Validation of GC-MS/MS for Detection and Confirmation of Low-Level Dioxins

Size: px
Start display at page:

Download "Validation of GC-MS/MS for Detection and Confirmation of Low-Level Dioxins"

Transcription

1 Validation of GC-MS/MS for Detection and Confirmation of Low-Level Dioxins Cristian Cojocariu, 1 Paul Silcock, 1 and Alexander Kotz 2 1 Thermo Fisher Scientific, Runcorn, U.K. 2 European Union Reference Laboratory for Dioxins and PCBs in Feed and Food, State Institute for Chemical and Veterinary Analysis of Food (CVUA), Freiburg, Germany Application Note 146 Key Words Food and Feed, Limit of Quantification, TargetQuan, TRACE 131 GC, TSQ 8 Evo GC-MS/MS Goal To validate the use of triple quadrupole GC-MS/MS technology for detection, quantification, and confirmation of low-level dioxins in feed and food samples Introduction Dioxins are highly toxic organic compounds often released into the environment unintentionally, mostly as by-products of human industrial activities (e.g. from the production, use, and combustion of chlorine containing organic compounds) or, to a lesser extent, from natural processes (such as forest fires or volcanic activity). Although the concentration of dioxins in the environment is usually low (parts per trillion level), these compounds are extremely toxic. Dioxins bioaccumulate and persist in the food chain. Humans are exposed to dioxins mainly through ingestion of food of animal origin. Due to their highly toxic potential, even low concentrations of dioxins can have negative effects on human health. They can cause reproductive and developmental problems, damage the immune system, interfere with hormones and cause cancer. 4 Hence, it is important to accurately detect, confirm, and quantify dioxins in food and feed samples even at low levels. However, detection and confirmation of low dioxin levels in such complex samples is a challenging task, requiring sensitive, selective, and robust analytical instrumentation. Newly introduced European Commission regulations permit the use of GC-MS/MS triple quadrupole technology for dioxin quantification and confirmation. 2, 3 In this study, the Thermo Scientific TSQ 8 Evo triple quadrupole GC-MS/MS is used to detect and confirm low-level dioxins in sample extracts. Moreover, a thorough validation of the TSQ 8 Evo GC-MS/MS for dioxin confirmation is described, including instrument sensitivity, linearity, limits of quantification (LOQs), and measurement precision. In addition, the data acquired using the GC-MS/MS was compared with the sector instrument data acquired for the same sample to assess measurement uncertainties. This work demonstrates that the TSQ 8 Evo triple quadrupole GC-MS/MS delivers consistent results and can be used with confidence to sensitively and selectively detect, quantify, and confirm dioxins in food and feed samples at low concentrations.

2 2 Table 1. Sample extracts used for dioxin quantification. Mixed Animal Fat Fish Meal Egg Fat 1 Egg Fat 2 Weighted Sample 1. g fat 6.2 g sample (= 1. g fat).52 g fat.51 g fat Lipid Content [%] n/a 16.6 n/a n/a Moisture Content [%] n/a 5.3 n/a n/a Final Volume 4 µl 4 µl 1 µl 1 µl Instrument and Method Setup All of the experiments described below use a TSQ 8 Evo triple quadrupole GC-MS/MS instrument coupled with a Thermo Scientific TRACE 131 GC. Sample introduction is performed with a Thermo Scientific TriPlus RSH autosampler, and chromatographic separation is achieved using a Thermo Scientific TraceGOLD TG-5SilMS 6 m.25 mm I.D..25 µm film capillary column. Additional details of instrument parameters are displayed in table below. Instrument Conditions TRACE 131 GC Injection Volume (μl): 2 Liner: SSL single taper (P/N 453A2342) Inlet ( C): 26 Inlet Module and Mode: Splitless Carrier Gas (ml/min): He, 1.2 Oven Temperature Program: Temperature 1 ( C): 1 Hold Time (min): 2 Temperature 2 ( C): 25 Rate ( C/min) 25 Temperature 3 ( C): 285 Rate ( C/min) 2.5 Temperature 4 ( C): 33 Rate ( C/min) 1 Hold Time (min): 5 TSQ 8 Evo Mass Spectrometer Transfer Line ( C): 28 Ionization Type: EI Ion Source( C): 3 Electron Energy (ev): 4 Acquisition Mode: SRM Q2 Gas Pressure (Argon) (psi): 6 Q1 Peak Width (Da):.7 Q3 Peak Width (Da):.7 Operate the TSQ 8 Evo mass spectrometer in MS/MS mode using electron ionization (EI+). For each target compound, choose two selected reaction monitoring (SRM) transitions. 1 Acquire data using timed selection reaction monitoring (t-srm) with a minimum of 12 points/chromatographic peak. Sample Preparation Use both EPA1613 solvent standards (Wellington Laboratories, Inc.) and food and feed animal fat, fish meal (feed), and egg sample extracts (Table 1). Perform sample extraction and clean up in accordance with the existing analytical criteria for food and feed, 2,3 either automatically (PowerPrep Multi-column Sample Cleanup) or partly manual/partly automated (using GPC, multi-layer silica column, Florisil column, carbon column). To each of the samples, add 5 6 pg (mixed animal fat, fish meal) or 1 12 pg of 13 C-labeled internal standards (egg fat), and 5 pg (mixed animal fat, fish meal), or 1 pg (egg fat) of the 13 C-1234-TCDD recovery standard. Data Processing Carry out peak detection and compound quantification in the analyzed samples using Thermo Scientific TargetQuan software, which enables quantitation based upon relative response factors and includes toxic equivalence factors (TEFs) to automatically calculate toxic equivalence quotients (TEQs) and total TEQ of a sample.

3 Figure 1. Chromatography example for 2378-TCDD and its internal standard 13C-2378-TCDD present in the fish meal (a), mixed animal fat (b), and egg fat (c) samples. Absolute amounts of native 2378-TCDD on column (fg) are indicated. 3 Results and Discussion Chromatography Excellent chromatographic separation was achieved for all sample extracts, even at very low target levels. Example chromatograms are shown for 2378-TCDD in the feed, animal fat, and egg samples (Figure 1). Linearity of Response Dioxin linearity was assessed by determining the average RF % relative standard deviation (RSD) values from a six point calibration curve measured at the beginning and at the end of the sample batch. Excellent %RSD values were obtained. All measured compounds had %RSD values between.7 4.5%, well within the 15% limits established by the U.S. EPA 5 (Table 2). Table 2. Precision on the average response factor (%RSD) for each native compound calculated from a six-point calibration curve (CSL-CS4). Values represent duplicate measurements of each calibration point, measured at the beginning and end of a batch. Linearity/Calibration Compound Concentration Range (pg/µl) Average RF STDEV RF %RSD 2378-TCDF TCDD PeCDF PeCDF PeCDD HxCDF HxCDF HxCDF HxCDD HxCDD HxCDD HxCDF HpCDF HpCDD HpCDF OCDD OCDF

