Reactive Compatibilization of Polyethylene Terephthalate and High Density Polyethylene Using Amino-Telechelic Polethylene

Size: px
Start display at page:

Download "Reactive Compatibilization of Polyethylene Terephthalate and High Density Polyethylene Using Amino-Telechelic Polethylene"

Transcription

1 Reactive Compatibilization of Polyethylene Terephthalate and High Density Polyethylene Using Amino-Telechelic Polethylene Alexander D. Todd, Ryan J. McEneany, Vasily A. Topolkaraev, Christopher W. Macosko, and Marc A. Hillmyer * Department of Chemistry and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA Kimberly-Clark Corporation, Corporate Research and Engineering, Neenah, Wisconsin 54956, USA * Corresponding author ( hillmyer@umn.edu) Supporting Information Scheme S1 S2 Model Reaction of Boc-ATPE-3 and PET S2 Synthesis of Phth-ATPCE S2 Synthesis of Phth-ATPE S3 Synthesis of Low Molar Mass PET S3 1 H NMR Spectra of PCE and ATPE derivatives (Fig. S1 S10) S4 S13 Isothermal Analysis of Boc-ATPE-6 (Fig. S11) S14 FTIR Spectral verlay of Boc-ATPE-6 and ATPE-6 (Fig. S12) S14 1 H NMR Spectral verlay of Boc-ATPE-6 and ATPE-6 (Fig. S13) S15 DSC Thermograms for Blends (Fig. S14 S15) S15 S16 Table S1 (Thermal Data) S16 Table S2 (Solution Viscosity Data) S16 TGA Curve for Phth-PE (Fig. S16) S17 Isothermal Analysis of Phth-PE (Fig. S17) S17 SEM Images of blends (Fig. S18 S32) S18 S22

2 H n H + N H H N m 265 o C 10 min H N H H N m p k H Scheme S1. Model reaction of Bock-ATPE-3 and low molar mass PET. Model Reaction of Boc-ATPE-3 and PET. Boc-ATPE-3 (39 mg) and low molar mass PET (5 mg) were mixed in a Schlenk tube. The flask was placed under Ar then subsequently heated to 265 C for 10 minutes. The resulting brown solid was washed with 1,1,2,2-tetrachloroethane (TCE) at 120 C. Following the TCE washes, the solids were washed with methanol then dried under vacuum. Synthesis of PCE-4. PCE-4 was synthesized and isolated in a similar manner to Boc- ATPCE; however, cis-4-octene was used as the CTA (75% yield). Mn NMR = 4.5 kg/mol, Mn SEC = 17.0 kg/mol, Ð = H NMR (400 MHz, CDCl3): δ 5.36 (t, trans CH=CH, J = 3.5 Hz), 5.32 (t, cis CH=CH, J = 5 Hz), 1.95 (m, CH=CH-CH2-), 1.28 (m, -CH2-), 0.85 (t, -CH3, J = 8 Hz). Synthesis of HDPE-4. HDPE-4 was synthesized and isolated in a similar manner to Boc-ATPE (89% yield). Mn NMR = 4.0 kg/mol, Mn SEC = 9.0 kg/mol, Ð = H NMR (400 MHz, PhMe-d8): δ 1.33 (s, -CH2-), 0.88 (t, -CH3, J = 8 Hz). Synthesis of Phth-ATPCE. Phth-ATPCE was synthesized and isolated in a similar manner to Boc-ATPCE; however, (E)-2,2'-(but-2-ene-1,4-diyl)bis(isoindoline-1,3-dione) was used as the CTA (65% yield). Mn NMR = 6.5 kg/mol, Mn SEC = 14.0 kg/mol, Ð = H NMR (400 MHz, CDCl3): δ 7.82 (dd, J = 3 Hz, J = 5 Hz), 7.68 (dd, J = 3 Hz, J = 5 Hz ), 5.36 (t, trans CH=CH, J = 3.5 Hz), 5.32 (t, cis CH=CH, J = 5 Hz), 4.29 (d, cis PhthN-CH2-, J = 7 Hz), 4.21 (d, trans PhthN- CH2-, J = 6 Hz), 1.95 (m, CH=CH-CH2-), 1.28 (m, -CH2-). S2

3 Synthesis of Phth-ATPE. Phth-ATPE was synthesized and isolated in a similar manner to Boc- ATPE (36% yield). Mn NMR = 6.7 kg/mol, Mn SEC = 8.9 kg/mol, Ð = H NMR (400 MHz, PhMe-d8): δ 7.45 (dd, J = 3 Hz, J = 5 Hz), 7.03 (dd, J = 3 Hz, J = 5 Hz) 3.54 (t, J = 7 Hz) 1.33 (s, -CH2-). Synthesis of Low Molar Mass PET. A Schlenk tube was charged with dimethyl terephthalate (0.79 g, 4.07 mmol), ethylene glycol (4.0 ml, 6.62 mmol), Sb23 (5 mg, 0.02 mmol), and Ca(Ac)2 (5 mg, 0.03 mmol). The flask was sealed with a rubber septum then degassed via three successive cycles of evacuation and Ar backfill. Xylenes (2 ml) was added and the mixture was heated at 160 C for 18 h. After the initial transesterification, the flask was heated at 220 C for 20 min and 275 C for 20 min under reduced pressure (300 mtorr). After cooling to ambient temperature, the white solid was dissolved in CHCl3/TFA (9:1 v/v) and precipitated into methanol. After drying under reduced pressure the polymer was isolated as a white solid (0.5 g, 63%). Molar mass estimated via 1 H NMR spectroscopy assuming two end groups per chain. Mn NMR = 2.4 kg/mol. 1 H NMR (400 MHz, CDCl3/TFA (9:1 v/v)): δ 8.11 (m), 4.76 (s), 4.58 (t, J = 4 Hz), 4.15 (t, J = 4 Hz). S3

