Wksht Rate Laws

Size: px
Start display at page:

Download "Wksht Rate Laws"

Transcription

1 Wksht Rate Laws Iowa State University Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 1/16/18 1. Describe the difference between average rate and instantaneous rate. Average rate- change in concentration over time that rxn occurs Instantaneous rate- change in concentration at a specific time period/interval; differs at specific moments 2. Write the complete rate expression for aa + bb cd + dd + ff Rate = -(1 / a) (ΔA / Δt) = -(1 / b) (ΔB / Δt) = (1 / c) (ΔC / Δt) = etc.. 3. For the reaction C6H12O6 (s) + 6O2 (g) 6CO2 (g) + 6H2O (l) a. Balance it. b. The Rate Law is determined to be Rate = k[c6h12o6][o2] 2.What is the overall order of the reaction? 3 4. a. Derive the rate law using the following information and the reaction below: 2 HgCl2 (aq) + C2O4 2- (aq) 2 Cl - (aq) + 2 CO2 (g) + Hg2Cl2 (s) Experiment [HgCl2] (M) [C2O4 2- ] (M) Rate (M/s) * * * *10-5 Rate = k[hgcl2][c2o4 2- ] 2 b. What is the overall reaction order? 3 c. Calculate the rate constant for this reaction, with units. k = 8.7 x 10-3 M -2 s -1 d. What is the rate when M A and M B are present? 2.2 x 10-4 M/s 5. For the reaction 2A + B A2B find the rate law, units on the rate constant, and value of the rate constant Hixson-Lied Student Success Center

2 Rate = k[a] 2 [B] k = 0.8 M -2 s -1

3 Wksht 1.2 Integrated Rate Laws and Energetics Iowa State University Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 1/17/18 1. Explain how you experimentally determine which order a reaction is. a. First order reactions: ln[a] = straight line i. From graphing you learn ln[a]0 = y-intercept ii. Slope = -k iii. t = x-axis iv. y-axis = ln[a] b. Second order reactions: 1/[A] = straight line i. 1/[A] = y-axis ii. 1/[A]0 = y-intercept iii. k = slope iv. t = x-axis c. Zeroth order reactions: [A] = straight line 2. What is the order of this reaction based on the graphs? 2 nd order 3. What are the half-life equations for a. first-order reactions? t1/2 = / k b. second-order reactions? t1/2 = 1 / k[a]0 4. The half-life of Zn-71 is 2.4 minutes. If a sample had g at the beginning, how many grams would be left after 7.6 minutes has elapsed? 13.3 g 5. Os-182 has a half-life of 21.5 hours. How many grams of a 28.0 gram sample would have decayed after exactly three half-lives? 24.5 g 1060 Hixson-Lied Student Success Center

4 6. Rate = k[n2o5] a. At 45 C, the rate constant for the reaction with the rate law given above is 6.22 x 10-4 s -1. If the initial concentration of N2O5 in the solution is M, how long will it take for the concentration to drop to M, in minutes? 61.7 minutes b. If the initial concentration of N2O5 is M, what will the concentration be after exactly 1 hour? M 7. The following diagram shows a reaction profile. Label the components indicated by the boxes. (End-of-chapter question 14.9 in book) (1) Reactants (2) Ea (3) H or E (4) Products top of peak = transition state

5 Wksht 1.3 Integrated Rate Laws and Energetics Iowa State University Leader: Deborah Course: CHEM 178 Instructor: Miller Date: 9/3/17 1. The rate constant for the reaction H2(g) + I2(g) 2 HI(g) is 3.6 x 10-4 M -1 s -1 at 326 o C. At 468 o C the rate constant was found to be 2.8 x 10-2 M -1 s -1. Find the activation energy. Ea = = ~ 11.3 x 10-4 J/mol 2. What is the difference between the molecularities of a reaction? What are the 2 most common? the number of molecules of reactants involved in collision reactions; unimolecular & bimolecular 3. What is the difference between an intermediate compound and a catalyst? Intermediate: formed in one elementary reaction then consumed in another (product then reactant) Catalyst: a reactant in first step then product in later step(s) (reactant then product) 4. a. Which step of the above reaction profile is rate determining? 2 nd step b. How many intermediates are there? 2 c. How many transition states are they? 3 d. Which steps are endothermic? Which steps are exothermic? 2 nd step; 1 st and 3 rd steps 1060 Hixson-Lied Student Success Center

