Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego

Size: px
Start display at page:

Download "Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego"

Transcription

1 Physics of Novel Radiation Modalities Particles and Isotopes Todd Pawlicki, Ph.D. UC San Diego

2 Disclosure I have no conflicts of interest to disclose.

3 Learning Objectives Understand the physics of proton therapy Describe proton dose deposition List components of creating a proton beam Describe aspects of proton beam planning Compare proton and conventional plans

4 Some Proton History 1930 Cyclotron invented Lawrence EO, Livingston MS. The production of high speed protons without the use of high voltages. Physical Review Suggested for medical use Wilson RR. Radiological use of fast protons. Radiology First patients treated Tobias CA et al. Pituitary irradiation with high-energy proton beams a preliminary report. Cancer Research In 1961, the Harvard Cyclotron Laboratory started treating intracranial lesions st hospital-based system at the LLUMC Slater JM et al. The proton treatment center at Loma Linda University Medical Center: rational for and description of its development. IJROBP 1991.

5 Proton Facilities In Operation (accessed 3/2015) USA Japan 5 Germany Russia China 9 France Others

6 Depth Dose Photons Bragg Peak SOBP Photons Electrons Protons Schulz-Ertner et al. Semin Radiat Oncol, 2006.

7 Cobalt MV X-rays 160 MeV Protons Koehler and Preston. Radiology(104) , 1972.

8 Particle Properties Particle Symbol Charge Rest Mass e, Electron MeV e, Positron MeV p, 1 1 H Proton MeV n, 1 0 n Neutron MeV E = mc 2

9 Proton (charged particle) Interactions Electromagnetic interactions Excitation Ionization Bethe-Block formula S 1/v 2 Bragg peak p p p p e

10 Proton (charged particle) Interactions Nuclear interactions (i) p p I. Multiple Coulomb scattering Small q II. Elastic nuclear collision p Large q (ii) p III. Inelastic nuclear interaction nucleus (iii) p e, n p nucleus

11 Ionization Density 10.0 MeV Proton 0.5 MeV Proton 1.0 MeV Electron MeV Electron Hall. Radiology for the Radiologist. 4 th ed

12 Linear Energy Transfer (LET) Energy transferred per unit track length LET de dl kev μm Useful as a simple way to indicate radiation quality and biological effectiveness

13 Radiation LET (kev/ m) Cobalt-60 -rays kev x-rays MeV protons MeV protons 0.5 Hall. Radiology for the Radiologist. 4 th ed

14 Relative Biological Effectiveness Equal doses of difference types of radiation do not produce equal biological effects RBE D x ray D test RBE depends on Biological system (cell type) Clinical endpoint (early or late effects) Energy deposition characteristics Dose Hall. Radiology for the Radiologist. 4 th ed

15 RBE for Protons RBE is a function of LET RBE is not constant with depth Careful at distal end of targets and near critical structures Clinical RBE for protons Gy proton dose 1.1 Gy Cobalt dose A single value might not be sufficient Carabe et al. Phys Med Biol

16 Relative dose RBE MeV high Clinical RBE low Modulated beam Depth [cm] Source: S.M. Seltzer, NISTIIR 5221

17 Creating Proton Beams Energy should be variable starting at 70 MeV Maximum energy should be about 250 MeV F ele = q E F mag = q ( v B) F = m v2 r mv = qbr

18 Proton Beams Two basic proton accelerator options Cyclotron Protons revolve at the same frequency regardless of energy or orbit radius Synchrotron The magnetic field strength is increased in synchrony with the increase in beam energy mv = qbr

19 Cyclotron Magnet RF Magnetic Field Proton Source Proton Beam r = mv qb

20 Clinically Useful Proton Beams There are two main approaches Passive scattering systems Fixed depth of penetration Fixed modulation Active scanning systems Irradiation the target using a narrow beam Beam controlled in three dimensions

21 Passive Scattering Goitein et al. Physics Today

22 Active Scanning Goitein et al. Physics Today

23 Treatment Planning Acquisition of imaging data (CT, MRI) Delineation of regions of interest Selection of plan properties Beam directions Energies Conversion of CT values into stopping power Paganetti. Phys Med Biol