4 4 Determination of Limit of Quantification (LOQ) Data acquired in SRM often shows little background noise due to the high selectivity of this acquisition mode on a triple quadrupole GC-MS instrument. For this reason, the LOD/LOQ could not be reliably calculated from the signal-to-noise (S/N) values. Here, an empirical approach was used to determine the LOQ for all native dioxins and furans targeted. This approach took into account the lowest level of each of the congeners that can be quantitatively determined and confirmed with suitable precision (<15% RSD) and accuracy, in addition to meeting all other confirmation criteria stated in the European Commission regulations. 2,3 In the first set of experiments, an EPA1613 CSL standard was diluted serially. Each dilution level was injected repeatedly (n=1) and the LOQ for each native compound was calculated taking into account the Student s-t critical values for the corresponding degrees of freedom (99% confidence). The results of this experiment are shown below, with LOQ values for all 17 PCDD/Fs congeners ranging from.1.6 pg/µl (Table 3). The second set of experiments focused on assessing both the instrument sensitivity and the LOQ for the tetra chlorinated dioxins. A solvent standard containing six TCDD congeners with gradually increasing concentrations (ranging from 1 1 fg/µl) was used. Peak shape, the peak area reproducibility (n= 8 injections) and the ion ratio deviation (% from the theoretical value), were evaluated for each congener and concentration level. The results of this experiment confirmed that TCDD can be confidently detected and confirmed at 1 fg on a column with ion ratio values lower than the 15% maximum limit and with peak area reproducibility (no internal standard correction) better than 7% RSD (Figure 2). Table 3. Limits of quantitation (LOQ) for the 17 dioxin congeners calculated from CSLx5 and CSLx1 dilution and taking into account the ion ratio, response factors, and precision limits.. PCDD/Fs Limit of Quantification Compound pg/µl 2378-TCDF TCDD PeCDF PeCDF PeCDD HxCDF HxCDF HxCDF HxCDD HxCDD HxCDD HxCDF HpCDF HpCDD HpCDF.2 OCDD.5 OCDF Inj. No. Concentration 1 fg 25 fg 1 fg 25 fg 5 fg 1 fg TCDD 1 fg IR % = Mean STDEV %RSD TCDD 25 fg IR % = TCDD 5 fg IR % = TCDD 1 fg IR % = TCDD 25 fg IR % = TCDD 1 fg IR % = Minutes Figure 2. Overlay SRM chromatograms (quan ion) of six TCDD congeners in a stepped standard (concentration ranging from 1 1 fg on column). Annotated are the peak area (AA), retention time (RT), percentage deviation of the ion ratio value from the theoretical value (IR %), corresponding concentration on column, and congener name. The included table indicates peak area reproducibility as %RSD for each congener and corresponding concentration level.

5 1. 5 WHO pg TEQ/g fat GC-HRMS GC-MS/MS egg-1 GC-MS/MS egg TCDF PCDF PCDF HxCDF HxCDF HxCDF HxCDF HpCDF HpCDF OCDF HxCDD HxCDD HpCDD OCDD Figure 3. Comparison of the individual dioxin concentrations (calculated as pg TEQ/g fat) using GC-HRMS and GC-MS/MS. Data shows the values for two individual extractions from the same egg sample (egg-1 extracted from.52 g of egg fat and egg-2 from.51 g of egg fat) TCDD PCDD HxCDD Determination of Dioxins in Sample Extracts As required by the EU regulations, determination of PCDD/Fs in a sample should be performed with a high degree of accuracy. 2,3,5 In order to evaluate the accuracy of measurements, the egg, animal fat, and fish meal samples were analyzed for their dioxin content. The calculated concentration of each individual dioxin congener (pg TEQ/g fat or ng/kg %dw) was compared with the values obtained from a GC-HRMS system. The data shows excellent agreement between the results obtained using the TSQ 8 Evo GC-MS/MS and that obtained using GC-HRMS (Figure 3). To increase the confidence in detection of the target compounds, the ion ratio (IR) abundance value of each of the native compounds was measured in the sample extracts and the values compared with both the theoretical ion ratio values and the values derived from the CS3 calibration check standard, as stated by the new dioxin regulations. 2,3 The results of this experiment show that all the IR abundance values for the compounds analyzed were within the 15% tolerance, increasing the confidence in the results and meeting the EU criteria for dioxin confirmation. 2 An example ion ratio abundance calculation is shown in Figure 4 for the egg samples Area Ratio TCDD PeCDD HxCDD HxCDD HxCDD HpCDD OCDD 2378-TCDF PeCDF PeCDF HxCDF HxCDF HxCDF HxCDF HpCDF HpCDF IR CS3 IR theoretical Figure 4. Ion ratios of dioxins detected in egg fat samples. Comparison of individual IR average values (n=2) with the theoretical ion ratio values (red symbol) and with the values derived from the CS3 calibration standard (green symbol). OCDF Average

6 6 Precision of Measurement Obtaining a valid determination of dioxin concentration in sample extracts is critical. Dioxin concentrations are normally assessed by looking at the %RSD calculated from the results generated under reproducible conditions. 2,3 In this study, precision measurement of the total dioxin content (as WHO TEQ pg/g or ng/kg) was determined by running a sequence of n=13 repeat injections of the mixed animal fat and the fish meal samples. The results show excellent precision for both sample extracts with 6% RSD for the animal fat and 4% RSD for the fish meal sample (Figures 5 and 6). Where an analytical result for an individual dioxin congener was below the LOQ, the actual content could be anywhere between zero and the LOQ. For this reason, when a compound was not detected, the corresponding LOQ was used as the concentration value. This way, the upper bound TEQs for each sample extract were derived by summing the weighted concentrations for each of the 17 dioxin congeners analyzed and the results compared with the upper bound TEQs obtained from the GC-HRMS data. Total dioxin content (WHO-PCDD/ F-TEQ pg/g upper bound) of each sample in each of the 13 repeat injections obtained from the GC-MS/MS analysis was plotted against the sector instrument data acquired for the same samples. The calculated deviation did not exceed 16.6% for the animal fat sample (Figure 5) or 8% for the fish meal sample (Figure 6). Injection No WHO-PCDD/F-TEQ ub Mean.85 STDEV.5 %RSD 5.97 % Difference form HRGC-MS Injection No Figure 5. Mixed animal fat sample: deviation (%) of the total dioxin concentration (WHO-PCDD/F-TEQ pg/g upper bound) from the GC-HRMS results. Table shows the reproducibility of the total dioxin content (WHO-PCDD/F-TEQ pg/g upper bound) (n=13 injections) with the average value, standard deviation, and %RSD. Injection No WHO-PCDD/F-TEQ ub Mean.25 STDEV.1 %RSD 4.3 % Difference form HRGC-MS Injection No Figure 6. Fish meal sample: deviation (%) of the total dioxin concentration (WHO-PCDD/F-TEQ ng/kg 88% dw upper bound) from the GC-HRMS results. Table shows the reproducibility of the total dioxin content (WHO-PCDD/F-TEQ ng/kg 88% dw upper bound) (n=13 injections) with the average value, standard deviation, and %RSD.