6 5. Find the rate law for the following reaction using the elementary steps. Rate = k[h2][no] 2 6. For the reaction, 2NO2(g) + F2(g) 2NO2F with a rate law = k[no2][f2]: a. Propose a series for a bimolecular elementary process. (1) NO2 + F2 NO2F + F Rate(1) = k1[no2][f2] (2) NO2 + F NO2F Rate(2) = k2[no2][f] 2 NO2 + F2 2 NO2F Rate = k[no2][f2] b. Identify which elementary process is the rate determinant and which one is the fast reaction. rate-determinant = step 1 fast reaction = step 2

7 Wksht 2.2(2) Chemical Equilibrium II Iowa State University Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 1/30/18 1. Write the correct Kc expression for the following reaction. C3H8 (g) + 5 O2 (g) 3 CO2 (g) + 4 H2O (g) Kc = ([CO2] 3 [H2O] 4 ) / ([C3H8][O2] 5 ) 2. Write an expression for the equilibrium constant of this reaction. N2O4 (g) + O3 (g) N2O5 (s) + O2 (g) **same format as question above, excluding any pure solids or liquids** 3. The equilibrium constant is 3.58 x 10 4 for the following reaction: A + B C + D Which of the following statements is true regarding this equilibrium? (select all that apply) a. The reaction is product favored. b. The reaction is reactant favored. c. Equilibrium lies far to the right. d. Equilibrium lies far to the left. e. None are true, as the concentration of reactants and products are comparable. 4. What is Kc for the reaction NO2 (g) + ClNO (g) ClNO2 (g) + NO (g) at 25 C, given the following information? Kc = [NO2][ClNO] / [ClNO2][NO] = 1.3 x 10 4 (at 25 C) Kc = 7.69 x What is Kc for the reaction 3 H2 (g) + 3 I2 (g) 6 HI (g) at 350 C when the equilibrium-constant value of H2 (g) + I2 (g) 2 HI (g) is 60 at the same temperature? Kc = 2.16 x Calculate K for the following reaction given the following equilibrium concentrations of H2, CO, and H2O. C (s) + H2O (g) CO (g) + H2 (g) K =??? Equilibrium concentrations (M): K = 5.63 x What is the equilibrium concentration of O2(g)? 2 SO2 (g) + O2 (g) 2 SO3 (g) K = 2.8 x 10 2 at 1000 K 1.3 x 10 2?? 0.25 [O2] = 1.32 x 10-8 M 8. Find the Kc for the reaction NO (g) + CO2 (g) NO2 (g) + CO (g). NO2 (g) + NO2 (g) NO3 (g) + NO (g) Kc = [NO3][NO] / [NO2] 2 = 7.38 x Hixson-Lied Student Success Center

8 NO3 (g) + CO (g) NO2 (g) + CO2 (g) Kc = [NO2][CO2] / [NO3][CO] = 6.45 x 10-5 Kc3 = 2.10 x 10 5

9 Wksht 2.3 Chemical Equilibrium III Iowa State University Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 1/31/18 1. D 2. Balance the following reaction then calculate K given the following equilibrium concentrations. Al (s) + MnSO4 (aq) Al2(SO4)3 (aq) + Mn (s) Equilibrium Concentrations (M): Kc = Consider the reaction PbCl2 (s) Pb 2+ (aq) + 2 Cl - (aq) with an equilibrium constant of 2.47x10-3. a. What is the value of K for the reverse reaction? Kc = 405 b. What is the value of K for 3 PbCl2 (s) 3 Pb 2+ (aq) + 6 Cl - (aq)? Kc = 1.51 x (1) AX (s) + B (g) A (s) + BX (g) Kp = 0.68 (2) AX (s) + Z2 (g) A (s) + XZ2 (g) Kp = 1.3 A mixture of B(g) and Z2(g) is added to a closed container of AX(s) and A(s). Find the equilibrium constant of the reaction B (g) + XZ2 (g) BX (g) + Z2 (g) when it s allowed to reach equilibrium. Kp = Hixson-Lied Student Success Center

10 [C] = 2.20 x 10-4 M 6. What s the difference between an equilibrium constant and a reaction quotient? K: ratio of products to reactants at equilibrium; only one value at each T Q: ratio of products to reactions at any point during a reaction; varies within T 7. Consider the reaction N2 (g) + 3H2 (g) 2NH3 (g) with a Kp of If a chamber has N2(g) at 1.00 atm, H2(g) 0.52 atm, and NH3(g) at atm, what reaction, if any, will occur? Equilibrium