24 Range Uncertainty Dose calculation CT Imaging and calibration CT conversion to tissue CT grid size Inhomogeneities Other sources Commissioning measurement uncertainty Compensator design Beam reproducibility Patient setup Total range uncertainty 2 4% of proton range mm Paganetti. Phys Med Biol

25 Dose Distributions Photons Protons MacDonald et al. Cancer Investigation

26 Dose Distributions Greco & Wolden. Cancer

27 Dose Distributions Suit et al. Acta Oncologica

28 Proton superior to Photons

29 Proton superior to Photons

30 Proton superior to Photons LT Femoral Head PTV Bladder Rectum LT Kidney

31 Protons similar to Photons

32 Protons similar to Photons Brainstem PTV LT Optic Nerve LT Cochlea

33 Summary Proton physics differs considerably from photon and electron physics Scattering and active scanning are two methods of creating a proton beam Proton and conventional plans must be compared carefully proton plans are not always superior

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Physics of particles H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Introduction Dose The ideal dose distribution ideal Dose: Energy deposited Energy/Mass Depth [J/kg] [Gy] Introduction

More information

8/3/2016. Chia-Ho, Hua St. Jude Children's Research Hospital. Kevin Teo The Hospital of the University of Pennsylvania

8/3/2016. Chia-Ho, Hua St. Jude Children's Research Hospital. Kevin Teo The Hospital of the University of Pennsylvania Bijan Arjomandy, Ph.D. Mclaren Proton Therapy Center Mark Pankuch, Ph.D. Cadence Health Proton Center Chia-Ho, Hua St. Jude Children's Research Hospital Kevin Teo The Hospital of the University of Pennsylvania

More information

Outline. Physics of Charge Particle Motion. Physics of Charge Particle Motion 7/31/2014. Proton Therapy I: Basic Proton Therapy

Outline. Physics of Charge Particle Motion. Physics of Charge Particle Motion 7/31/2014. Proton Therapy I: Basic Proton Therapy Outline Proton Therapy I: Basic Proton Therapy Bijan Arjomandy, Ph.D. Narayan Sahoo, Ph.D. Mark Pankuch, Ph.D. Physics of charge particle motion Particle accelerators Proton interaction with matter Delivery

More information

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School Physics of Particle Beams Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School PTCOG 53 Education Session, Shanghai, 2014 Dose External

More information

Towards Proton Computed Tomography

Towards Proton Computed Tomography SCIPP Towards Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski, A. Seiden, D.C. Williams, L. Zhang Santa Cruz Institute for Particle Physics, UC Santa Cruz, CA 95064 V.

More information

Development of beam delivery systems for proton (ion) therapy

Development of beam delivery systems for proton (ion) therapy 7th 28th of July 213, JINR Dubna, Russia Development of beam delivery systems for proton (ion) therapy S t u d e n t : J o z e f B o k o r S u p e r v i s o r : D r. A l e x a n d e r M o l o k a n o v

More information

Initial Studies in Proton Computed Tomography

Initial Studies in Proton Computed Tomography SCIPP Initial Studies in Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski, A. Seiden, D.C. Williams, L. Zhang Santa Cruz Institute for Particle Physics, UC Santa Cruz,

More information

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy Original Article PROGRESS in MEDICAL PHYSICS 27(3), Sept. 2016 http://dx.doi.org/10.14316/pmp.2016.27.3.162 pissn 2508-4445, eissn 2508-4453 Secondary Neutron Dose Measurement for Proton Line Scanning

More information

INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5)

INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5) INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5) Ionizing radiation: Particle or electromagnetic radiation that is capable of ionizing matter. IR interacts through different types of collision

More information

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research Prompt gamma measurements for the verification of dose deposition in proton therapy Two Proton Beam Facilities for Therapy and Research Ion Beam Facilities in Korea 1. Proton therapy facility at National

More information

ACCELERATORS AND MEDICAL PHYSICS 3

ACCELERATORS AND MEDICAL PHYSICS 3 ACCELERATORS AND MEDICAL PHYSICS 3 Ugo Amaldi University of Milano Bicocca and TERA Foundation 1 People of hadrontherapy Other uses: hadron therapy BUT radiotherapy is a single word particlle therapy BUT