7 Table 4. Comparison of the total dioxin content (WHO-PCDD/F-TEQ-upper bound) of the sample extracts analyzed by GC-HRMS and by GC-MS/MS. Average values of replicate injections (n) with corresponding standard deviations (in brackets) are given. Sample Type Additionally, calculation of the % deviation of the total dioxin content from the GC-HRMS data for all the samples analyzed shows a minimum of 2.2% for the fish meal (average for n=13 injections) and a maximum of 5.5% for the mixed animal fat (Table 4). Conclusion The TSQ 8 Evo triple quadrupole GC-MS/MS system is suitable for the quantification and confirmation of dioxins and furans in food and feed matrices at low levels. Excellent selectivity and sensitivity were achieved even at very low levels (e.g. 28 fg 2378-TCDD absolute amount on column) in matrix samples. Excellent precision measurements of the total dioxin content (WHO-PCDD/F-TEQ-ub) were obtained for two low level contaminated samples (fish meal and mixed animal fat) with %RSD values <6% (n=13). Deviation of the total dioxin content (WHO-PCDD/ F-TEQ-ub) from the GC-HRMS data was within ±2% for all the samples analyzed. WHO-PCDD/F-TEQ-ub GC-HRMS GC-MS/MS Deviation % Egg (n=2) 3.39 pg/g 3.27 (.3) 3.5 Fish Meal (n=13).26 ng/kg % dw.25 (.1) 2.1 Mixed Animal Fat (n=13).83 pg/g.85 (.4) 2.8 References 1. Thermo Scientific Application Note 138: Meeting the European Commission Performance Criteria for the Use of the Triple Quadrupole GC-MS/MS as a Confirmatory Method for PCDD/Fs in Food and Feed Samples. Runcorn, U.K. [Online] thermoscientific.com/content/dam/tfs/atg/cmd/ CMD%2Documents/Application%2&%2 Technical%2Notes/Mass%2Spectrometry/ GC%2MS/AN-138-TSQ-8-EVO-PCDD-FS- AN138-EN.pdf (accessed Sept. 26, 214). 2. Commission Regulation (EU) No 589/214 of 2 June 214 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EU) No 252/212, Off. J. Eur. Union: Legis , p Commission Regulation (EU) No 79/214 of 2 June 214 amending Regulation (EC) No 152/29 as regards the determination of the levels of dioxins and polychlorinated biphenyls, Off. J. Eur. Union: Legis , p World Health Organization, Fact sheet N 225: Dioxins and their effects on human health, Updated June US EPA Method 1613: Tetra-through octa-chlorinated dioxins and furans by isotope dilution HRGC/HRMS (Revision B), Application Note Thermo Fisher Scientific Inc. All rights reserved. ISO is a trademark of the International Standards Organization. PowerPrep is a trademark of FMS, Inc. Florisil is a registered trademark of U.S. Silica Co. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. Thermo Fisher Scientific, Sunnyvale, CA USA is ISO 91:28 Certified. Africa Australia Austria Belgium Brazil Canada China (free call domestic) AN146-EN 114S Denmark Europe-Other Finland France Germany India Italy Japan Korea Latin America Middle East Netherlands New Zealand Norway Russia/CIS Singapore Sweden Switzerland Taiwan UK/Ireland USA

GC/MS/MS Dioxin and Dioxin-like PCBs in Feed and Food. Jessica Westland, LSAG Applications Chemist

GC/MS/MS Dioxin and Dioxin-like PCBs in Feed and Food. Jessica Westland, LSAG Applications Chemist GC/MS/MS Dioxin and Dioxin-like PCBs in Feed and Food Jessica Westland, LSAG Applications Chemist What is a Dioxin? The term dioxins refers to a group of chemically and structurally related halogenated

More information

Technical Report. Abstract: Pu Wang 1, Huizhong Sun 1, Qinghua Zhang 1, Feifei Tian 2, Lei Cao 2

Technical Report. Abstract: Pu Wang 1, Huizhong Sun 1, Qinghua Zhang 1, Feifei Tian 2, Lei Cao 2 C46-E299 Technical Report Determination of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs) in Foodstuffs and Animal Feed Using a Triple Quadrupole GCMS-TQ8040 System with Smart MRM Transforms

More information

ApplicationNOTE ULTRA TRACE ANALYSIS OF DIOXINS AND FURANS IN HUMAN ADIPOSE TISSUE USING SFE-LC EXTRACTION/CLEANUP AND THE WATERS AUTOSPEC ULTIMA NT

ApplicationNOTE ULTRA TRACE ANALYSIS OF DIOXINS AND FURANS IN HUMAN ADIPOSE TISSUE USING SFE-LC EXTRACTION/CLEANUP AND THE WATERS AUTOSPEC ULTIMA NT Introduction Legislative limits for dioxins and furans are ever decreasing 1, providing a greater challenge for the dioxin analyst. The extraction and clean-up processes used by the analyst can be imperative

More information

A novel high resolution accurate mass Orbitrap-based GC-MS platform for routine analysis of Short Chained Chlorinated Paraffins

A novel high resolution accurate mass Orbitrap-based GC-MS platform for routine analysis of Short Chained Chlorinated Paraffins TECHNICAL NOTE 39 A novel high resolution accurate mass Orbitrap-based GC-MS platform for routine analysis of Short Chained Chlorinated Paraffins Author Cristian Cojocariu Thermo Fisher Scientific, Runcorn,

More information

Exploring the Benefits of Automated Unattended Sample Derivatization Prior to Gas Chromatography Analysis

Exploring the Benefits of Automated Unattended Sample Derivatization Prior to Gas Chromatography Analysis Exploring the Benefits of Automated Unattended Sample Derivatization Prior to Gas Chromatography Analysis A. Caruso, M. Santoro, P. Magni, S. Pelagatti, and R. Facchetti Thermo Fisher Scientific, Milan,

More information

Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil

Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil Che Jinshui, 1 Deng Guifeng, 1 Liang Lina, 1 and Aaron Kettle, 2 1 Thermo Fisher Scientific (China)

More information

Quantitative Determination of Dioxins in Drinking Water by Isotope Dilution using Triple Quadrupole GC-MS/MS

Quantitative Determination of Dioxins in Drinking Water by Isotope Dilution using Triple Quadrupole GC-MS/MS PO-CON1646E Quantitative Determination of Dioxins in Drinking Water by Isotope Dilution using Triple Quadrupole GC-MS/MS ASMS 2016 ThP 152 Jackie, Chiew Mei Chong, Hui Xian Crystal Yeong, Cynthia Melanie

More information

A Study of Stability, Robustness and Time Efficiency of a New HPLC and a New Tandem MS

A Study of Stability, Robustness and Time Efficiency of a New HPLC and a New Tandem MS A Study of Stability, Robustness and Time Efficiency of a New HPLC and a New Tandem MS Jason Lai, Jia Wang, Brad Hart, Pavel Aronov, Kristine Van Natta, Marta Kozak, Jorge Valdivia, Andy Jacobs, Haibo

More information

Analyzing Residual Solvents in Pharmaceutical Products Using GC Headspace with Valve-and-Loop Sampling

Analyzing Residual Solvents in Pharmaceutical Products Using GC Headspace with Valve-and-Loop Sampling Analyzing Residual Solvents in Pharmaceutical Products Using GC Headspace with Valve-and-Loop Sampling Andrea Caruso and Massimo Santoro, Thermo Fisher Scientific, Milan, Italy Application Note 1316 Key

More information

SPME-GC-MS/MS for Identification and Quantification of Migration Contaminants in Paperboard Food Packaging

SPME-GC-MS/MS for Identification and Quantification of Migration Contaminants in Paperboard Food Packaging SPME-GC-MS/MS for Identification and Quantification of Migration Contaminants in Paperboard Food Packaging Katerina Bousova, 1 Michal Godula, 2 Michele Suman 3 1 Thermo Fisher Scientific, Special Solutions

More information

Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer

Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer Reiko Kiyonami, Mary Blackburn, Andreas FR Hühme: Thermo Fisher

More information

T H E ANA LYSIS O F DIOX INS AND F U R A NS USING H RG C- H IG H R E SO LU T IO N MS W IT H T H E AU T OS P EC- ULTIMA NT