CHEM Dr. Babb s Sections Lecture Problem Sheets

CHEM Dr. Babb s Sections Lecture Problem Sheets CHEM 116 - Dr. Babb s Sections Lecture Problem Sheets Kinetics: Integrated Form of Rate Law 61. Give the integrated form of a zeroth order reaction. Define the half-life and find the halflife for a general

More information

Homework 07. Kinetics

Homework 07. Kinetics HW07 - Kine!cs Started: Mar at 10:56am Quiz Instruc!ons Homework 07 Kinetics Question 1 Consider the reaction: O (g) 3O (g) rate = k[o ] [O ] 3 3 What is the overall order of the reaction and the order

More information

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A?

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? Kinetics 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? A. [A]/ t = [B]/ t B. [A]/ t = (2/3)( [B]/ t) C. [A]/

More information

Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 2/6/18 + H 2 CHF 3. a. Express the rate law in terms of m, n, and k.

Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 2/6/18 + H 2 CHF 3. a. Express the rate law in terms of m, n, and k. EXAM I REVIEW KEY Leader: Deborah Course: CHEM 178 Instructor: Bonaccorsi/Vela Date: 2/6/18 1. Given the following reaction: CF 4 + H 2 CHF 3 + HF a. Express the rate law in terms of m, n, and k. Rate

More information

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions 14.1 Focusing on Reaction Rate 14.2 Expressing the Reaction Rate 14.3 The Rate Law and Its Components 14.4 Integrated Rate Laws: Concentration

More information

a. rate = k[no] 2 b. rate = k([no][o 2 ] c. rate = k[no 2 ] 2 [NO] -2 [O 2 ] -1/2 d. rate = k[no] 2 [O 2 ] 2 e. rate = k([no][o 2 ]) 2

a. rate = k[no] 2 b. rate = k([no][o 2 ] c. rate = k[no 2 ] 2 [NO] -2 [O 2 ] -1/2 d. rate = k[no] 2 [O 2 ] 2 e. rate = k([no][o 2 ]) 2 General Chemistry III 1046 E Exam 1 1. Cyclobutane, C 4 H 8, decomposes as shown: C 4 H 8 (g)! 2 C 2 H 4 (g). In the course of a study of this reaction, the rate of consumption of C 4 H 8 at a certain

More information

FINAL EXAM REVIEW KEY

FINAL EXAM REVIEW KEY FINAL EXAM REVIEW KEY Leaders: Deborah Course: CHEM 178 Instructor: Date: 1. What is the rate-determining step and why is it important? The slowest step of the elementary steps; looks the most like the

More information

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION CHEMICAL KINETICS the study of rates of chemical reactions and the mechanisms by which they occur FACTORS WHICH AFFECT REACTION RATES 1. Nature

More information

AP Questions: Kinetics

AP Questions: Kinetics AP Questions: Kinetics 1972 2 A + 2 B C + D The following data about the reaction above were obtained from three experiments: Rate of Formation of [A] [B] C (mole. liter -1 min -1 ) 1 0.60 0.15 6.3 10-3

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Equilibrium To be in equilibrium is to be in a state of balance: Chapter 15 Chemical Equilibrium - Static Equilibrium (nothing happens; e.g. a tug of war). - Dynamic Equilibrium (lots of things happen,

More information

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2 Questions 1-3 relate to the following reaction: 2N2O5(g) 4NO2(g) + O2(g) 1. The rate law for decomposition of N2O5(g) in the reaction above A. is rate = k[n2o5] B. is rate = k[n2o5] 2 C. is rate = [NO2]

More information

Chemical Kinetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction

More information

Kinetics and Equilibrium Extra Credit

Kinetics and Equilibrium Extra Credit 1. The potential energy diagram below represents the reaction 2 KClO3 2 KCl + 3 O2. 4. When AgNO3(aq) is mixed with NaCl(aq), a reaction occurs which tends to go to completion and not reach equilibrium

More information

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS.