More information

THE mono-energetic hadron beam such as heavy-ions or

THE mono-energetic hadron beam such as heavy-ions or Verification of the Dose Distributions with GEANT4 Simulation for Proton Therapy T.Aso, A.Kimura, S.Tanaka, H.Yoshida, N.Kanematsu, T.Sasaki, T.Akagi Abstract The GEANT4 based simulation of an irradiation

More information

Radiation Quantities and Units

Radiation Quantities and Units Radiation Quantities and Units George Starkschall, Ph.D. Lecture Objectives Define and identify units for the following: Exposure Kerma Absorbed dose Dose equivalent Relative biological effectiveness Activity

More information

Optimization of hadron therapy proton beam using Monte Carlo code on GPU

Optimization of hadron therapy proton beam using Monte Carlo code on GPU Dottorato in Fisica degli Acceleratori, XXIX ciclo Optimization of hadron therapy proton beam using Monte Carlo code on GPU Candidata: Martina Senzacqua N matricola: 1163436 Supervisor: Prof. Vincenzo

More information

Beam Optics for a Scanned Proton Beam at Loma Linda University Medical Center

Beam Optics for a Scanned Proton Beam at Loma Linda University Medical Center Beam Optics for a Scanned Proton Beam at Loma Linda University Medical Center George Coutrakon, Jeff Hubbard, Peter Koss, Ed Sanders, Mona Panchal Loma Linda University Medical Center 11234 Anderson Street

More information

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in.

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in. A Monte Carlo Study of the Relationship between the Time Structures of Prompt Gammas and in vivo Radiation Dose in Proton Therapy Wook-Geun Shin and Chul Hee Min* Department of Radiation Convergence Engineering,

More information

APPLIED RADIATION PHYSICS

APPLIED RADIATION PHYSICS A PRIMER IN APPLIED RADIATION PHYSICS F A SMITH Queen Mary & Westfield College, London fe World Scientific m Singapore * New Jersey London Hong Kong CONTENTS CHAPTER 1 : SOURCES of RADIATION 1.1 Introduction

More information

Basic Radiation Physics of Protons

Basic Radiation Physics of Protons Basic Radiation Physics of Protons Michael Goitein Harvard Medical School and Ankerstrasse 1,5210 Windisch, Switzerland michael@goitein.ch Michael Goitein, PSI teaching course January, 2010 1 OVERVIEW

More information

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions Interactions of Particulate Radiation with Matter George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To describe the various mechanisms by which particulate

More information

Radiation protection issues in proton therapy

Radiation protection issues in proton therapy Protons IMRT Tony Lomax, Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland Overview of presentation 1. Proton therapy: An overview 2. Radiation protection issues: Staff 3. Radiation

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

Fitting the Bragg peak for accurate proton range determination

Fitting the Bragg peak for accurate proton range determination Fitting the Bragg peak for accurate proton range determination Koen Lambrechts July 10, 2015 Abstract This paper focusses on the uncertainties in proton range determination in the framework of optimizing

More information

Interaction of Particles and Matter

Interaction of Particles and Matter MORE CHAPTER 11, #7 Interaction of Particles and Matter In this More section we will discuss briefly the main interactions of charged particles, neutrons, and photons with matter. Understanding these interactions

More information

MONTE CARLO SIMULATION FOR EVALUATION OF DOSE DISTRIBUTION IN PROTON THERAPY *

MONTE CARLO SIMULATION FOR EVALUATION OF DOSE DISTRIBUTION IN PROTON THERAPY * Romanian Reports in Physics, Vol. 66, No. 1, P. 148 156, 2014 MONTE CARLO SIMULATION FOR EVALUATION OF DOSE DISTRIBUTION IN PROTON THERAPY * DARIUSH SARDARI, EHSAN SALIMI Department of Medical Radiation

More information

Dielectric Wall Accelerator (DWA) and Distal Edge Tracking Proton Delivery System Rock Mackie Professor Dept of Medical Physics UW Madison Co-Founder