T H E ANA LYSIS O F DIOX INS AND F U R A NS USING H RG C- H IG H R E SO LU T IO N MS W IT H T H E AU T OS P EC- ULTIMA NT [ application note ] T H E ANA LYSIS O F DIOX INS AND F U R A NS USING H RG C- H IG H R E SO LU T IO N MS W IT H T H E AU T OS P EC- ULTIMA NT Keith Worrall, Anthony Newton and Ramesh Rao, Waters Corporation,

More information

High-Pressure Electrolytic Carbonate Eluent Generation Devices and Their Applications in Ion Chromatography Systems

High-Pressure Electrolytic Carbonate Eluent Generation Devices and Their Applications in Ion Chromatography Systems High-Pressure Electrolytic Carbonate Eluent Generation Devices and Their Applications in Ion Chromatography Systems Yan Liu, Zhongqing Lu, and Chris Pohl; Thermo Fisher Scientific, Sunnyvale, CA USA Overview

More information

Evaluation of a New HPLC, a New Tandem MS and a New Data Processing Software for General Clinical Use

Evaluation of a New HPLC, a New Tandem MS and a New Data Processing Software for General Clinical Use Evaluation of a New HPLC, a New Tandem MS and a New Data Processing Software for General Clinical Use Shih-Tse Jason Lai, Jia Wang, Brad Hart, Kristine Van Natta, Marta Kozak, Jorge Valdivia, Haibo Wang,

More information

A Strategy for an Unknown Screening Approach on Environmental Samples using HRAM Mass Spectrometry

A Strategy for an Unknown Screening Approach on Environmental Samples using HRAM Mass Spectrometry A Strategy for an Unknown Screening Approach on Environmental Samples using HRAM Mass Spectrometry O. Scheibner, 1 P. van Baar, 2 F. Wode, 2 U. Dünnbier, 2 K. Akervik, 3 J. Humphries, 3 M. Bromirski 1

More information

Characterization of Polymers and Plastics (pellets, powders and films) by the Thermo Scientific FLASH 2000 Elemental Analyzer

Characterization of Polymers and Plastics (pellets, powders and films) by the Thermo Scientific FLASH 2000 Elemental Analyzer Characterization of Polymers and Plastics (pellets, powders and films) by the Thermo Scientific FLASH 000 Elemental Analyzer Dr. Liliana Krotz and Dr. Guido Giazzi Thermo Fisher Scientific, Milan, Italy

More information

The Truth About Dioxin Analysis: Using High Resolution GC-TOFMS and GCxGC-TOFMS to. Analytical Approaches

The Truth About Dioxin Analysis: Using High Resolution GC-TOFMS and GCxGC-TOFMS to. Analytical Approaches The Truth About Dioxin Analysis: Using High Resolution GC-TOFMS and GCxGC-TOFMS to Uncover the Pollutants Ignored by Targeted Analytical Approaches Peter Gorst-Allman 1, Jack Cochran 2, Jayne de Vos 3

More information

1.0 INTRODUCTION AND BACKGROUND

1.0 INTRODUCTION AND BACKGROUND REVISED SUPPLEMENTAL INFORMATION ON POLYCHLORINATED DIOXINS AND FURANS (PCDD/F) FOR USE IN PREPARING A QUALITY ASSURANCE PROJECT PLAN (QAPP) November 8, 2010 1.0 INTRODUCTION AND BACKGROUND This document

More information

Increasing Speed of UHPLC-MS Analysis Using Single-stage Orbitrap Mass Spectrometer

Increasing Speed of UHPLC-MS Analysis Using Single-stage Orbitrap Mass Spectrometer Increasing Speed of UHPLC-MS Analysis Using Single-stage Orbitrap Mass Spectrometer Olaf Scheibner and Maciej Bromirski Thermo Fisher Scientific, Bremen, Germany Overview Purpose: Improve the performance

More information

ApplicationNOTE THE ANALYSIS OF POLYCHLORINATED BIPHENYLS (PCBS) BY GC-HIGH RESOLUTION MASS SPECTROMETRY USING THE MICROMASS AUTOSPEC ULTIMA NT

ApplicationNOTE THE ANALYSIS OF POLYCHLORINATED BIPHENYLS (PCBS) BY GC-HIGH RESOLUTION MASS SPECTROMETRY USING THE MICROMASS AUTOSPEC ULTIMA NT Introduction PCBs (polychlorinated biphenyls) are a class of man-made chemicals first manufactured commercially in the late 1920's and were used primarily as a dielectric fluid in electrical equipment.

More information

Determination of BTEX in Cigarette Filter Fibers Using GC-MS with Automated Calibration

Determination of BTEX in Cigarette Filter Fibers Using GC-MS with Automated Calibration Determination of BTEX in Cigarette Filter Fibers Using GC-MS with Automated Calibration Zhang Xuebin 1, Yu Chongtian 1, Liang Lina 1, Hans-Joachim Huebschmann 2, Thermo Fisher Scientific Shanghai, 1 China,

More information

Chapter 3: Development of a PTV-LVI-GC-MS/MS method

Chapter 3: Development of a PTV-LVI-GC-MS/MS method 3 Development of a programmed temperature vaporizerlarge volume injection-gas chromatography-ion trap MS/MS (PTV-LVI -GC-Ion trap MS/MS) method for dioxins and furans in food and feed 3.1 Summary The potential

More information

The following revisions are being implemented for the PCDD/F Supplemental QAPP:

The following revisions are being implemented for the PCDD/F Supplemental QAPP: Final DMMP CLARIFICATION PAPER POLYCHLORINATED DIOXINS AND FURANS (PCDD/F): REVISIONS TO THE SUPPLEMENTAL QUALITY ASSURANCE PROJECT PLAN (SQAPP) Prepared by: Erika Hoffman (U.S. Environmental Protection

More information

Official Journal of the European Union REGULATIONS

Official Journal of the European Union REGULATIONS L 115/22 REGULATIONS COMMISSION REGULATION (EU) 2017/771 of 3 May 2017 amending Regulation (EC) No 152/2009 as regards the methods for the determination of the levels of dioxins and polychlorinated biphenyls

More information

ApplicationNOTE A STUDY OF THE ANALYSIS OF POLYBROMINATED DIPHENYL ETHER FLAME RETARDANTS BY GC/MS/MS. Introduction. Materials and Methods

ApplicationNOTE A STUDY OF THE ANALYSIS OF POLYBROMINATED DIPHENYL ETHER FLAME RETARDANTS BY GC/MS/MS. Introduction. Materials and Methods Abstract The development of a GC/MS/MS method for the analysis of brominated flame retardants will be presented. Standard methods require the use of high resolution magnetic sector instrumentation, which

More information

HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput

HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput Yi Zhang 1, Zhiqi Hao 1, Markus Kellmann 2 and Andreas FR. Huhmer

More information

Method Development for a Simple and Reliable Determination of PCBs in Mineral Insulating Oil by SPME-GC-ECD

Method Development for a Simple and Reliable Determination of PCBs in Mineral Insulating Oil by SPME-GC-ECD Method Development for a Simple and Reliable Determination of PCBs in Mineral Insulating Oil by SPME-GC-ECD Massimo Santoro, 1 Sergio Guazzotti, 1 Danilo Pierone, 2 Alexandre Souza, 3 Jaqueline Lorena,