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS. !! www.clutchprep.com CONCEPT: RATES OF CHEMICAL REACTIONS is the study of reaction rates, and tells us the change in concentrations of reactants or products over a period of time. Although a chemical

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12:

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12: Kinetics: Contents Brown et al, Chemistry, 2 nd ed (AUS), Ch. 12: Why kinetics? What is kinetics? Factors that Affect Reaction Rates Reaction Rates Concentration and Reaction Rate The Change of Concentration

More information

Chem 401 Unit 1 Exam: Thermodynamics & Kinetics (Nuss: Spr 2018)

Chem 401 Unit 1 Exam: Thermodynamics & Kinetics (Nuss: Spr 2018) Date: Exam # Chem 401 Unit 1 Exam: Thermodynamics & Kinetics (Nuss: Spr 2018) Multiple Choice Identify the choice that best completes the statement or answers the question. (3 pts each) 1. Which of the

More information

Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary

Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary Chapter 10 Reaction Rates and Chemical Equilibrium Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary The rate of a reaction is

More information

Ch 10 Practice Problems

Ch 10 Practice Problems Ch 10 Practice Problems 1. Which of the following result(s) in an increase in the entropy of the system? I. (See diagram.) II. Br 2(g) Br 2(l) III. NaBr(s) Na + (aq) + Br (aq) IV. O 2(298 K) O 2(373 K)

More information

1) Define the following terms: a) catalyst; b) half-life; c) reaction intermediate

1) Define the following terms: a) catalyst; b) half-life; c) reaction intermediate Problems - Chapter 19 (without solutions) 1) Define the following terms: a) catalyst; b) half-life; c) reaction intermediate 2) (19.10) Write the reaction rate expressions for the following reactions in

More information

CHEM Exam 1 February 11, 2016 Constants and Equations: R = 8.31 J/mol-K. Beer-Lambert Law: A log bc. Michaelis-Menten Equation: v0 M

CHEM Exam 1 February 11, 2016 Constants and Equations: R = 8.31 J/mol-K. Beer-Lambert Law: A log bc. Michaelis-Menten Equation: v0 M CHEM 1423 - Exam 1 February 11, 2016 Constants and Equations: R = 8.31 J/mol-K Io Beer-Lambert Law: A log bc I Vm[ S] Michaelis-Menten Equation: v0 K [ S] M CHEM 1423 - Exam 1 February 11, 2016 Name (60)

More information

Chemistry 102 Spring 2017 Discussion #13, Chapter 17 Student name TA name Section. Things you should know when you leave Discussion today: ( G o f

Chemistry 102 Spring 2017 Discussion #13, Chapter 17 Student name TA name Section. Things you should know when you leave Discussion today: ( G o f Chemistry 0 Spring 07 Discussion #3, Chapter 7 Student name TA name Section Things you should know when you leave Discussion today:. ΔSsys = ΔrS = Σ [ni (S )]product - Σ [nj (S )]reactants. ΔGº = -T ΔSnet

More information

Chemical Kinetics AP Chemistry Lecture Outline

Chemical Kinetics AP Chemistry Lecture Outline Chemical Kinetics AP Chemistry Lecture Outline Name: Factors that govern rates of reactions. Generally... (1)...as the concentration of reactants increases, rate (2)...as temperature increases, rate (3)...with

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

Chemical Kinetics Ch t ap 1 er

Chemical Kinetics Ch t ap 1 er Chemical Kinetics Chapter 13 1 Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction proceed? Reaction rate is the change in the concentration of a reactant or

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place. Familiar Kinetics...and the not so familiar Reaction Rates Chemical kinetics is the study of how fast reactions take place. Some happen almost instantaneously, while others can take millions of years.

More information

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40 CHEM 1412. Chapter 14. Chemical Kinetics (Homework) Ky40 1. Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation: 2ClO 2 (aq) + 2OH (aq) ClO

More information

Write a balanced reaction.. then write the equation.. then solve for something!!

Write a balanced reaction.. then write the equation.. then solve for something!! Chapter 13 - Equilibrium Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Exam 2 Sections Covered: (the remaining Ch14 sections will be on Exam 3) Useful Information Provided on Exam 2:

Exam 2 Sections Covered: (the remaining Ch14 sections will be on Exam 3) Useful Information Provided on Exam 2: Chem 101B Study Questions Name: Chapters 12,13,14 Review Tuesday 2/28/2017 Due on Exam Thursday 3/2/2017 (Exam 2 Date) This is a homework assignment. Please show your work for full credit. If you do work

More information

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = mc T mol HCl m = 70.0 g c = 4.19 J/g C T = 9.8 C.4 C = 7.4 C mol HCl = 3.00 mol/ 0.000 = 0.0600 mol H = 70.0 g 4.19 J/g

