NORM and TENORM: Occurrence, Characterizing, Handling and Disposal

Size: px
Start display at page:

Download "NORM and TENORM: Occurrence, Characterizing, Handling and Disposal"

Transcription

1 NORM and TENORM: Occurrence, Characterizing, Handling and Disposal Ionizing Radiation and Hazard Potential John R. Frazier, Ph.D. Certified Health Physicist May 12, 2014

2 Radiation Radiation is a word that brings many thoughts to every person. What is the first word that comes to your mind when you hear the word radiation? There are many types of radiation that we are a part of our everyday world.

3 Ionizing Radiation Radiation that has enough energy to ionize atoms is called ionizing radiation. Types of ionizing radiation include: Alpha Particles Beta Particles Gamma Rays X Rays

4 Radiation Interactions With Matter Radiation interacts with matter by depositing some or all of its energy in the matter that it hits Charged particles (e.g., alpha particles and beta particles) ionize or excite the atoms in matter Gamma rays and x-rays interact primarily with electrons

5 Ionization Interactions Ionization is the process wherein the radiation interacts with matter and deposits some or all of its energy in atoms (or molecule) by knocking out one or more electrons from the atom or molecule. The atom is thus ionized and needs one or more electrons. If the atom is part of a molecule, this may lead to molecular dissociation ( breaking ) and recombination.

6 Radiation and Radioactivity Radiation is energy in transit, either as particles or electromagnetic waves. Radioactivity is the characteristic of some materials to emit ionizing radiation. Radioactive materials emit radiation. (Important Distinction!)

7 Properties of Radionuclides Half-Life Decay Mode (How They Decay) Type and Energy of Emitted Radiations Frequency of Emitted Radiations Where do I find this type of information?

8

9 Radioactive Material of Interest Naturally Occurring Radioactive Material (NORM) Technologically Enhanced Naturally Occurring Radioactive Material (TENORM)

10 NORM Radionuclides of Interest Radium-226 (Ra-226) and Radium-228 (Ra-228) Present throughout the earth. Present in trace amounts by mass. Chemical properties similar to calcium and barium. Can be very mobile in the environment. Of interest as a source of radiation dose.

11 Properties of Radium-226 Half-life: 1,600 years Radiation Emitted: alpha particles (100%) gamma rays (3.3%) Decays to: Radon-222 subsequently to other gamma-ray emitters

12 Properties of Radium-228 Half-life: 5.75 years Radiation Emitted: beta particles (100%) (no gamma rays) Decays to: Actinium-228 (gamma-ray emitter)

13 Natural Background Radiation Cosmic Radiation Terrestrial Radiation Radionuclides Inside Our Bodies Radon and Radon Progeny

14

15 Cosmic Radiation Doses

16 Terrestrial Radiation Doses

17 Man has always lived in the presence of naturally occurring radioactive material. We live in a virtual sea of natural background radiation.

18 Radiation Detection Principles Because we can t detect ionizing radiation with any of our senses, we must use special instruments to detect it. Radiation must interact with a detector. The interaction produces an electrical signal (such as an electrical pulse). The signal is displayed or recorded with a meter.

19 Gamma Ray Detector (Scintillation Type) Incident Gamma Ray Sodium-Iodide Crystal for Gamma Ray Measurements Light Photon Photomultiplier Tube - Photocathode Dynode Anode High Voltage Source and Electrical Pulse Measuring Device Optical Window

20 NORM in the Earth Uranium Decay Series Alpha Emitters (U-238, U-234, Ra-226, & others) Beta Emitters (Th-234, Bi-214, Pb-214, & others) Gamma Emitters (Th-234, Ra-226, Bi-214, & others) Thorium Decay Series Alpha Emitters (Th-232, Th-228, & others) Beta Emitters (Ra-228, Bi-212, Pb-212, & others) Gamma Emitters (Bi-212, Pb-212, Pb-210, & others) Actinium Decay Series (U-235) Other Naturally-Occurring Radionuclides K-40

21 Uranium E9 y Uranium E5 y Uranium Decay Series Protactinium-234m 1.2 m Thorium d Thorium E4 y Radium y Radon d Polonium m Polonium ms Polonium d Beta Decay Alpha Decay Lead m Bismuth m Lead y Bismuth d Lead-206 Stable

22 Thorium E10 y Thorium y Thorium Decay Series Actinium h Radium y Radium d Radon s Beta Decay Alpha Decay Polonium s Lead h Bismuth m 35.9% Thallium m Polonium us 64.1% Lead-208 Stable

23 Measures of Radioactivity Activity is the quantity or amount of radioactive material. Unit: curie is defined as 37 billion disintegrations per second picocurie (pci) is equal to 2.22 disintegrations per minute (dpm) (Each person has about 10,000 pci of radioactive material in their body.)