Dielectric Wall Accelerator (DWA) and Distal Edge Tracking Proton Delivery System Rock Mackie Professor Dept of Medical Physics UW Madison Co-Founder Dielectric Wall Accelerator (DWA) and Distal Edge Tracking Proton Delivery System Rock Mackie Professor Dept of Medical Physics UW Madison Co-Founder and Chairman of the Board or TomoTherapy Inc I have

More information

Lecture Outlines Chapter 32. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 32. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 32 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

More information

arxiv: v2 [physics.med-ph] 29 May 2015

arxiv: v2 [physics.med-ph] 29 May 2015 The Proton Therapy Nozzles at Samsung Medical Center: A Monte Carlo Simulation Study using TOPAS Kwangzoo Chung, Jinsung Kim, Dae-Hyun Kim, Sunghwan Ahn, and Youngyih Han Department of Radiation Oncology,

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Monte Carlo Simulation concerning Particle Therapy

Monte Carlo Simulation concerning Particle Therapy Monte Carlo Simulation concerning Particle Therapy Masaaki Takashina Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan INTRODUCTION It is well known that the particle therapy has some

More information

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity Radiation and Radioactivity 1 Radiation and Radioactivity This experiment has four parts: 1. Counting Statistics 2. Gamma (g) Ray Absorption Half-length and shielding 3. 137 Ba Decay Half-life 4. Dosimetry

More information

HEATHER. HElium ion Acceleration for radiotherapy. Jordan Taylor, Rob Edgecock University of Huddersfield Carol Johnstone, Fermilab

HEATHER. HElium ion Acceleration for radiotherapy. Jordan Taylor, Rob Edgecock University of Huddersfield Carol Johnstone, Fermilab HEATHER HElium ion Acceleration for radiotherapy Jordan Taylor, Rob Edgecock University of Huddersfield Carol Johnstone, Fermilab PPRIG workshop 1 st -2 nd Dec 2016 Scope Current particle therapy situation

More information

Bhas Bapat MOL-PH Seminar October Ion Matter Interactions and Applications

Bhas Bapat MOL-PH Seminar October Ion Matter Interactions and Applications Ion-matter interactions and applications Bhas Bapat MOL-PH Seminar October 2013 Outline Ion-atom collisions Energy loss in matter Applications Atmospheric Science Astrophysics Material science Medicine

More information

Introduction to Medical Physics

Introduction to Medical Physics Introduction to Medical Physics Ab branch of applied physics concerning the application of physics to medicine or, in other words The application of physics techniques to the human health Marco Silari,

More information

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging Chapter 1: Introduction to Medical Imaging Overview of Modalities Properties of an Image: Limitations on Information Content Contrast (both object & image): Brightness difference Sharpness (blur): Smallest

More information

Ion- and proton-beams: Experience with Monte Carlo Simulation

Ion- and proton-beams: Experience with Monte Carlo Simulation Ion- and proton-beams: Experience with Monte Carlo Simulation Katia Parodi, Ph.D. Heidelberg Ion Therapy Centre, Heidelberg, Germany (Previously: Massachusetts General Hospital, Boston, USA) Workshop on

More information

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter Physics of Radiotherapy Lecture II: Interaction of Ionizing Radiation With Matter Charge Particle Interaction Energetic charged particles interact with matter by electrical forces and lose kinetic energy

More information

Radioisotopes and PET

Radioisotopes and PET Radioisotopes and PET 1 Radioisotopes Elements are defined by their number of protons, but there is some variation in the number of neutrons. Atoms resulting from this variation are called isotopes. Consider

More information

Squeezing the proton. towards small proton therapy systems. Roelf Slopsema. M.Sc. / UF Health Proton Therapy Institute

Squeezing the proton. towards small proton therapy systems. Roelf Slopsema. M.Sc. / UF Health Proton Therapy Institute Squeezing the proton towards small proton therapy systems Roelf Slopsema. M.Sc. / UF Health Proton Therapy Institute Disclosures I worked as an R&D physicist for IBA from 2002 until 2004 I have received

More information

Geant4 studies of the CNAO facility system for hadrontherapy treatment of uveal melanomas