More information

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does

More information

Chemical Equilibrium. Chapter

Chemical Equilibrium. Chapter Chemical Equilibrium Chapter 14 14.1-14.5 Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: 1.) the rates of the forward

More information

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc. #73 Notes Unit 9: Kinetics and Equilibrium Ch. Kinetics and Equilibriums I. Reaction Rates NO 2(g) + CO (g) NO (g) + CO 2(g) Rate is defined in terms of the rate of disappearance of one of the reactants,

More information

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary:

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary: Summary: Lecture (3) The expressions of rate of reaction and types of rates; Stoichiometric relationships between the rates of appearance or disappearance of components in a given reaction; Determination

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Unit 8: Equilibrium Unit Review

Unit 8: Equilibrium Unit Review 1. Predict the effect of increasing pressure on the position of equilibrium in the following systems: a. CH 4 (g) + 2H 2 O(g) CO 2 (g) + 4H 2 (g) b. N 2 O 5 (g) + NO(g) 3NO 2 (g) c. NO(g) + NO 2 (g) N

More information

CHEMICAL EQUILIBRIUM. Chapter 15

CHEMICAL EQUILIBRIUM. Chapter 15 Chapter 15 P a g e 1 CHEMICAL EQUILIBRIUM Examples of Dynamic Equilibrium Vapor above a liquid is in equilibrium with the liquid phase. rate of evaporation = rate of condensation Saturated solutions rate

More information

14.1 Factors That Affect Reaction Rates

14.1 Factors That Affect Reaction Rates 14.1 Factors That Affect Reaction Rates 1) 2) 3) 4) 14.2 Reaction Rates How does increasing the partial pressures of the reactive components of a gaseous mixture affect the rate at which the compounds

More information

C H E M I C N E S C I

C H E M I C N E S C I C H E M I C A L K I N E T S C I 4. Chemical Kinetics Introduction Average and instantaneous Rate of a reaction Express the rate of a reaction in terms of change in concentration Elementary and Complex

More information

CHAPTER 3: CHEMICAL EQUILIBRIUM

CHAPTER 3: CHEMICAL EQUILIBRIUM CHAPTER 3: CHEMICAL EQUILIBRIUM 1 LESSON OUTCOME Write & explain the concepts of chemical equilibrium Derive the equilibrium constant Kc or Kp Solving the problem using the ICE table 2 Equilibrium is a

More information

CHAPTER 12 CHEMICAL KINETICS

CHAPTER 12 CHEMICAL KINETICS 5/9/202 CHAPTER 2 CHEMICAL KINETICS CHM52 GCC Kinetics Some chemical reactions occur almost instantaneously, while others are very slow. Chemical Kinetics - study of factors that affect how fast a reaction

More information

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur?

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS LECTURE 11: CHEMICAL KINETICS 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS C(s, diamond) C(s, graphite) G

More information

(i.e., equilibrium is established) leads to: K = k 1

(i.e., equilibrium is established) leads to: K = k 1 CHEMISTRY 104 Help Sheet #8 Chapter 12 Equilibrium Do the topics appropriate for your lecture http://www.chem.wisc.edu/areas/clc (Resource page) Prepared by Dr. Tony Jacob Nuggets: Equilibrium Constant

More information

January 03, Ch 13 SB equilibrium.notebook

January 03, Ch 13 SB equilibrium.notebook Ch 13: Chemical Equilibrium exists when 2 opposing reactions occur simultaneously at the same rate (dynamic rather than static) Forward rate = reverse rate https://www.youtube.com/watch?v=wld_imyqagq The

More information

Practice Questions for Exam 2 CH 1020 Spring 2017

Practice Questions for Exam 2 CH 1020 Spring 2017 Practice Questions for Exam 2 CH 1020 Spring 2017 1. Pick all of the statements which are true about a reaction mechanism?. A rate law can be written from the molecularity of the slowest elementary step..

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium 1 Which statement incorrectly describes a chemical reaction approaching equilibrium? As a chemical reaction approaches equilibrium, the net change in the amount of reactants

More information

What does the magnitude of the equilibrium constant tell us? N2(g) + O2(g) N2 O2(g) N2(g) + 3H2(g) 2NH3(g) In Short

What does the magnitude of the equilibrium constant tell us? N2(g) + O2(g) N2 O2(g) N2(g) + 3H2(g) 2NH3(g) In Short What does the magnitude of the equilibrium constant tell us? N2(g) + O2(g) N2 O2(g) N2(g) + 3H2(g) 2NH3(g) In Short 1 D. Altering Chemical Equations and the Effect on the Equilibrium Constant What is the

More information

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics PowerPoint to accompany Kinetics Chapter 12 Chemical Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

8. A piece of Mg(s) ribbon is held in a Bunsen burner flame and begins to burn according to the equation: 2Mg(s) + O2 (g) 2MgO(s).