24 Activity Units Conversion International Unit for Activity: becquerel (Bq) = 1 dps Unit Conversion: 1 Bq = pci e.g., 100 Bq/kg = 2.70 pci/g

25 Exposure to Radioactive Materials Can Produce a Radiation Dose

26 External Radiation Dose From Radiation Sources Outside the Body Measured With External Dosimeters Calculated From External Radiation Dose Rate(s) and Exposure Duration(s) External Dose Rates Usually Vary With Time and Location Assessed with an Exposure Pathways Analysis and Dose Assessment

27 External Radiation Dose Dose external = DR x ED where H external = external radiation dose DR = external dose rate (at the location where the individual is exposed) ED = exposure duration (the total time that the individual is at the location with dose rate DR)

28 Internal Radiation Dose From radioactive materials inside the body. Radionuclides enter the body by inhalation, ingestion, injection (e.g., via a wound), or dermal absorption. Internal doses to organs or tissues vary. Internal doses are assessed by in vivo and in vitro methods or Exposure Pathways Analysis and Dose Assessment

29 Internal Dose Calculations Dose = Intake Activity x Dose Coefficient where the intake activity may be calculated from an intake rate and duration of intake or calculated from bioassay (e.g., whole body count) data and the dose coefficient is given in publications (e.g., ICRP 72) based on the radionuclide, chemical/physical form, and route of intake (inhalation or ingestion)

30

31 Total Radiation Dose Total radiation dose to an organ or tissue is the sum of the external dose to the specific organ or tissue and the internal dose to the same organ or tissue. Total radiation dose is the quantity that must be determined when assessing likely causation of damage or harm (e.g., cancer) to the organ or tissue.

32 Exposure Rate Applies Only to Gamma Ray (or X-Ray) Interacting in Air Measured With a Gamma Radiation Survey Meter Represents the Amount of Ionization of Air per Mass of Air per Time Common Unit is the microroentgen per hour ( R/hr)

33 Average Annual Radiation Dose from Natural Background Radiation Sources Natural Sources Radon 211 millirem Cosmic 20 millirem Cosmogenic 10 millirem Terrestrial 30 millirem In the Body 40 millirem Total Annual Dose 311 millirem Reference: NCRP Report No. 160 (2009)

34 Average Annual Radiation Dose from Medical Sources of Radiation Medical Sources CT 147 millirem Nuclear Medicine 77 millirem Interventional Fluoroscopy 43 millirem Conventional Radiography and Fluoroscopy 33 millirem Total Annual Dose 300 millirem Reference: NCRP Report No. 160 (2009)

35 Radiation Doses Annual Occupational Dose Limit Radiation Dose from Abdomen CT Scan Average Annual U.S. Population Dose Average Annual U.S. Background Dose Average Annual Dose from Radon Radiation Dose from Head CT Scan Annual Dose Limit for General Population Effective Dose from a Chest X-ray Dose from Round-trip Flight LA to NY 5,000 millirem 1,000 millirem 620 millirem 311 millirem 228 millirem 200 millirem 100 millirem 10 millirem 2 millirem

36 Sources of Radiation Doses

37 Biological Effects of Ionizing Radiation Known to Occur at High Doses Non-Stochastic Effects: A health effect where the severity of the effect increases with dose: (and only at very high doses) Cataracts Sterility Loss of Hair (Epilation) Skin Reddening (Erythema) Acute Radiation Syndrome Death Stochastic Effects: A health effect where the risk of occurrence increases with dose: Cancer

38 Health Physics Society Benchmark The Health Physics Society issued a formal position statement in 2010 stating that: the risk of health effects from radiation doses less than 5,000 millirems per year is so small that it does not exist or cannot be detected. HPS Level Average Yearly Exposure 5,000 mrems 620 mrems

39 Operations That Can Generate TENORM Purification of Drinking Water Production of Phosphate Fertilizer Extraction of Rare Earth Elements Elemental Phosphorous Production Natural Gas Production Crude Oil Production Numerous Other Examples

40 The Amount of the Dose Matters When assessing the potential hazards or possible health effects from radiation exposure the amount of the dose must be first be determined. It is meaningless to say I was exposed to radiation. because everyone is exposed to ionizing radiation every day of our lives from natural background radiation.

41

42

43

44

45 Source of NORM in Oil Production Activities Produced water carries the radium to the ground surface. The radium is unintentionally concentrated in scale and sludge.

46

47 Composition of Scale and Sludge Scale occurs in tubing, flowlines, and coatings on pump rods. Scale is generally composed of barium sulfate (barite) with smaller amounts of calcium carbonate. Both are insoluble. Sludge occurs inside heater treaters, separators, and in tank bottoms. Sludge appears to include barite as coatings on grains of sand and other precipitates during oil production.

48

49 Potential Exposure Pathways External exposure (from radiation sources outside the body) Internal exposure (from radioactive material taken into the body) Inhalation Ingestion Injection (e.g., cuts, abrasions, wounds) Dermal absorption (not a pathway for oilfield NORM)

50 Basic Concept of Radiation Doses Radiation Dose is the Energy Deposited by Ionizing Radiation in Tissue Divided by the Mass of Tissue in Which the Energy is Deposited A commonly used unit of radiation dose is the millirem.