Geant4 studies of the CNAO facility system for hadrontherapy treatment of uveal melanomas th International Conference on Computing in High Energy and Nuclear Physics (CHEP13) IOP Publishing Journal of Physics: Conference Series 13 (1) 8 doi:1.188/17-9/13//8 Geant studies of the CNAO facility

More information

11/19/2014. Chapter 3: Interaction of Radiation with Matter in Radiology and Nuclear Medicine. Nuclide Families. Family Nuclides with Same: Example

11/19/2014. Chapter 3: Interaction of Radiation with Matter in Radiology and Nuclear Medicine. Nuclide Families. Family Nuclides with Same: Example 2014-2015 Residents' Core Physics Lectures Mondays 7:00-8:00 am in VA Radiology and UCSDMC Lasser Conference Rooms Topic Chapters Date Faculty 1 Introduction and Basic Physics 1, 2 M 11/17 Andre 2 Interaction

More information

Metallic nanoparticles in proton therapy: how does it work? Dr. Anne-Catherine Heuskin University of Namur 3 rd BHTC workshop

Metallic nanoparticles in proton therapy: how does it work? Dr. Anne-Catherine Heuskin University of Namur 3 rd BHTC workshop Metallic nanoparticles in proton therapy: how does it work? Dr. Anne-Catherine Heuskin University of Namur 3 rd BHTC workshop SF Why do we use nanoparticles in radiation therapy? Grail increase biological

More information

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate Basics of Radiation Dosimetry for the Physicist http://en.wikipedia.org/wiki/ionizing_radiation I. Ionizing radiation consists of subatomic particles or electromagnetic waves that ionize electrons along

More information

Today, I will present the first of two lectures on neutron interactions.

Today, I will present the first of two lectures on neutron interactions. Today, I will present the first of two lectures on neutron interactions. I first need to acknowledge that these two lectures were based on lectures presented previously in Med Phys I by Dr Howell. 1 Before

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

Laser-Accelerated protons for radiation therapy

Laser-Accelerated protons for radiation therapy Laser-Accelerated protons for radiation therapy E Fourkal, I Velchev,, J Fan, J Li, T Lin, C Ma Fox Chase Cancer Center, Philadelphia, PA Motivation Proton beams provide better conformity to the treatment

More information

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS OPTION I-2 MEDICAL IMAGING Reading Activity Answers IB Assessment Statements Option I-2, Medical Imaging: X-Rays I.2.1. I.2.2. I.2.3. Define

More information

Towards efficient and accurate particle transport simulation in medical applications

Towards efficient and accurate particle transport simulation in medical applications Towards efficient and accurate particle transport simulation in medical applications L. Grzanka1,2, M. Kłodowska1, N. Mojżeszek1, N. Bassler3 1 Cyclotron Centre Bronowice, Institute of Nuclear Physics

More information

Properties of the nucleus. 9.1 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus

Properties of the nucleus. 9.1 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus Properties of the nucleus 9. Nuclear Physics Properties of nuclei Binding Energy Radioactive decay Natural radioactivity Consists of protons and neutrons Z = no. of protons (tomic number) N = no. of neutrons

More information

assuming continuous slowing down approximation , full width at half maximum (FWHM), W 80 20

assuming continuous slowing down approximation , full width at half maximum (FWHM), W 80 20 Special Edition 408 Depth Dose Characteristics of Proton Beams within Therapeutic Energy Range Using the Particle Therapy Simulation Framework (PTSim) Monte Carlo Technique Siou Yin Cai 1, Tsi Chain Chao

More information

R&D of emulsion technology to study fragment interaction to improve ion therapy

R&D of emulsion technology to study fragment interaction to improve ion therapy FJPPL 07 11 May@KEK R&D of emulsion technology to study fragment interaction to improve ion therapy Imad Laktineh (Lyon)/ Kimio Niwa (Nagoya University) Toshiyuki Toshito (KEK) Japanese-French collaboration

More information

05/11/2013. Nuclear Fuel Cycle Ionizing radiation. Typical decay energies. Radiation with energy > 100 ev. Ionize an atom < 15eV

05/11/2013. Nuclear Fuel Cycle Ionizing radiation. Typical decay energies. Radiation with energy > 100 ev. Ionize an atom < 15eV Nuclear Fuel Cycle 2013 Lecture 4: Interaction of Ionizing Radiation with Matter Ionizing radiation Radiation with energy > 100 ev Ionize an atom < 15eV Break a bond 1-5 ev Typical decay energies α: 4-9