8. A piece of Mg(s) ribbon is held in a Bunsen burner flame and begins to burn according to the equation: 2Mg(s) + O2 (g) 2MgO(s). 1. Which event must always occur for a chemical reaction to take place? A) formation of a precipitate B) formation of a gas C) effective collisions between reacting particles D) addition of a catalyst

More information

Name Unit 10 Practice Test

Name Unit 10 Practice Test 1. Increasing the temperature increases the rate of a reaction by A) lowering the activation energy B) increasing the activation energy C) lowering the frequency of effective collisions between reacting

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline Chemical Equilibrium. A. Definition:

Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline Chemical Equilibrium. A. Definition: Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline 13.1. Chemical Equilibrium A. Definition: B. Consider: N 2 O 4 (g, colorless) 2NO 2 (g, brown) C. 3 Main Characteristics of Equilibrium 13.2-13.4.

More information

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place. CHEMICAL KINETICS & REACTION MECHANISMS Readings, Examples & Problems Petrucci, et al., th ed. Chapter 20 Petrucci, et al., 0 th ed. Chapter 4 Familiar Kinetics...and the not so familiar Reaction Rates

More information

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 30 Chemical Kinetics 1 Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chemists have three fundamental questions in mind when they study chemical reactions: 1.) What happens?

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

EQUILIBRIA. e Q = a D B

EQUILIBRIA. e Q = a D B I. Basis of Equilibrium. A. Q and equilibrium. EQUILIBRIA 1. Consider the general reaction bb + cc dd + ee a. Αs time elapses, [B] and [C] decrease causing the rate of the forward reaction to decrease.

More information

Gas Phase Equilibrium

Gas Phase Equilibrium Gas Phase Equilibrium Chemical Equilibrium Equilibrium Constant K eq Equilibrium constant expression Relationship between K p and K c Heterogeneous Equilibria Meaning of K eq Calculations of K c Solving

More information

Chapter 12 - Chemical Kinetics

Chapter 12 - Chemical Kinetics Chapter 1 - Chemical Kinetics 1.1 Reaction Rates A. Chemical kinetics 1. Study of the speed with which reactants are converted to products B. Reaction Rate 1. The change in concentration of a reactant

More information

CHEMICAL EQUILIBRIUM Chapter 13

CHEMICAL EQUILIBRIUM Chapter 13 1 CHEMICAL EQUILIBRIUM Chapter 13 Pb 2+ (aq) + 2 Cl (aq) PbCl 2 (s) 1 Objectives Briefly review what we know of equilibrium Define the Equilibrium Constant (K eq ) and Reaction Quotient (Q) Determining

More information

Study Guide for Module 13 An Introduction to Equilibrium

Study Guide for Module 13 An Introduction to Equilibrium Chemistry 1020, Module 13 Name Study Guide for Module 13 An Introduction to Equilibrium Reading Assignment: Section 12.1 and Chapter 13 of Chemistry, 6th Edition by Zumdahl. Guide for Your Lecturer: 1.

More information

15.1 The Concept of Equilibrium

15.1 The Concept of Equilibrium Lecture Presentation Chapter 15 Chemical Yonsei University 15.1 The Concept of N 2 O 4 (g) 2NO 2 (g) 2 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The

More information

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK 17.29 At 425 o C, Kp = 4.18x10-9 for the reaction 2HBr(g) H 2 (g) + Br 2 (g) In one experiment, 0.20 atm of HBr(g), 0.010 atm of H 2 (g), and 0.010

More information

ELEMENTARY CHEMICAL KINETICS

ELEMENTARY CHEMICAL KINETICS ELEMENTARY CHEMICAL KINETICS EDR Chapter 25... a knowledge of the rate, or time dependence, of chemical change is of critical importance for the successful synthesis of new materials and for the utilization

More information

AP CHEMISTRY CHAPTER 12 KINETICS

AP CHEMISTRY CHAPTER 12 KINETICS AP CHEMISTRY CHAPTER 12 KINETICS Thermodynamics tells us if a reaction can occur. Kinetics tells us how quickly the reaction occurs. Some reactions that are thermodynamically feasible are kinetically so

More information

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products 3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: Page 1 of 9 AP Multiple Choice Review Questions 1 16 1. The reaction rate is defined as the change in concentration of a reactant

More information

CHEMISTRY. Chapter 14 Chemical Kinetics

CHEMISTRY. Chapter 14 Chemical Kinetics CHEMISTRY The Central Science 8 th Edition Chapter 14 Kozet YAPSAKLI kinetics is the study of how rapidly chemical reactions occur. rate at which a chemical process occurs. Reaction rates depends on The

More information

Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON. Name /98

Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON. Name /98 Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON Name /98 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Correct the False statments by changing

More information

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes.