51 Dose Assessment Each exposure pathway is represented by a mathematical formula that includes parameters for each aspect of the exposure. The values of the dose calculation parameters are determined from site-specific information (if possible) or default values (assumptions) whenever site-specific values are not available. The radiation doses from all of the exposure pathways are added to give the total radiation dose.

52 Radiation Doses From Working Around Oil Field NORM Radiation doses depend of a number of factors (e.g., amounts and locations of NORM and how long you work in a specific location). External doses are much more likely than internal doses. Radiation doses from working around oil field NORM are nearly always less than the doses from natural background radiation.

53 Basic Radiation Quantities and Units Activity: The number of atoms that decay per unit time. A commonly used unit is the picocurie (pci). Exposure Rate: A measure of the amount of ionization of air per unit time by gamma rays or X rays. A commonly used unit is the microroentgen per hour ( R/hr). Dose Equivalent: A measure of the radiation energy deposited in the human body per unit mass of tissue, taking into account the type of radiation. A commonly used unit is the millirem (mrem).

54 Radiation Quantities Exposure: A measure of ionization in air from x-ray and gamma rays. roentgen (R), or milliroentgen (mr), or microroentgen ( R) Dose: A measure of the energy absorbed in any material as a radiation interacts within it. rad or mrad, gray (Gy). [1 Gy = 100 rad] Dose equivalent: A measure of risk associated with a given radiation dose to a person. rem or mrem, sievert (Sv). [1 Sv = 100 rem]

BASIC OF RADIATION; ORIGIN AND UNITS

BASIC OF RADIATION; ORIGIN AND UNITS INAYA MEDICAL COLLEGE (IMC) RAD 243 - LECTURE 2 BASIC OF RADIATION; ORIGIN AND UNITS DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam

More information

WHAT IS IONIZING RADIATION

WHAT IS IONIZING RADIATION WHAT IS IONIZING RADIATION Margarita Saraví National Atomic Energy Commission - Argentina Workshop on Ionizing Radiation SIM Buenos Aires 10 November 2011 What is ionizing radiation? What is ionizing radiation?

More information

Radiological Preparedness & Emergency Response. Session II. Objectives. Basic Radiation Physics

Radiological Preparedness & Emergency Response. Session II. Objectives. Basic Radiation Physics Radiological Preparedness & Emergency Response Session II Basic Radiation Physics Objectives Discuss the difference between ionizing and non-ionizing radiation. Describe radioactive decay. Discuss the

More information

Radiation Protection & Radiation Therapy

Radiation Protection & Radiation Therapy Radiation Protection & Radiation Therapy For Medical Students Professor of Medical Physics Radiation Units Activity Number disintegrations per second (Curie, Becquerel) Exposure (Roentgen, C/kg) Absorbed

More information

sample What happens when we are exposed to radiation? 1.1 Natural radiation Cosmic radiation

sample What happens when we are exposed to radiation? 1.1 Natural radiation Cosmic radiation 1.1 Natural radiation 3 1 What happens when we are exposed to radiation? 1.1 Natural radiation For as long as humans have walked the earth, we have continually been exposed to naturally-occurring radiation.

More information

U (superscript is mass number, subscript atomic number) - radionuclides nuclei that are radioactive - radioisotopes atoms containing radionuclides

U (superscript is mass number, subscript atomic number) - radionuclides nuclei that are radioactive - radioisotopes atoms containing radionuclides Chapter : Nuclear Chemistry. Radioactivity nucleons neutron and proton all atoms of a given element have the same number of protons, atomic number isotopes atoms with the same atomic number but different

More information

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity Radiation and Radioactivity 1 Radiation and Radioactivity This experiment has four parts: 1. Counting Statistics 2. Gamma (g) Ray Absorption Half-length and shielding 3. 137 Ba Decay Half-life 4. Dosimetry

More information

HALF LIFE. NJSP HMRU June 10, Student Handout CBRNE AWARENESS Module 4 1. Objectives. Student will

HALF LIFE. NJSP HMRU June 10, Student Handout CBRNE AWARENESS Module 4 1. Objectives. Student will June 10, 2004 Radiological/Nuclear Overview 1 Student will demonstrate a knowledge of self protection techniques identify types of radiation and their associated hazards demonstrate a knowledge of terminology

More information

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu Chapter 5 Nuclear Chemistry Practice Problems 1. Fill in the missing information in the chart: Medical Use Atomic Mass symbol number Heart imaging 201 Tl 81 Number of protons Number of neutrons Abdominal

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

11/23/2014 RADIATION AND DOSE MEASUREMENTS. Units of Radioactivity

11/23/2014 RADIATION AND DOSE MEASUREMENTS. Units of Radioactivity CHAPTER 4 RADIATION UNITS RADIATION AND DOSE MEASUREMENTS 1 Units of Radioactivity 2 1 Radiation Units There are specific units for the amount of radiation you receive in a given time and for the total