More information

L 364/32 Official Journal of the European Union

L 364/32 Official Journal of the European Union L 364/32 Official Journal of the European Union 20.12.2006 COMMISSION REGULATION (EC) No 1883/2006 of 19 December 2006 laying down methods of sampling and analysis for the official control of levels of

More information

Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method

Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method Xiang He and Marta Kozak ThermoFisher Scientific, San Jose, CA,

More information

of mass spectrometry

of mass spectrometry Thermo Scientific 253 Ultra High resolution isotope ratio MS Discover a new world of mass spectrometry Paleoclimatology Atmospheric science Biogeochemistry Petrology Discover the isotopic anatomy of molecules

More information

Active Flow Technology Understanding How the Flow Rate Profile Affects the Chromatographic Efficiency

Active Flow Technology Understanding How the Flow Rate Profile Affects the Chromatographic Efficiency Active Flow Technology Understanding How the Flow Rate Profile Affects the Chromatographic Efficiency Anthony Edge, 1 Luisa Pereira, 1 Dafydd Milton 1 and Andrew Shalliker 2 1 Thermo Fisher Scientific,

More information

Improved Screening for 250 Pesticides in Matrix using a LC-Triple Quadrupole Mass Spectrometer

Improved Screening for 250 Pesticides in Matrix using a LC-Triple Quadrupole Mass Spectrometer Improved Screening for 2 Pesticides in Matrix using a LC-Triple Quadrupole Mass Spectrometer Mary lackburn, Jia Wang, Jonathan eck, Charles Yang, Dipankar Ghosh, Thermo Fisher Scientific, San Jose, C,

More information

Mass Spectral Studies of Polypropylene Chromatographic Well Plates

Mass Spectral Studies of Polypropylene Chromatographic Well Plates Mass Spectral Studies of Polypropylene Chromatographic Well Plates Brian King, Thermo Fisher Scientific, Runcorn, Cheshire, UK Detlev Lennartz, Thermo Fisher Scientific, Langerwehe, Germany White Paper

More information

Impurity Profiling of Pharmaceutical Starting Materials Using Gas Chromatography Coupled with High- Resolution Accurate Mass Spectrometry

Impurity Profiling of Pharmaceutical Starting Materials Using Gas Chromatography Coupled with High- Resolution Accurate Mass Spectrometry Impurity Profiling of Pharmaceutical Starting Materials Using Gas Chromatography Coupled with High- Resolution Accurate Mass Spectrometry Cristian Cojocariu and Paul Silcock Thermo Fisher Scientific, Runcorn,

More information

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production Thunyarat Phesatcha, Suparerk Tukkeeree, Jeff Rohrer 2 Thermo

More information

Utility of H-SRM to Reduce Matrix Interference in Food Residue Analysis of Pesticides by LC-MS/MS Using the TSQ Quantum Discovery

Utility of H-SRM to Reduce Matrix Interference in Food Residue Analysis of Pesticides by LC-MS/MS Using the TSQ Quantum Discovery Application Note: 3 Utility of H-SRM to Reduce Matrix Interference in Food Residue Analysis of Pesticides by LC-MS/MS Using the TSQ Quantum Discovery Yoko Yamagishi, Thermo Fisher Scientific, C-2F 3-9

More information

A Strategy for an Unknown Screening Approach on Environmental Samples Using HRAM Mass Spectrometry

A Strategy for an Unknown Screening Approach on Environmental Samples Using HRAM Mass Spectrometry A Strategy for an Unknown Screening Approach on Environmental Samples Using HRAM Mass Spectrometry Olaf Scheibner, 1 Patrizia van Baar, 2 Florian Wode, 2 Uwe Dünnbier, 2 Kristi Akervik, 3 Jamie Humphrie,

More information

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma LC-MS/MS Method for the Determination of Diclofenac in Human Plasma J. Jones, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 20569 Key Words SPE, SOLA, Accucore RP-MS, diclofenac, Core

More information

Thermo Scientific ConFlo IV Universal Interface. Continuous Flow Interface. Isotope Ratio MS

Thermo Scientific ConFlo IV Universal Interface. Continuous Flow Interface. Isotope Ratio MS Thermo Scientific ConFlo IV Universal Interface Continuous Flow Interface Isotope Ratio MS 3 ConFlo IV Universal Interface for Continuous Flow Isotope Ratio MS The development of Continuous Flow carrier

More information

Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer. Defining quality standards for the analysis of solid samples

Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer. Defining quality standards for the analysis of solid samples Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer Defining quality standards for the analysis of solid samples Redefine your quality standards for the elemental analysis of solid samples

More information

HILIC Method Development in a Few Simple Steps

HILIC Method Development in a Few Simple Steps HILIC Method Development in a Few Simple Steps Monica Dolci, Luisa Pereira, Dafydd Milton and Tony Edge Thermo Fisher Scientific, Runcorn, Cheshire, UK Overview This poster presents a systematic approach

More information

Frank L. Dorman The Pennsylvania State University Department of Biochemistry and Molecular Biology

Frank L. Dorman The Pennsylvania State University Department of Biochemistry and Molecular Biology Frank L. Dorman The Pennsylvania State University Department of Biochemistry and Molecular Biology Coauthors and Collaborators Jack Cochran, Shawn Reese Restek Corporation Eric Reiner, Karen Macpherson,

More information

CORUS R, D and T, Swinden Technology Centre, Rotherham, UK S60 3AR. HALL ANALYTICAL LABORATORIES, Manchester, UK M23 9YJ

CORUS R, D and T, Swinden Technology Centre, Rotherham, UK S60 3AR. HALL ANALYTICAL LABORATORIES, Manchester, UK M23 9YJ THE SUPELCO DIOXIN PREP SYSTEM - FLORISIL VERSION : A MULTI-LAYER SILICA GEL COLUMN CONNECTED IN SERIES TO AN ACTIVATED FLORISIL MICRO-COLUMN FOR RAPID DETERMINATIONS OF PCDD/Fs AND PCBs IN ENVIRONMENTAL

More information

Insights Into the Nanoworld Analysis of Nanoparticles with ICP-MS

Insights Into the Nanoworld Analysis of Nanoparticles with ICP-MS Insights Into the Nanoworld Analysis of Nanoparticles with ICP-MS Daniel Kutscher, 1 Jörg Bettmer, 2 Torsten Lindemann, 1 Shona McSheehy-Ducos, 1 Lothar Rottmann 1 1 Thermo Fisher Scientific, Germany 2

More information

Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS

Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS Kate Comstock, Tim Stratton, Hongxia (Jessica) Wang, and Yingying Huang

More information

Key Words Q Exactive, Accela, MetQuest, Mass Frontier, Drug Discovery

Key Words Q Exactive, Accela, MetQuest, Mass Frontier, Drug Discovery Metabolite Stability Screening and Hotspot Metabolite Identification by Combining High-Resolution, Accurate-Mass Nonselective and Selective Fragmentation Tim Stratton, Caroline Ding, Yingying Huang, Dan

More information

PosterReprint INTRODUCTION

PosterReprint INTRODUCTION INTRODUCTION 'Dioxins' refers to a group of chemical compounds that share certain similar chemical structures and biological characteristics. Several hundred of these toxic compounds exist and are members

More information

Exploring Mixed-Mode Chromatography Column Chemistry, Properties, and Applications