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes. REACTION KINETICS Study of reaction rates Why? Rates of chemical reactions are primarily controlled by 5 factors: the chemical nature of the reactants 2 the ability of the reactants to come in contact

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 7/10/003 Chapter 14 Chemical Kinetics 14-1 Rates of Chemical Reactions 14- Reaction Rates and Concentrations 14-3 The Dependence of Concentrations on Time 14-4 Reaction Mechanisms 14-5 Reaction Mechanism

More information

Chapter 11 Rate of Reaction

Chapter 11 Rate of Reaction William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 11 Rate of Reaction Edward J. Neth University of Connecticut Outline 1. Meaning of reaction rate 2. Reaction

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

BCIT Winter Chem Exam #1

BCIT Winter Chem Exam #1 BCIT Winter 2014 Chem 0012 Exam #1 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium 1. Which quantities must be equal for a chemical reaction at equilibrium? (A) the potential energies of the reactants and products (B) the concentrations of the reactants and products (C) the activation

More information

2. What mass of an aqueous 22.9% sodium chloride solution contains 99.5 g of water?

2. What mass of an aqueous 22.9% sodium chloride solution contains 99.5 g of water? CHEM 1412 MIDTERM EXAM (100 pts total) ANSWER KEY Student s Name PART A (20 multiple choice questions, 3 pts each): 1. The solubility of a gas in a liquid can always be increased by: a) decreasing the

More information

Chapter 14, Chemical Kinetics

Chapter 14, Chemical Kinetics Last wee we covered the following material: Review Vapor Pressure with two volatile components Chapter 14, Chemical Kinetics (continued) Quizzes next wee will be on Chap 14 through section 14.5. 13.6 Colloids

More information

Unit #10. Chemical Kinetics

Unit #10. Chemical Kinetics Unit #10 Chemical Kinetics Zumdahl Chapter 12 College Board Performance Objectives: Express the rate of a reaction in terms of changes in the concentration of a reactant or a product per time. Understand

More information

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chapter 13: Chemical Kinetics: Rates of Reactions

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chapter 13: Chemical Kinetics: Rates of Reactions Chemical Kinetics The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to products Chapter 3: Chemical Kinetics: Rates of Reactions

More information

Quadratic Equation: ax 2 + bx + c = 0

Quadratic Equation: ax 2 + bx + c = 0 Exam # Key (last) (First-Name) Signature Exam 2 General Chemistry 201. May 12, 2009 No credit will be given for correct numerical answers without a clear indication of how they were obtained. Show all

More information

Unit 1: Kinetics and Equilibrium Name Kinetics

Unit 1: Kinetics and Equilibrium Name Kinetics Unit 1: Kinetics and Equilibrium Chem 1B Kinetics Name 1. What factors affect rates? Give examples of each. 2. Express the general rate of reaction in terms of the rate of change of each reactant and each

More information

Chapter 11: CHEMICAL KINETICS

Chapter 11: CHEMICAL KINETICS Chapter : CHEMICAL KINETICS Study of the rate of a chemical reaction. Reaction Rate (fast or slow?) Igniting gasoline? Making of oil? Iron rusting? We know about speed (miles/hr). Speed Rate = changes

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section

More information

Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2

Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2 Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2 Why? A different form of the rate law for a reaction allows us to calculate amounts as a function of time. One variation on this gives us the concept

More information

AP Chemistry 1st Semester Final Review Name:

AP Chemistry 1st Semester Final Review Name: AP Chemistry 1st Semester Final Review Name: 2015-2016 1. Which of the following contains only sigma (s) bonds? 5. H2O(g) + CO(g) H2(g) + CO2(g) A) CO2 B) C3H6 C) CH3Cl D) N2O3 E) SiO2 2. What is the equilibrium