More information

Initial Certification

Initial Certification Initial Certification Medical Physics Part 1 Content Guide Part 1 Content Guides and Sample Questions PLEASE NOTE: List of Constants and Physical Values for Use on the Part 1 Physics Exam The ABR provides

More information

Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy

Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2012 Monte Carlo study of the potential reduction in out-of-field dose

More information

Introduction to Medical Physics

Introduction to Medical Physics Introduction to Medical Physics Ab branch of applied physics concerning the application of physics to medicine or, in other words The application of physics techniques to the human health Marco Silari,

More information

8/3/2016. Challenges and opportunities for implementing biological optimization in particle therapy. Overview of Talk

8/3/2016. Challenges and opportunities for implementing biological optimization in particle therapy. Overview of Talk Challenges and opportunities for implementing biological optimization in particle therapy David J. Carlson, Ph.D. Associate Professor Dept. of Therapeutic Radiology david.j.carlson@yale.edu 58 th Annual

More information

Shielding Design Considerations for Proton Therapy Facilities

Shielding Design Considerations for Proton Therapy Facilities Shielding Design Considerations for Proton Therapy Facilities p p n π ± INC π 0 Nisy Elizabeth Ipe, Ph.D., C.H.P. Consultant, Shielding Design, Dosimetry & Radiation Protection San Carlos, CA, U.S.A. Email:

More information

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz Overview and Status of the Austrian Particle Therapy Facility MedAustron Peter Urschütz MedAustron Centre for ion beam therapy and non-clinical research Treatment of 1200 patients/year in full operation

More information

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus Properties of the nucleus 8. Nuclear Physics Properties of nuclei Binding Energy Radioactive decay Natural radioactivity Consists of protons and neutrons Z = no. of protons (Atomic number) N = no. of neutrons

More information

M d e i di l ca A pplilli t ca i ttions o f P arti ttic ti l P e h Physics Saverio Braccini INSEL

M d e i di l ca A pplilli t ca i ttions o f P arti ttic ti l P e h Physics Saverio Braccini INSEL Medical la Applications of Particle Physics Saverio Braccini INSELSPITALSPITAL Department of Medical Radiation Physics University Hospital, Berne, Switzerland Rome - 14-15.06.07 - SB - 1/5 Saverio.Braccini@cern.ch

More information

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy Journal of Magnetics 19(1), 15-19 (2014) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2014.19.1.015 A Study on Effective Source-Skin Distance using Phantom in Electron

More information

College Physics B - PHY2054C

College Physics B - PHY2054C College - PHY2054C Physics - Radioactivity 11/24/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Review Question 1 Isotopes of an element A have the same number of protons and electrons,

More information

Cytogenetic signature of heavy charged particles: impact of LET and track structure

Cytogenetic signature of heavy charged particles: impact of LET and track structure Cytogenetic signature of heavy charged particles: impact of LET and track structure Ewa Gudowska-Nowak 1, Thilo Elsässer 2, Joanna Deperas-Standylo 3, Ryonfa Lee 2, Elena Nasonova 2,3, Sylvia Ritter 2,

More information

Nicholas J. Giordano. Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 30 Nuclear Physics Marilyn Akins, PhD Broome Community College Atomic Nuclei Rutherford s discovery of the atomic nucleus caused scientists

More information

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations.

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations. Absorbed Dose Dose is a measure of the amount of energy from an ionizing radiation deposited in a mass of some material. SI unit used to measure absorbed dose is the gray (Gy). 1J 1 Gy kg Gy can be used

More information

Toward a testable statistical model for radiation effects in DNA

Toward a testable statistical model for radiation effects in DNA Toward a testable statistical model for radiation effects in DNA Kay Kinoshita Department of Physics University of Cincinnati with Ed Merino (Department of Chemistry, A&S) Mike Lamba (Department of Radiology,