Exploring Mixed-Mode Chromatography Column Chemistry, Properties, and Applications Exploring Mixed-Mode Chromatography Column Chemistry, Properties, and Applications Xiaodong Liu and Christopher Pohl; Thermo Fisher Scientific, Sunnyvale, CA Overview Review mixed-mode column technology

More information

New Multi-Collector Mass Spectrometry Data for Noble Gases Analysis

New Multi-Collector Mass Spectrometry Data for Noble Gases Analysis New Multi-Collector Mass Spectrometry Data for Noble Gases Analysis Alessandro Santato, 1 Doug Hamilton, 1 Jan Wijbrans, 2 Claudia Bouman 1 1 Thermo Fisher Scientific, Bremen, Germany 2 VU University Amsterdam,

More information

Low level quantification of NDMA and non-targeted contaminants screening in drinking water using GC Orbitrap mass spectrometry

Low level quantification of NDMA and non-targeted contaminants screening in drinking water using GC Orbitrap mass spectrometry APPLICATION NOTE Low level quantification of NDMA and non-targeted contaminants screening in drinking water using GC Orbitrap mass spectrometry No. 10530 Authors: Cristian Cojocariu, 1 Maria José Farré,

More information

Dioxins & PCBs concerns

Dioxins & PCBs concerns Dioxins & PCBs concerns Properties, Sources and Formation RIGHT S O L U T I O N S RIGHT PARTNER Program Introduction to dioxins and PCBs Sources and formation Fate in environmental media Exposure pathways

More information

Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma

Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma Jon Bardsley 1, James Goldberg 2 1 Thermo Fisher Scientific, Runcorn, UK; 2 Thermo Fisher Scientific, West Palm Beach,

More information

Thermo Scientific. Anion-Exchange Column. Determination of Inorganic Anions in Diverse Sample Matrices. Superior Chromatographic Performance

Thermo Scientific. Anion-Exchange Column. Determination of Inorganic Anions in Diverse Sample Matrices. Superior Chromatographic Performance CHROMATOGRAPHY Thermo Scientific Dionex IonPac AS Anion-Exchange Column Product Specifications The Thermo Scientific Dionex IonPac AS anion-exchange column is designed for the fast analysis of inorganic

More information

Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap Orbitrap Hybrid Mass Spectrometer

Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap Orbitrap Hybrid Mass Spectrometer Application ote: 54 Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap rbitrap Hybrid Mass Spectrometer Kate Comstock, Yingying Huang; Thermo Fisher Scientific,

More information

Detection of Mycotoxins in Corn Meal Extract Using Automated Online Sample Preparation with Liquid Chromatography-Tandem Mass Spectrometry

Detection of Mycotoxins in Corn Meal Extract Using Automated Online Sample Preparation with Liquid Chromatography-Tandem Mass Spectrometry Detection of Mycotoxins in Corn Meal Extract Using Automated Online Sample Preparation with Liquid Chromatography-Tandem Mass Spectrometry Yang Shi, Catherine Lafontaine, Timothy B. Haney, and François

More information

APPLICATION NOTE Authors Jane Cooper, 1 Jordi Parera, 2 Esteban Abad, 2 Richard Law,¹ and Cristian Cojocariu 1

APPLICATION NOTE Authors Jane Cooper, 1 Jordi Parera, 2 Esteban Abad, 2 Richard Law,¹ and Cristian Cojocariu 1 APPLICATION NOTE 10644 Overcoming analytical challenges for polybrominated diphenyl ethers (P) analysis in environmental samples using gas chromatography Orbitrap mass spectrometry Authors Jane Cooper,

More information

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Anila I. Khan, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 243 Key Words TraceGOLD fast GC analysis

More information

Multi-residue analysis of pesticides by GC-HRMS

Multi-residue analysis of pesticides by GC-HRMS An Executive Summary Multi-residue analysis of pesticides by GC-HRMS Dr. Hans Mol is senior scientist at RIKILT- Wageningen UR Introduction Regulatory authorities throughout the world set and enforce strict

More information

Complementary Use of Raman and FT-IR Imaging for the Analysis of Multi-Layer Polymer Composites

Complementary Use of Raman and FT-IR Imaging for the Analysis of Multi-Layer Polymer Composites Complementary Use of Raman and FT-IR Imaging for the Analysis of Multi-Layer Polymer Composites Robert Heintz, Mark Wall, Jennifer Ramirez, Stephan Woods Thermo Fisher Scientific, Madison WI Overview Purpose:

More information

Rapid Quan/Qual Metabolic Stability Analysis with Online Oxidative Metabolism Synthesis

Rapid Quan/Qual Metabolic Stability Analysis with Online Oxidative Metabolism Synthesis Rapid Quan/Qual Metabolic Stability Analysis with Online Oxidative Metabolism Synthesis Tim Stratton 1, Yingying Huang 1, Katianna Pihakari 1, Ian Acworth 2, and Michael Weber 2 1 Thermo Fisher Scientific,

More information

ONE STEP CLOSER TO A COOK BOOK METHOD FOR DIOXIN ANALYSIS PART 2: ANALYSIS OF FOOD SAMPLES

ONE STEP CLOSER TO A COOK BOOK METHOD FOR DIOXIN ANALYSIS PART 2: ANALYSIS OF FOOD SAMPLES ONE STEP CLOSER TO A COOK BOOK METHOD FOR DIOXIN ANALYSIS PART 2: ANALYSIS OF FOOD SAMPLES Patterson, Donald G. Jr 1, Shirkhan, Hamid 2, Sadeghi, Kambiz 2,Germansderfer, Phil-M 2, Focant, Jean-Francois

More information

Identification and Quantitation of PCB Aroclor Mixtures in a Single Run Using the Agilent 7000B Triple Quadrupole GC/MS

Identification and Quantitation of PCB Aroclor Mixtures in a Single Run Using the Agilent 7000B Triple Quadrupole GC/MS Identification and Quantitation of PCB Aroclor Mixtures in a Single Run Using the Agilent 7B Triple Quadrupole GC/MS Application Note Authors Dale R. Walker and Fred Feyerherm Agilent Technologies, Inc.

More information

Estimation of LOQ for the Analysis of Persistent Organic Pollutants, in particular PCDD/Fs and PCBs

Estimation of LOQ for the Analysis of Persistent Organic Pollutants, in particular PCDD/Fs and PCBs 38th International Symposium on Halogenated Persistent Organic Pollutants (POPs) Thermo User Meeting - DFS Magnetic Sector GC-HRMS Krakow, August 26 31, 2018 Estimation of LOQ for the Analysis of Persistent

More information

Thermo Scientific Pesticide Explorer Collection. Start-to-finish. workflows for pesticide analysis

Thermo Scientific Pesticide Explorer Collection. Start-to-finish. workflows for pesticide analysis Thermo Scientific Pesticide Explorer Collection Start-to-finish workflows for pesticide analysis Comprehensive Pesticide Analysis Solutions Pesticide Explorer Collection Selection table Lab Profile Routine

More information

Analysis of Alkylphenols Using GC-MS/MS and Automated SRM Development

Analysis of Alkylphenols Using GC-MS/MS and Automated SRM Development Analysis of Alkylphenols Using GC-MS/MS and Automated SRM Development Inge de Dobbeleer, Joachim Gummersbach, Hans-Joachim Huebschmann Thermo Fisher Scientific, Dreieich, Germany Application Note 147 Key