More information

APPENDIX A RADIATION OVERVIEW

APPENDIX A RADIATION OVERVIEW Former NAVWPNSTA Concord, Inland Area APPENDIX A RADIATION OVERVIEW Draft ECSD-3211-0005-0004 08/2009 This page intentionally left blank. Draft ECSD-3211-0005-0004 08/2009 APPENDIX A RADIATION OVERVIEW

More information

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da]

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da] 1 Part 5: Nuclear Physics 5.1. The Nucleus = atomic number = number of protons N = neutron number = number of neutrons = mass number = + N Representations: X or X- where X is chemical symbol of element

More information

Chapter. Nuclear Chemistry

Chapter. Nuclear Chemistry Chapter Nuclear Chemistry Nuclear Reactions 01 Chapter 22 Slide 2 Chapter 22 Slide 3 Alpha Decay: Loss of an α-particle (a helium nucleus) 4 2 He 238 92 U 234 4 U He 90 + 2 Chapter 22 Slide 4 Beta Decay:

More information

Radiation Safety Talk. UC Santa Cruz Physics 133 Winter 2018

Radiation Safety Talk. UC Santa Cruz Physics 133 Winter 2018 Radiation Safety Talk UC Santa Cruz Physics 133 Winter 2018 Outline Types of radiation Sources of radiation Dose limits and risks ALARA principle Safety procedures Types of radiation Radiation is energy

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

Dosimetry. Sanja Dolanski Babić May, 2018.

Dosimetry. Sanja Dolanski Babić May, 2018. Dosimetry Sanja Dolanski Babić May, 2018. What s the difference between radiation and radioactivity? Radiation - the process of emitting energy as waves or particles, and the radiated energy Radioactivity

More information

Industrial Hygiene: Assessment and Control of the Occupational Environment

Industrial Hygiene: Assessment and Control of the Occupational Environment Industrial Hygiene: Assessment and Control of the Occupational Environment Main Topics Air Pollution Control Analytical Methods Ergonomics Gas and Vapour Sampling General Practice Heat and Cold Stress

More information

Atomic Structure Summary

Atomic Structure Summary Atomic Structure Summary All atoms have: a positively charged nucleus and negatively charged electrons around it Atomic nucleus consists of: positively charged protons and neutrons that have no electric

More information

Radiation Glossary. Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases.

Radiation Glossary. Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases. Activity The rate of disintegration (transformation) or decay of radioactive material. The units of activity are Curie (Ci) and the Becquerel (Bq). Agreement State Any state with which the U.S. Nuclear

More information

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e -

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e - Interaction of the radiation with a molecule knocks an electron from the molecule. radiation a. Molecule ¾ ¾ ¾ ion + e - This can destroy the delicate balance of chemical reactions in living cells. The

More information

notes Radiological Basics Transportation Emergency Preparedness Program

notes Radiological Basics Transportation Emergency Preparedness Program INTRODUCTION The reliance upon, and use of, radioactive material in agriculture, industry, and medicine continues to increase. As the manufacture, use, and disposal of radioactive material has increased,

More information

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations.

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations. Absorbed Dose Dose is a measure of the amount of energy from an ionizing radiation deposited in a mass of some material. SI unit used to measure absorbed dose is the gray (Gy). 1J 1 Gy kg Gy can be used

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 24 Medical Imaging Effects of Radiation We now know what radiation is But what does it mean for our bodies? Radioactivity is quantified in

More information

College Physics B - PHY2054C

College Physics B - PHY2054C College - PHY2054C Physics - Radioactivity 11/24/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Review Question 1 Isotopes of an element A have the same number of protons and electrons,

More information

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity PS-21 First Spring Institute say 2012-2013: Teaching Physical Science Radioactivity What Is Radioactivity? Radioactivity is the release of tiny, highenergy particles or gamma rays from the nucleus of an

More information

Source:

Source: Glossary Activity - The rate of disintegration (transformation) or decay of radioactive material. The units of activity are the curie (Ci) and the becquerel (Bq). Source: http://www.nrc.gov/reading-rm/doc-collections/cfr/part020/part020-1003.html

More information

Classroom notes for: Radiation and Life Lecture Thomas M. Regan Pinanski 207 ext 3283

Classroom notes for: Radiation and Life Lecture Thomas M. Regan Pinanski 207 ext 3283 Classroom notes for: Radiation and Life Lecture 11 98.101.201 Thomas M. Regan Pinanski 207 ext 3283 1 Radioactive Decay Series ( Chains ) A radioactive isotope (radioisotope) can decay and transform into

More information

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay What does it mean to be radioactive? Some atoms have nuclei that are unstable. These atoms spontaneously decompose

More information

Chapter 29. Nuclear Physics

Chapter 29. Nuclear Physics Chapter 29 Nuclear Physics Ernest Rutherford 1871 1937 Discovery that atoms could be broken apart Studied radioactivity Nobel prize in 1908 Some Properties of Nuclei All nuclei are composed of protons