More information

Secondary Radiation and Shielding Design for Particle Therapy Facilities

Secondary Radiation and Shielding Design for Particle Therapy Facilities Secondary Radiation and Shielding Design for Particle Therapy Facilities π± A p, n, π± A p, n A Nisy Elizabeth Ipe, Ph.D., C.H.P. Consultant, Shielding Design, Dosimetry & Radiation Protection San Carlos,

More information

Radiation Physics PHYS /251. Prof. Gocha Khelashvili

Radiation Physics PHYS /251. Prof. Gocha Khelashvili Radiation Physics PHYS 571-051/251 Prof. Gocha Khelashvili Interaction of Radiation with Matter: Heavy Charged Particles Directly and Indirectly Ionizing Radiation Classification of Indirectly Ionizing

More information

Chapter 29. Nuclear Physics

Chapter 29. Nuclear Physics Chapter 29 Nuclear Physics Ernest Rutherford 1871 1937 Discovery that atoms could be broken apart Studied radioactivity Nobel prize in 1908 Some Properties of Nuclei All nuclei are composed of protons

More information

Proton dose calculations in homogeneous media

Proton dose calculations in homogeneous media Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 Proton dose calculations in homogeneous media John Wesley Chapman, Jr. Louisiana State University and Agricultural

More information

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1 Outline Radiation Interactions Introduction Interaction of Heavy Charged Particles Interaction of Fast Electrons Interaction of Gamma Rays Interactions of Neutrons Radiation Exposure & Dose Sources of

More information

Using Prompt gamma ray emission to address uncertainties in proton therapy

Using Prompt gamma ray emission to address uncertainties in proton therapy Using Prompt gamma ray emission to address uncertainties in proton therapy Jerimy C. Polf, PhD, DABR Department of Radia9on Oncology University of Maryland School of Medicine AAPM 2013 Disclosures and

More information

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle Radioactivity George Starkschall, Ph.D. Lecture Objectives Identify methods for making radioactive isotopes Recognize the various types of radioactive decay Interpret an energy level diagram for radioactive

More information

Direct-Current Accelerator

Direct-Current Accelerator Nuclear Science A Teacher s Guide to the Nuclear Science Wall Chart 1998 Contemporary Physics Education Project (CPEP) Chapter 11 Accelerators One of the most important tools of nuclear science is the

More information

8/1/2017. Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status

8/1/2017. Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status MC-ADC ADC TOPAS 8/1/2017 Introduction to Monte Carlo simulations at the (sub-)cellular scale: Concept and current status Jan Schuemann Assistant Professor Head of the Multi-Scale Monte Carlo Modeling

More information

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.83-87 (2) ARTICLE Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Toshioh FUJIBUCHI,2,*, Satoshi

More information

LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH

LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH Lesson Objectives At the end of the lesson, student should able to: Define attenuation Explain interactions between x-rays and matter in

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 19 Modern Physics Nuclear Physics Nuclear Reactions Medical Applications Radiation Detectors Chapter 29 http://www.physics.wayne.edu/~alan/2140website/main.htm 1 Lightning

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lightning Review Lecture 19 Modern Physics Nuclear Physics Nuclear Reactions Medical Applications Radiation Detectors Chapter 29 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Proton radiography with a range telescope and its use in proton therapy

Proton radiography with a range telescope and its use in proton therapy Proton radiography with a range telescope and its use in proton therapy Juan L. Romero Department of Physics, University of California, Davis, CA Invited talk at Massachusetts General Hospital, Boston,

More information

Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging. Giada Petringa - Laboratori Nazionali del Sud -

Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging. Giada Petringa - Laboratori Nazionali del Sud - Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging Giada Petringa - Laboratori Nazionali del Sud - Giada Petringa Topical Seminar on Innovative Particle and Radiation

More information

Year 12 Notes Radioactivity 1/5

Year 12 Notes Radioactivity 1/5 Year Notes Radioactivity /5 Radioactivity Stable and Unstable Nuclei Radioactivity is the spontaneous disintegration of certain nuclei, a random process in which particles and/or high-energy photons are

More information

Medical Neutron Science

Medical Neutron Science Medical Neutron Science 03 Neutron Activation Analysis The use of NAA techniques for medical applications was first reported in 1964 for measurement of sodium in the body J. Anderson, SB S.B. Ob Osborn,