More information

MetWorks Metabolite Identification Software

MetWorks Metabolite Identification Software m a s s s p e c t r o m e t r y MetWorks Metabolite Identification Software Enabling Confident Analysis of Metabolism Data Part of Thermo Fisher Scientific MetWorks Software for the Confident Analysis

More information

Hydrophilic Interaction Liquid Chromatography: Method Development Approaches

Hydrophilic Interaction Liquid Chromatography: Method Development Approaches Hydrophilic Interaction Liquid Chromatography: Method Development Approaches Monica Dolci, Luisa Pereira, and Tony Edge Thermo Fisher Scientific, Runcorn, Cheshire, UK Abstract This poster summarizes the

More information

Determinations of Inorganic Anions and Organic Acids in Beverages Using Suppressed Conductivity and Charge Detection

Determinations of Inorganic Anions and Organic Acids in Beverages Using Suppressed Conductivity and Charge Detection Determinations of Inorganic Anions and Organic Acids in Beverages Using Suppressed Conductivity and Charge Detection Terri Christison, Linda Lopez Thermo Fisher Scientific, Sunnyvale, CA, USA Overview

More information

High-Throughput LC-MS/MS Quantification of Estrone (E1) and Estradiol (E2) in Human Blood Plasma/Serum for Clinical Research Purposes

High-Throughput LC-MS/MS Quantification of Estrone (E1) and Estradiol (E2) in Human Blood Plasma/Serum for Clinical Research Purposes High-Throughput LC-MS/MS Quantification of Estrone (E1) and Estradiol (E2) in Human Blood Plasma/Serum for Clinical Research Purposes Joe DiBussolo, Marta Kozak Thermo Fisher Scientific, San Jose, CA Application

More information

Achieve confident synthesis control with the Thermo Scientific ISQ EC single quadrupole mass spectrometer

Achieve confident synthesis control with the Thermo Scientific ISQ EC single quadrupole mass spectrometer APPLICATION NOTE 72385 Achieve confident synthesis control with the Thermo Scientific ISQ EC single quadrupole mass spectrometer Authors Stephan Meding, Katherine Lovejoy, Martin Ruehl Thermo Fisher Scientific,

More information

Measurements of Household Dust Concentrations of PCDDs, PCDFs, and PCBs from a Community in Michigan, USA. Lynn Zwica, MS

Measurements of Household Dust Concentrations of PCDDs, PCDFs, and PCBs from a Community in Michigan, USA. Lynn Zwica, MS Measurements of Household Dust Concentrations of PCDDs, PCDFs, and PCBs from a Community in Michigan, USA Lynn Zwica, MS The University of Michigan Dioxin Exposure Study The University of Michigan, Ann

More information

Methods of Analysis of Polychlorinated Biphenyl Congeners Using an Application-Specific Capillary GC Column

Methods of Analysis of Polychlorinated Biphenyl Congeners Using an Application-Specific Capillary GC Column Methods of Analysis of Polychlorinated Biphenyl Congeners Using an Application-Specific Capillary GC Column Frank L. Dorman, Gary B. Stidsen, Chris M. English and Lydia Nolan Restek Corporation, Bellefonte,

More information

Fast, Effective XPS Point Analysis of Metal Components

Fast, Effective XPS Point Analysis of Metal Components Application Note: 52297 Fast, Effective XPS Point Analysis of Metal Components Chris Baily and Tim Nunney, Thermo Fisher Scientific, East Grinstead, West Sussex, UK Key Words K-Alpha Auto-Analysis Multi-Spectrum

More information

Monitoring Protein PEGylation with Ion Exchange Chromatography

Monitoring Protein PEGylation with Ion Exchange Chromatography Monitoring Protein PEGylation with Ion Exchange Chromatography Peter Yu, Deanna Hurum, Jinyuan (Leo) Wang, 2 Terry Zhang, 2 and Jeffrey Rohrer Thermo Fisher Scientific, Sunnyvale, CA; 2 Thermo Fisher Scientific,

More information

Frank Steiner, Michael Heidorn, and Markus M. Martin Thermo Fisher Scientific, Germering, Germany

Frank Steiner, Michael Heidorn, and Markus M. Martin Thermo Fisher Scientific, Germering, Germany Generic Method Approach for Pharmaceutical Drug Discovery and Development using Reversed-Phase Hydrophilic Interaction Liquid Chromatography with Universal Charged Aerosol Detection Frank Steiner, Michael

More information

New Stationary Phases for Solid-Phase Extraction. Pranathi R. Perati, Rosanne Slingsby, and Carl Fisher Thermo Fisher Scientific, Sunnyvale, CA, USA

New Stationary Phases for Solid-Phase Extraction. Pranathi R. Perati, Rosanne Slingsby, and Carl Fisher Thermo Fisher Scientific, Sunnyvale, CA, USA New Stationary Phases for Solid-Phase Extraction Pranathi R. Perati, Rosanne Slingsby, and Carl Fisher Thermo Fisher Scientific, Sunnyvale, CA, USA Overview Purpose: To develop five new polymer-based stationary

More information

(Non-legislative acts) REGULATIONS

(Non-legislative acts) REGULATIONS 23.3.2012 Official Journal of the European Union L 84/1 II (Non-legislative acts) REGULATIONS COMMISSION REGULATION (EU) No 252/2012 of 21 March 2012 laying down methods of sampling and analysis for the

More information

Automated and accurate component detection using reference mass spectra

Automated and accurate component detection using reference mass spectra TECHNICAL NOTE 72703 Automated and accurate component detection using reference mass spectra Authors Barbara van Cann 1 and Amit Gujar 2 1 Thermo Fisher Scientific, Breda, NL 2 Thermo Fisher Scientific,

More information

Quantitative and Qualitative Confirmation of Pesticides in Beet Extract Using a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Quantitative and Qualitative Confirmation of Pesticides in Beet Extract Using a Hybrid Quadrupole-Orbitrap Mass Spectrometer Quantitative and Qualitative Confirmation of Pesticides in Beet Extract Using a Hybrid Quadrupole-Orbitrap Mass Spectrometer Charles Yang and Dipankar Ghosh, Thermo Fisher Scientific, San Jose, CA Olaf

More information

Highly Sensitive and Rugged GC/MS/MS Tool

Highly Sensitive and Rugged GC/MS/MS Tool Highly Sensitive and Rugged GC/MS/MS Tool For Pesticide Multiresidue Analysis in Food Samples Agilent 7 Series Triple Quadrupole GC/MS. The world s first MS/MS designed specifically for GC Analysis Introduction

More information

Fitting of ETD Rate Constants for Doubly and Triply Charged Ions in a Linear Ion Trap

Fitting of ETD Rate Constants for Doubly and Triply Charged Ions in a Linear Ion Trap Fitting of ETD Rate Constants for Doubly and Triply Charged Ions in a Linear Ion Trap Dirk Nolting and Andreas Wieghaus Thermo Fisher Scientific, Bremen, Germany Overview Purpose: Characterize the rate

More information

DETERMINATION OF OCs, PCBs AND SYNTHETIC PYRETHROIDS IN ANIMAL FAT

DETERMINATION OF OCs, PCBs AND SYNTHETIC PYRETHROIDS IN ANIMAL FAT DETERMINATION OF OCs, PCBs AND SYNTHETIC PYRETHROIDS IN ANIMAL FAT Peter Hancock 1, Mike Hetmanski 2 and Richard J. Fussell 2 1 Waters Corporation, Atlas Park, Simonsway, Manchester M22 5PP, UK 2 Central