More information

Module 1. An Introduction to Radiation

Module 1. An Introduction to Radiation Module 1 An Introduction to Radiation General Definition of Radiation Ionizing radiation, for example, X-rays, gamma-rays, α particles Ionizing radiation is capable of removing an electron from the atom

More information

11 Gamma Ray Energy and Absorption

11 Gamma Ray Energy and Absorption 11 Gamma Ray Energy and Absorption Before starting this laboratory, we must review the physiological effects and the proper use of the radioactive samples you will be using during the experiment. Physiological

More information

Readings: Turco: p ; Brimblecombe: p

Readings: Turco: p ; Brimblecombe: p Lecture 16. Air toxics. Radioactivity. Objectives: 1. Toxicity. 2. Exposure and dose. 3. Toxic effects of air pollutants. 4. Radioactivity: sources, physiological effects. Readings: Turco: p. 183-218;

More information

Characterising NORM hazards within subsea oil and gas facilities. Daniel Emes SA Radiation

Characterising NORM hazards within subsea oil and gas facilities. Daniel Emes SA Radiation Characterising NORM hazards within subsea oil and gas facilities. Daniel Emes SA Radiation What is in Oil and Gas NORM? Naturally Occurring Radioactive Material (NORM) can be characterized into many forms.

More information

Radioactivity. Lecture 7 Dosimetry and Exposure Limits

Radioactivity. Lecture 7 Dosimetry and Exposure Limits Radioactivity Lecture 7 Dosimetry and Exposure Limits Radiation Exposure - Radiology The radiation impact on biological and genetic materials requires some protective measures! Units for scaling the decay

More information

Radiation Response and Removals: Getting Down to the Nitty Gritty. 15 th Annual OSC Readiness Training Program

Radiation Response and Removals: Getting Down to the Nitty Gritty. 15 th Annual OSC Readiness Training Program Radiation Response and Removals: Getting Down to the Nitty Gritty 15 th Annual OSC Readiness Training Program www.oscreadiness.org 0 Radiation Fundamentals Tony Honnellio Health Physicist U.S. EPA, Region

More information

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name:

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name: Wallace Hall Academy Physics Department Radiation Pupil Notes Name: Learning intentions for this unit? Be able to draw and label a diagram of an atom Be able to state what alpha particles, beta particles

More information

Radiation Dose, Biology & Risk

Radiation Dose, Biology & Risk ENGG 167 MEDICAL IMAGING Lecture 2: Sept. 27 Radiation Dosimetry & Risk References: The Essential Physics of Medical Imaging, Bushberg et al, 2 nd ed. Radiation Detection and Measurement, Knoll, 2 nd Ed.

More information

Radiation Protection Fundamentals and Biological Effects: Session 1

Radiation Protection Fundamentals and Biological Effects: Session 1 Radiation Protection Fundamentals and Biological Effects: Session 1 Reading assignment: LLE Radiological Controls Manual (LLEINST 6610): Part 1 UR Radiation Safety Training Manual and Resource Book: Parts

More information

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Reading Assignment: LLE Radiological Controls Manual (LLEINST 6610) Part 1 UR Radiation Safety Training Manual

More information

R A D I A T I O N P R O T E C T I O N a n d t h e N R C

R A D I A T I O N P R O T E C T I O N a n d t h e N R C R A D I A T I O N P R O T E C T I O N and the NRC Radiation is all around us. It is naturally present in our environment and has been since before the birth of this planet. Radiation occurs in nature,

More information

Radiation Terminology

Radiation Terminology Radiation Terminology This section discusses the terms and concepts which are necessary for a meaningful discussion of radiation, its sources, and its risks. USNRC Technical Training Center 5-1 0703 Energy

More information

Hi and welcome to Understanding Radiation, a Radiation Safety Institute of Canada online course.

Hi and welcome to Understanding Radiation, a Radiation Safety Institute of Canada online course. Introduction Hi and welcome to Understanding Radiation, a Radiation Safety Institute of Canada online course. This course introduces radiation and radiation safety to people who work in environments where

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY student version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Radioactivity. Lecture 7 Dosimetry and Exposure Limits

Radioactivity. Lecture 7 Dosimetry and Exposure Limits Radioactivity Lecture 7 Dosimetry and Exposure Limits Radiation Exposure - Radiology The radiation impact on biological and genetic materials requires some protective measures! Units for scaling the decay

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

Radioactivity Outcomes. Radioactivity Outcomes. Radiation

Radioactivity Outcomes. Radioactivity Outcomes. Radiation 1 Radioactivity Outcomes Describe the experimental evidence for there being three types of radiation. Discuss the nature and properties of each type. Solve problems about mass and atomic numbers in radioactive

More information

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay Chapter 20: Phenomena Phenomena: Below is a list of stable isotopes of different elements. Examine the data and see what patterns you can identify. The mass of a electron is 0.00055 u, the mass of a proton

More information

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today Nuclear Chemistry Table of Contents Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion Section 3 Nuclear Radiation Today Section 1 What Is Radioactivity? Bellringer Before studying about

More information

Section 3: Nuclear Radiation Today

Section 3: Nuclear Radiation Today : Nuclear Radiation Today Preview Key Ideas Bellringer Where is Radiation? Beneficial Uses of Nuclear Radiation Risks of Nuclear Radiation Nuclear Power Key Ideas Where are we exposed to radiation? What

More information

Question. 1. Which natural source of background radiation do you consider as dominant?