More information

Monte Carlo simulations of ripple filters designed for proton and carbon ion beams in hadrontherapy with active scanning technique

Monte Carlo simulations of ripple filters designed for proton and carbon ion beams in hadrontherapy with active scanning technique Journal of Physics: Conference Series Monte Carlo simulations of ripple filters designed for proton and carbon ion beams in hadrontherapy with active scanning technique To cite this article: F Bourhaleb

More information

1.5. The Tools of the Trade!

1.5. The Tools of the Trade! 1.5. The Tools of the Trade! Two things are required for material analysis: excitation mechanism for originating characteristic signature (radiation) radiation detection and identification system (spectroscopy)

More information

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Matthew Allen Department of Nuclear Engineering UC Berkeley mallen@nuc.berkeley.edu March 15, 2004 8th Nuclear Energy

More information

The interaction of radiation with matter

The interaction of radiation with matter Basic Detection Techniques 2009-2010 http://www.astro.rug.nl/~peletier/detectiontechniques.html Detection of energetic particles and gamma rays The interaction of radiation with matter Peter Dendooven

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

Interactions with Matter Photons, Electrons and Neutrons

Interactions with Matter Photons, Electrons and Neutrons Interactions with Matter Photons, Electrons and Neutrons Ionizing Interactions Jason Matney, MS, PhD Interactions of Ionizing Radiation 1. Photon Interactions Indirectly Ionizing 2. Charge Particle Interactions

More information

Neutron Spectroscopy in Proton Therapy

Neutron Spectroscopy in Proton Therapy Neutron Spectroscopy in Proton Therapy Khalid Aloufi Thesis submitted for the Degree of Doctor of Philosophy Department of Medical Physics and Biomedical Engineering Faculty of Engineering Sciences University

More information

Simulations in Radiation Therapy

Simulations in Radiation Therapy Simulations in Radiation Therapy D. Sarrut Directeur de recherche CNRS Université de Lyon, France CREATIS-CNRS ; IPNL-CNRS ; Centre Léon Bérard Numerical simulations and random processes treat cancer 2

More information

Introduction to Particle Accelerators & CESR-C

Introduction to Particle Accelerators & CESR-C Introduction to Particle Accelerators & CESR-C Michael Billing June 7, 2006 What Are the Uses for Particle Accelerators? Medical Accelerators Create isotopes tracers for Medical Diagnostics & Biological

More information

Hadron Therapy Medical Applications

Hadron Therapy Medical Applications Hadron Therapy Medical Applications G.A. Pablo Cirrone On behalf of the CATANA GEANT4 Collaboration Qualified Medical Physicist and PhD Student University of Catania and Laboratori Nazionali del Sud -

More information

MCRT L8: Neutron Transport

MCRT L8: Neutron Transport MCRT L8: Neutron Transport Recap fission, absorption, scattering, cross sections Fission products and secondary neutrons Slow and fast neutrons Energy spectrum of fission neutrons Nuclear reactor safety

More information

PHITS calculation of the radiation field in HIMAC BIO

PHITS calculation of the radiation field in HIMAC BIO PHITS calculation of the radiation field in HIMAC BIO Ondřej Ploc, Yukio Uchihori, Hisashi Kitamura, Lembit Sihver National Institute of Radiological Sciences, Chiba, Japan Nuclear Physics Institute, Prague,

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Dosimetry. Sanja Dolanski Babić May, 2018.

Dosimetry. Sanja Dolanski Babić May, 2018. Dosimetry Sanja Dolanski Babić May, 2018. What s the difference between radiation and radioactivity? Radiation - the process of emitting energy as waves or particles, and the radiated energy Radioactivity

More information

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS Leonardo de Holanda Mencarini 1,2, Claudio A. Federico 1,2 and Linda V. E. Caldas 1 1 Instituto de Pesquisas Energéticas e Nucleares IPEN,

More information

Latest developments in PET verification of proton therapy

Latest developments in PET verification of proton therapy Latest developments in PET verification of proton therapy Katia Parodi, Ph.D. Heidelberg Ion Therapy Centre, Heidelberg, Germany Previously: Massachusetts General Hospital and Harvard Medical School, Boston,

More information