More information

High Efficiency, Broad Scope Screening of Pesticides Using Gas Chromatography High Resolution Orbitrap Mass Spectrometry

High Efficiency, Broad Scope Screening of Pesticides Using Gas Chromatography High Resolution Orbitrap Mass Spectrometry High Efficiency, Broad Scope Screening of Pesticides Using Gas Chromatography High Resolution Orbitrap Mass Spectrometry Dominic Roberts,1 Hans Mol,2 Marc Tienstra,2 Cristian Cojocariu,1 and Paul Silcock1

More information

Screening Method for 30 Pesticides in Green Tea Extract Using Automated Online Sample Preparation with LC-MS/MS

Screening Method for 30 Pesticides in Green Tea Extract Using Automated Online Sample Preparation with LC-MS/MS Application Note: 514 Screening Method for 3 Pesticides in Green Tea Extract Using Automated Online Sample Preparation with LC-MS/MS Yang Shi, Catherine Lafontaine, Thermo Fisher Scientific, Franklin,

More information

The Use of Tandem Quadrupole GC/MS/MS for the Determination of Polycyclic Aromatics Hydrocarbons (PAHs) in Food Products

The Use of Tandem Quadrupole GC/MS/MS for the Determination of Polycyclic Aromatics Hydrocarbons (PAHs) in Food Products The Use of Tandem Quadrupole GC/MS/MS for the Determination of Polycyclic Aromatics Hydrocarbons (PAHs) in Food Products Bruno Veyrand, Aline Brosseaud, Philippe Marchand, Fabrice Monteau, François Andre,

More information

Comparison of Solid Core HPLC Column Performance: Effect of Particle Diameter

Comparison of Solid Core HPLC Column Performance: Effect of Particle Diameter Comparison of Solid Core HPLC Column Performance: Effect of Particle Diameter Luisa Pereira, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 20755 Key Words Solid core, fused core, superficially

More information

A Newly Approved ASTM Standard For Analysis of Thiophene in Benzene Using a Pulsed Flame Photometric Detector (PFPD)

A Newly Approved ASTM Standard For Analysis of Thiophene in Benzene Using a Pulsed Flame Photometric Detector (PFPD) Application Note 19010803 A Newly Approved ASTM Standard For Analysis of in Using a Pulsed Flame Photometric Detector (PFPD) Keywords ASTM Standard D4735-96 FPD Flame Photometric Detector Model 5380 PFPD

More information

The Raman Spectroscopy of Graphene and the Determination of Layer Thickness

The Raman Spectroscopy of Graphene and the Determination of Layer Thickness Application Note: 52252 The Raman Spectroscopy of Graphene and the Determination of Layer Thickness Mark Wall, Ph.D., Thermo Fisher Scientific, Madison, WI, USA Key Words DXR Raman Microscope 2D Band D

More information

Determination of underivatized aflatoxins B2, B1, G2, and G1 in ground hazelnuts by immunoaffinity solid-phase extraction with HPLC-FLD detection

Determination of underivatized aflatoxins B2, B1, G2, and G1 in ground hazelnuts by immunoaffinity solid-phase extraction with HPLC-FLD detection APPLICATION NOTE 72686 Determination of underivatized aflatoxins,, G2, and in ground hazelnuts by immunoaffinity solid-phase extraction with HPLC-FLD detection Authors Sylvia Grosse, Mauro De Pra, Frank

More information

Introduction to Fourier Transform Infrared Spectroscopy

Introduction to Fourier Transform Infrared Spectroscopy Introduction to Fourier Transform Infrared Spectroscopy Introduction What is FTIR? FTIR stands for Fourier transform infrared, the preferred method of infrared spectroscopy. In infrared spectroscopy, IR

More information

Thermo Scientific. Anion-Exchange Column

Thermo Scientific. Anion-Exchange Column CHROMATOGRAPHY Thermo Scientific Dionex IonPac AS9-µm Anion-Exchange Column Product Specifications The Themo Scientific Dionex IonPac AS9-µm high-capacity, hydroxide-selective, anion-exchange column is

More information

for XPS surface analysis

for XPS surface analysis Thermo Scientific Avantage XPS Software Powerful instrument operation and data processing for XPS surface analysis Avantage Software Atomic Concentration (%) 100 The premier software for surface analysis

More information

Official Journal of the European Union

Official Journal of the European Union 6.4.2017 L 92/9 COMMISSION REGULATION (EU) 2017/644 of 5 April 2017 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain

More information

Orbitrap GC-MS: An Opportunity to Help Address the Challenges of Chlorinated Paraffins Analysis

Orbitrap GC-MS: An Opportunity to Help Address the Challenges of Chlorinated Paraffins Analysis An Executive Summary Orbitrap GC-MS: An Opportunity to Help Address the Challenges of Chlorinated Paraffins Analysis Kerstin Krätschmer European Union Reference Laboratory for Dioxins and PCBs in Feed

More information

Analysis of alkylphenols using GC-MS/MS and automated SRM development

Analysis of alkylphenols using GC-MS/MS and automated SRM development APPLICATION NOTE 147 Analysis of alkylphenols using GC-MS/MS and automated SRM development Authors Inge de Dobbeleer, Joachim Gummersbach, Hans-Joachim Huebschmann; Thermo Fisher Scientific, Dreieich,

More information

Dioxin, PCB analysis in fishmeal Comparison of two extraction techniques

Dioxin, PCB analysis in fishmeal Comparison of two extraction techniques Dioxin, PCB analysis in fishmeal Comparison of two extraction techniques Abstract For the extraction of dioxins and PCBs from fish and derived products such as fish meal quite often classical soxhlet extraction

More information

New On-Line High-Pressure Electrolytic Eluent Generators for Ion Chromatography

New On-Line High-Pressure Electrolytic Eluent Generators for Ion Chromatography New On-Line High-Pressure Electrolytic Eluent Generators for Ion Chromatography Yan Liu, Zhongqing Lu, and Chris Pohl, Thermo Fisher Scientific, Sunnyvale, CA USA Overview Purpose: In this work, new high-pressure

More information

Enhancement of Linearity and Response in Charged Aerosol Detection

Enhancement of Linearity and Response in Charged Aerosol Detection Enhancement of Linearity and Response in Charged Aerosol Detection Christopher Crafts, Marc Plante, Bruce Bailey, Ian Acworth, Thermo Fisher Scientific, Chelmsford, MA, USA Overview Purpose: This work

More information

Total Elemental Analysis of Food Samples for Routine and Research Laboratories, using the Thermo Scientific icap RQ ICP-MS

Total Elemental Analysis of Food Samples for Routine and Research Laboratories, using the Thermo Scientific icap RQ ICP-MS Total Elemental Analysis of Food Samples for Routine and Research Laboratories, using the Thermo Scientific icap RQ ICP-MS Tomoko Vincent 1, Simon Lofthouse 2, Daniel Kutscher 1 and Shona McSheehy Ducos

More information

Determination of urea in ultrapure water by IC-MS/MS

Determination of urea in ultrapure water by IC-MS/MS APPLICATION NOTE 72482 Determination of urea in ultrapure water by IC-MS/MS Authors Soon Fatt Lee, 1 Fiona Teh Hui Boon, 1 Chris Cheah Hun Teong, 1 and Jeff Rohrer 2 ¹Thermo Fisher Scientific, Singapore

More information