Question. 1. Which natural source of background radiation do you consider as dominant? Question 1. Which natural source of background radiation do you consider as dominant? 2. Is the radiation background constant or does it change with time and location? 3. What is the level of anthropogenic

More information

Radioactivity Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine

Radioactivity Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine Radioactivity Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine karolina.czarnecka@umed.lodz.pl The periodic table is a tabular arrangement of the chemical elements, ordered by their

More information

What happens during nuclear decay? During nuclear decay, atoms of one element can change into atoms of a different element altogether.

What happens during nuclear decay? During nuclear decay, atoms of one element can change into atoms of a different element altogether. When Henri Becquerel placed uranium salts on a photographic plate and then developed the plate, he found a foggy image. The image was caused by rays that had not been observed before. For his discovery

More information

Radiation Basics. Rad Training for Clinical Laboratories. Key Points. What are 3 types of Ionizing particles/waves we are concerned with???

Radiation Basics. Rad Training for Clinical Laboratories. Key Points. What are 3 types of Ionizing particles/waves we are concerned with??? 1 Rad Training for Clinical Laboratories Jesse Fillmore Minnesota Department of Health PHLD, nvironmental Health RSO/RP Coordinator May 23, 2011 Key Points Radiation protection Laboratory Safety Purpose

More information

Unit 08 Nuclear Structure. Unit 08 Nuclear Structure Slide 1

Unit 08 Nuclear Structure. Unit 08 Nuclear Structure Slide 1 Unit 08 Nuclear Structure Unit 08 Nuclear Structure Slide 1 The Plan Nuclear Structure Nuclear Decays Measuring Radiation Nuclear Power Plants Major Nuclear Power Accidents New Possibilities for Nuclear

More information

Fundamentals of radiation protection

Fundamentals of radiation protection Fundamentals of radiation protection Kamel ABBAS European Commission, Joint Research Centre Institute for Transuranium Elements, Nuclear Security Unit Via E. Fermi, 2749, I-21027 Ispra, Italy tel. +39-0332-785673,

More information

Michael G. Stabin. Radiation Protection and Dosimetry. An Introduction to Health Physics. 4) Springer

Michael G. Stabin. Radiation Protection and Dosimetry. An Introduction to Health Physics. 4) Springer Michael G. Stabin Radiation Protection and Dosimetry An Introduction to Health Physics 4) Springer Table of Contents Preface Acknowledgments Chapter 1. Introduction to Health Physics 1 1.1 Definition of

More information

Analyzing Radiation. Pre-Lab Exercise Type of Radiation Alpha Particle Beta Particle Gamma Ray. Mass (amu) 4 1/2000 0

Analyzing Radiation. Pre-Lab Exercise Type of Radiation Alpha Particle Beta Particle Gamma Ray. Mass (amu) 4 1/2000 0 Analyzing Radiation Introduction Radiation has always been a natural part of our environment. Radiation on earth comes from many natural sources; the origin of all types of naturally occurring radiation

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY teacher version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Chapter 2. Atomic Structure and Nuclear Chemistry. Atomic Structure & Nuclear Chemistry page 1

Chapter 2. Atomic Structure and Nuclear Chemistry. Atomic Structure & Nuclear Chemistry page 1 Chapter 2 Atomic Structure and Nuclear Chemistry Atomic Structure & Nuclear Chemistry page 1 Atoms & Elements Part 0: Atomic Structure An Introduction Electrostatics an underlying force throughout chemistry

More information

Radiation Basics. Mary Lou Dunzik-Gougar, PhD Idaho State University/Idaho National Laboratory. ANS Teachers Workshop Anaheim, CA November 2014

Radiation Basics. Mary Lou Dunzik-Gougar, PhD Idaho State University/Idaho National Laboratory. ANS Teachers Workshop Anaheim, CA November 2014 Radiation Basics Mary Lou Dunzik-Gougar, PhD Idaho State University/Idaho National Laboratory ANS Teachers Workshop Anaheim, CA November 2014 Medicine/Health Voyager Soda Can Bugs What we ll cover... Atomic

More information

Introduction. Principle of Operation

Introduction. Principle of Operation Introduction Ionizing radiation that is associated with radioactivity cannot be directly detected by our senses. Ionization is the process whereby the radiation has sufficient energy to strip electrons

More information

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM Radiation: It is defined as the process by which energy is emitted from a source and propagated through the surrounding

More information

Q1. The diagram represents an atom of lithium.

Q1. The diagram represents an atom of lithium. Q1. The diagram represents an atom of lithium. Complete the diagram by writing in the spaces the name of each type of particle. Use only words given in the box. Each word may be used once or not at all.

