERSPECTIVES KAUSHIK ROY ABHRONIL SENGUPTA, KARTHIK YOGENDRA, DELIANG FAN, SYED SARWAR, PRIYA PANDA, GOPAL SRINIVASAN, JASON

More information

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 12 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 20/February/2018 (P/T 005) Quick Review over the Last Lecture Origin of magnetism : ( Circular current ) is equivalent to a

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR In an extrinsic semiconducting material, the charge carriers originate from impurity atoms added to the original material is called impurity [or] extrinsic semiconductor. This Semiconductor

More information

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai E. Pop, 1,2 D. Mann, 1 J. Rowlette, 2 K. Goodson 2 and H. Dai 1 Dept. of 1 Chemistry

More information

Spin Valve Transistors Radha Krishnan Dept. of Electrical and Electronics, National Institute of Technology- Puducherry

Spin Valve Transistors Radha Krishnan Dept. of Electrical and Electronics, National Institute of Technology- Puducherry Spin Valve Transistors Radha Krishnan Dept. of Electrical and Electronics, National Institute of Technology- Puducherry Abstract In our conventional electronic devices we use semi conducting materials

More information

Analysis of flip flop design using nanoelectronic single electron transistor

Analysis of flip flop design using nanoelectronic single electron transistor Int. J. Nanoelectronics and Materials 10 (2017) 21-28 Analysis of flip flop design using nanoelectronic single electron transistor S.Rajasekaran*, G.Sundari Faculty of Electronics Engineering, Sathyabama

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies Hans Tuinhout, The Netherlands motivation: from deep submicron digital ULSI parametric spread

More information

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Magnetic semiconductors. (Dilute) Magnetic semiconductors Magnetic semiconductors We saw last time that: We d like to do spintronics in semiconductors, because semiconductors have many nice properties (gateability, controllable spin-orbit effects, long spin lifetimes).

More information

Today. ESE532: System-on-a-Chip Architecture. Why Care? Message. Scaling. Why Care: Custom SoC

Today. ESE532: System-on-a-Chip Architecture. Why Care? Message. Scaling. Why Care: Custom SoC ESE532: System-on-a-Chip Architecture Day 21: April 5, 2017 VLSI Scaling 1 Today VLSI Scaling Rules Effects Historical/predicted scaling Variations (cheating) Limits Note: gory equations! goal is to understand

More information

Lecture 24. CMOS Logic Gates and Digital VLSI II

Lecture 24. CMOS Logic Gates and Digital VLSI II ecture 24 CMOS ogic Gates and Digital VSI II In this lecture you will learn: Static CMOS ogic Gates FET Scaling CMOS Memory, SRM and DRM CMOS atches, and Registers (Flip-Flops) Clocked CMOS CCDs CMOS ogic:

More information

Information processing in nanoscale systems

Information processing in nanoscale systems Information processing in nanoscale systems Mark Rudner Niels Bohr International Academy Image from: www.upscale.utoronto.ca 100 years after Bohr, the basic laws and players are established 1913 2013 Image

More information

CSE370: Introduction to Digital Design

CSE370: Introduction to Digital Design CSE370: Introduction to Digital Design Course staff Gaetano Borriello, Brian DeRenzi, Firat Kiyak Course web www.cs.washington.edu/370/ Make sure to subscribe to class mailing list (cse370@cs) Course text

More information

Formation of unintentional dots in small Si nanostructures

Formation of unintentional dots in small Si nanostructures Superlattices and Microstructures, Vol. 28, No. 5/6, 2000 doi:10.1006/spmi.2000.0942 Available online at http://www.idealibrary.com on Formation of unintentional dots in small Si nanostructures L. P. ROKHINSON,

More information