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai Ch 13 Chemical Kinetics Modified by Dr. Cheng-Yu Lai Outline 1. Meaning of reaction rate 2. Reaction rate and concentration 3. Writing a Rate Law 4. Reactant concentration and time 5. Reaction rate and

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 4//004 Chapter 4 Chemical Kinetics 4- Rates of Chemical Reactions 4- Reaction Rates and Concentrations 4-3 The Dependence of Concentrations on Time 4-4 Reaction Mechanisms 4-5 Reaction Mechanism and Rate

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Reaction Rate Change in concentration of a reactant or product per unit time. Rate = concentration of A at time t t 2 1 2 1 concentration of A at

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics How fast do chemical processes occur? There is an enormous range of time scales. Chapter 14 Chemical Kinetics Kinetics also sheds light on the reaction mechanism (exactly how the reaction occurs). Why

More information

Chemical Equilibrium Practice Problems #2

Chemical Equilibrium Practice Problems #2 Chemical Equilibrium Practice Problems #2 2-20-2015 1. A CPHS student does an equilibrium experiment with the general chemical equation and derives the 2 graphs below: A = B: a. When at equilibrium is

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Kinetics: Rate of Chemical Reactions The diagram below depicts the progress of a reaction. Each shape and color represents a different substance. The three boxes represent the concentrations of each substance

More information

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up)

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) A. Chemical Kinetics deals with: CHAPTER 13: RATES OF REACTION Part One: Reaction Rates 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) 2. Mechanisms of chemical

More information

Chemistry 102 Spring 2017 Discussion #13, Chapter 17 Student name Key TA name Section. Things you should know when you leave Discussion today: ( G o f

Chemistry 102 Spring 2017 Discussion #13, Chapter 17 Student name Key TA name Section. Things you should know when you leave Discussion today: ( G o f Chemistry 0 Spring 07 Discussion #, Chapter 7 Student name Key TA name Section Things you should know when you leave Discussion today:. ΔSsys = ΔrS = Σ [ni (S )product Σ [nj (S )reactants. ΔGº = T ΔSnet

More information

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta Chapter 15: Chemical Equilibrium Chem 102 Dr. Eloranta Equilibrium State in which competing processes are balanced so that no observable change takes place as time passes. Lift Gravity Sometimes called

More information

Kinetics & Equilibrium. Le Châtelier's Principle. reaction rates. + Packet 9: Daily Assignment Sheet '19 Name: Per

Kinetics & Equilibrium. Le Châtelier's Principle. reaction rates. + Packet 9: Daily Assignment Sheet '19 Name: Per Daily Assignment Sheet '19 Name: Per (check them off as you complete them) Due Date Assignment Thur 2/21 Do clock reaction lab Fri 2/22 Do Not Write In That Box Below Mon 2/25 Do WS 9.1 Tue 2/26 Do WS

More information

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 1 PDF Created with deskpdf PDF www.farq.xyz Writer - Trial :: http://www.docudesk.com

More information

7. A solution has the following concentrations: [Cl - ] = 1.5 x 10-1 M [Br - ] = 5.0 x 10-4 M

7. A solution has the following concentrations: [Cl - ] = 1.5 x 10-1 M [Br - ] = 5.0 x 10-4 M Solubility, Ksp Worksheet 1 1. How many milliliters of 0.20 M AlCl 3 solution would be necessary to precipitate all of the Ag + from 45ml of a 0.20 M AgNO 3 solution? AlCl 3(aq) + 3AgNO 3(aq) Al(NO 3)

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics Chapter 14: Chemical Kinetics NOTE THIS CHAPTER IS #2 TOP TOPICS ON AP EXAM!!! NOT ONLY DO YOU NEED TO FOCUS ON THEORY (and lots of MATH) BUT YOU MUST READ THE FIGURES TOO!!! Ch 14.1 ~ Factors that Affect

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 2 Chemical Kinetics Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 30 minutes to finish this portion of the test. No calculator

More information

CHEM 1412 Practice Exam 1 - Chapters Zumdahl

CHEM 1412 Practice Exam 1 - Chapters Zumdahl CHEM 1412 Practice Exam 1 - Chapters 11 13 Zumdahl Some equations and constants: T = Km P = XP = MRT ln[a]t = kt + ln[a]o 1 / [A]t = kt + 1 / [A]o t1/2 = ln(2) / k t1/2 = 1 / k{a]o Kp = Kc(RT) n ln(k1/k2)

More information