More information

Radiation Safety Training for General Radiation Workers

Radiation Safety Training for General Radiation Workers Radiation Safety Training for General Radiation Workers Walter Shmayda LLE Radiation Safety Officer University of Rochester Laboratory for Laser Energetics 1 Summary The sources and effects of radiation

More information

Atoms, Radiation, and Radiation Protection

Atoms, Radiation, and Radiation Protection James E. Turner Atoms, Radiation, and Radiation Protection Third, Completely Revised and Enlarged Edition BICENTENNIAL J 0 1 8 0 Q 71 z m z CAVILEY 2007 1 ;Z z ü ; m r B10ENTENNIAL WILEY-VCH Verlag GmbH

More information

Sources of Radiation Exposure

Sources of Radiation Exposure Sources of Radiation Exposure Sources of Radiation Exposure to the US Population (from U.S. NRC, Glossary: Exposure. [updated 21 July 2003, cited 26 March 2004] http://www.nrc.gov/reading-rm/basic-ref/glossary/exposure.html

More information

INVESTIGATING RADIOACTIVITY

INVESTIGATING RADIOACTIVITY INVESTIGATING RADIOACTIVITY OBJECTIVE: 1. To see how to measure radioactivity. 2. To see the statistical nature of radioactivity. 3. To observe how nuclear radiation decreases due to a) spreading out b)

More information

UNCORRECTED PROOF. Table of Contents

UNCORRECTED PROOF. Table of Contents 00-Stabin-Prelims SNY001-Stabin (Typeset by spi publisher services, Delhi) vii of xvi June 1, 2007 17:15 Preface xiii Acknowledgments xv Chapter 1. Introduction to Health Physics 1 1.1 Definition of Health

More information

Chapter 21 Nuclear Chemistry: the study of nuclear reactions

Chapter 21 Nuclear Chemistry: the study of nuclear reactions Chapter 2 Nuclear Chemistry: the study of nuclear reactions Learning goals and key skills: Write balanced nuclear equations Know the difference between fission and fusion Predict nuclear stability in terms

More information

RADIATION SAFETY. Working Safely with Radiation

RADIATION SAFETY. Working Safely with Radiation RADIATION SAFETY Working Safely with Radiation 12 NOV 2015 Dr. Raed Felimban Department of Transfusion Medicine King Abdul-Aziz University E-mail: felimbanr@yahoo.com KING ABDULAZIZ UNIVERSITY How most

More information

Nuclear Reaction and Radiation Detectors

Nuclear Reaction and Radiation Detectors King Saud University College of Applied Studies and Community Service Department of Natural Sciences Nuclear Reaction and Radiation Detectors General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa

More information

Nuclear units and applications

Nuclear units and applications Nuclear units and applications Activity The rate of nuclear disintegrations is known as the activity. Activity is the total number of disintegrations in a sample. It is measured using the becquerel (Bq),

More information

Intro to Radiation. Atom structure Types of radiation Properties of ionizing radiation Detection methods Dose reduction methods

Intro to Radiation. Atom structure Types of radiation Properties of ionizing radiation Detection methods Dose reduction methods Radiation and Life Intro to Radiation Atom structure Types of radiation Properties of ionizing radiation Detection methods Dose reduction methods 1 Atom structure 2 Understanding Radiation Types of Ionizing

More information

Activity 11 Solutions: Ionizing Radiation II

Activity 11 Solutions: Ionizing Radiation II Activity 11 Solutions: Ionizing Radiation II 11.1 Additional Sources of Ionizing Radiation 1) Cosmic Rays Your instructor will show you radiation events in a cloud chamber. Look for vapor trails that do

More information

BASICS OF NUCLEAR RADIATION

BASICS OF NUCLEAR RADIATION BASICS OF NUCLEAR RADIATION INTRODUCTION RAE Systems radiation monitors can be used to guard against and search for sources of various types of nuclear radiation. What are these types of radiation? Where

More information

Nuclear Chemistry. Nuclear Terminology

Nuclear Chemistry. Nuclear Terminology Nuclear Chemistry Up to now, we have been concerned mainly with the electrons in the elements the nucleus has just been a positively charged things that attracts electrons The nucleus may also undergo

More information

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam 16-02-2015

More information

Radiation Safety. PIXE PAN 2008 Ed Stech University of Notre Dame

Radiation Safety. PIXE PAN 2008 Ed Stech University of Notre Dame Radiation Safety PIXE PAN 2008 Ed Stech University of Notre Dame Outline Radiation Overview Radiation Safety in during PIXE PAN Other Safety Issues Ionizing Radiation 4 Types Alpha Beta Photon (Gamma and

More information

Radioactive nuclei. From Last Time. Biological effects of radiation. Radioactive decay. A random process. Radioactive tracers. e r t.

Radioactive nuclei. From Last Time. Biological effects of radiation. Radioactive decay. A random process. Radioactive tracers. e r t. From Last Time Nuclear structure and isotopes Binding energy of nuclei Radioactive nuclei Final Exam is Mon Dec 21, 5:05 pm - 7:05 pm 2103 Chamberlin 3 equation sheets allowed About 30% on new material

More information

Radioactive Decay. Becquerel. Atomic Physics. In 1896 Henri Becquerel. - uranium compounds would fog photographic plates as if exposed to light.

Radioactive Decay. Becquerel. Atomic Physics. In 1896 Henri Becquerel. - uranium compounds would fog photographic plates as if exposed to light. Radioactive Decay Atomic Physics Becquerel In 1896 Henri Becquerel - uranium compounds would fog photographic plates as if exposed to light. - a magnetic field could deflect the radiation that caused the

More information

Radiation Fundamentals. Radiation Safety Training Module 1

Radiation Fundamentals. Radiation Safety Training Module 1 Radiation Fundamentals Module 1 Radioactivity Radioactivity is the process of unstable (or radioactive) atoms becoming stable. This is done by emitting radiation. This process over a period of time is

More information

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons.

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons. 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

10.1 RADIOACTIVE DECAY

10.1 RADIOACTIVE DECAY 10.1 RADIOACTIVE DECAY When Henri Becquerel placed uranium salts on a photographic plate and then developed the plate, he found a foggy image. The image was caused by rays that had not been observed before.

More information

Radiation Awareness Training. Stephen Price Office of Research Safety

Radiation Awareness Training. Stephen Price Office of Research Safety Radiation Awareness Training Stephen Price Office of Research Safety Purpose This training is intended for Clemson University Faculty, Staff or Students who do not work directly with radioactive materials

More information

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray 25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha

More information

Chapter 9. Radioactivity, Radon, and Nuclear Energy. READ THE CHAPTER CAREFULLY ON RADON

Chapter 9. Radioactivity, Radon, and Nuclear Energy. READ THE CHAPTER CAREFULLY ON RADON Chapter 9. Radioactivity, Radon, and Nuclear Energy. READ THE CHAPTER CAREFULLY ON RADON CHEM 3320 Dr. Houston Brown - 2016 Radioactivity Emission of subatomic particles or high-energy electromagnetic

More information

The Atomic Nucleus & Radioactive Decay. Major Constituents of an Atom 4/28/2016. Student Learning Outcomes. Analyze radioactive decay and its results

The Atomic Nucleus & Radioactive Decay. Major Constituents of an Atom 4/28/2016. Student Learning Outcomes. Analyze radioactive decay and its results The Atomic Nucleus & Radioactive Decay ( Chapter 10) Student Learning Outcomes Analyze radioactive decay and its results Differentiate between nuclear fission and fusion Major Constituents of an Atom U=unified

More information

Journal of American Science 2013;9(12)

Journal of American Science 2013;9(12) Journal of American Science 213;9(12) http://www.jofamericanscience.org Estimation of the Radiation Dose for Some Individuals Working With Naturally Occurring Radioactive Materials Tarek Mahmoud Morsi,

More information

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance P7. Atoms and radiation a radiation from U consists = particles, radiation from lamp = electromagnetic waves, radiation from U is ionising, radiation from lamp is non-ionising b radioactive atoms have

More information

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331 Lecture 25-1 Physics 219 Help Session Date: Wed 12/07, 2016. Time: 6:00-8:00 pm Location: Physics 331 Lecture 25-2 Final Exam Dec. 14. 2016. 1:00-3:00pm in Phys. 112 Bring your ID card, your calculator

More information

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1 Outline Radiation Interactions Introduction Interaction of Heavy Charged Particles Interaction of Fast Electrons Interaction of Gamma Rays Interactions of Neutrons Radiation Exposure & Dose Sources of

More information

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Name No-Calculators Allowed /65 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

TEXAS STATE UNIVERSITY SAN MARCOS RADIATION SAFETY RAD MAT HANDLER TRAINING

TEXAS STATE UNIVERSITY SAN MARCOS RADIATION SAFETY RAD MAT HANDLER TRAINING TEXAS STATE UNIVERSITY SAN MARCOS RADIATION SAFETY Table of Contents RADIATION SAFETY I. INTRODUCTION... 1 A. Non-ionizing radiation...1 B. Ionizing Radiation...1 II. OBJECTIVES... 3 III. SOURCES OF RADIATION...

More information

Chapter 18. Nuclear Chemistry

Chapter 18. Nuclear Chemistry Chapter 18 Nuclear Chemistry The energy of the sun comes from nuclear reactions. Solar flares are an indication of fusion reactions occurring at a temperature of millions of degrees. Introduction to General,

More information

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom Nuclear forces and Radioactivity Two forces are at work inside the nucleus of an atom Forces act in opposing directions Electrostatic repulsion: pushes protons apart Strong nuclear force: pulls protons

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information

Nicholas J. Giordano. Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 30 Nuclear Physics Marilyn Akins, PhD Broome Community College Atomic Nuclei Rutherford s discovery of the atomic nucleus caused scientists

More information