4 ppm Figure S1. 1 H NMR spectrum of Boc-ATPCE-3 in CDCl3. S4

5 ppm Figure S2. 1 H NMR spectrum of Boc-ATPCE-6 in CDCl3. S5

6 ppm Figure S3. 1 H NMR spectrum of Boc-PCE-17 in CDCl3. S6

7 ppm Figure S4. 1 H NMR spectrum of Boc-ATPE-3 in PhME-d8 at 100 C. S7

8 ppm Figure S5. 1 H NMR spectrum of Boc-ATPE-6 in PhMe-d8 at 100 C. S8

9 (ppm ) Figure S6. 1 H NMR spectrum of Boc-ATPE-17 in PhMe-d8 at 100 C. S9

10 ppm Figure S7. 1 H NMR spectrum of PCE-4 in CDCl3. S10

11 ppm Figure S8. 1 H NMR spectrum of HDPE-4 in PhMe-d8 at 100 C. S11

12 ppm Figure S9. 1 H NMR spectrum of Phth-PCE in CDCl3. S12

13 ppm Figure S10. 1 H NMR spectrum of Phth-PE in PhMe-d8 at 100 C. S13

14 300 Mass Loss (%) Time (min) Temperature ( o C) Figure S11. Mass loss as a function of time at 265 C for Boc-ATPE-6. The small (~ 0.2% of approximately 3 5 mg of sample) gain in mass at early time is possibly an artifact associated with the temperature ramp. Wavenumbers (cm -1 ) Relative Transmission (%) Figure S12. FTIR spectral overlay of Boc-ATPE-6 (black) and ATPE-6 (red). S14

15 Figure S13. 1 H NMR spectral overlay of Boc-ATPE-6 (black) and ATPE-6 (red) in PHMe-d8 at 100 C. Endo Rel. Heat Flow (W/g) PET/HDPE/ATPE-17 PET/HDPE/ATPE-6 PET/HDPE/ATPE-3 PET/HDPE Temperature ( o C) Figure S14. DSC curve of 2 nd heating cycle of blends at 5 C/min. S15

16 Exo Rel. Heat Flow (W/g) PET/HDPE/ATPE-17 PET/HDPE/ATPE-6 PET/HDPE/ATPE-3 PET/HDPE Table S1. Thermal properties of blends Temperature ( o C) Figure S15. DSC curve of 2 nd cooling cycle for blends at 5 C/min. Blend Composition T g PET ( C) a T m PET ( C) b χ c PET (%) c T m PE ( C) b χ c PE (%) d PET/HDPE 90/ PET/HDPE/ATPE-3 89/10/ PET/HDPE/ATPE-6 89/10/ PET/HDPE/ATPE-17 89/10/ a Measured on 1 st heating cycle. b Measured on 2 nd heating cycle. c Calculated using 140 J/g with respect to the weight fraction of PET. d Calculated using 293 J/g with respect to the weight fraction of HDPE. Table S2. Solution viscosity of PET homopolymers and extracted PET from blends. Material Composition ƞ IV (dl/g) b PET (as received) PET (processed) a PET/HDPE/ATPE-3 89/10/ PET/HDPE/ATPE-6 89/10/ PET/HDPE/ATPE-17 89/10/ a Processed in a similar to blends (Temp: 265 C, 10 min, 50 rpm). b Conducted in dichloroacetic acid at 35 C using an C D125 Ubbelohde tube. Weight fraction of PET taken into account for concentration. S16

17 100 Mass Loss (%) Temperature ( o C) Figure S16. TGA curve of Phth-PE (10 C/min). Mass Loss (%) Time (min) Figure S17. Mass loss as a function of time at 265 C Phth-PE. The small (~ 0.2% of approximately 3 5 mg of sample) gain in mass at early time is possibly an artifact associated with the temperature ramp Temperature ( o C) S17

18 Figure S18. SEM image of PET/HDPE (90/10) at 8k magnification. Figure S19. SEM image of PET/HDPE (90/10) at 35k magnification. Figure S20. SEM image of PET/HDPE/ATPE-3 (89/10/1) at 8k magnification. S18

19 Figure S21. SEM image of PET/HDPE/ATPE-3 (89/10/1) at 35k magnification. Figure S22. SEM image of PET/HDPE/ATPE-6 (89/10/1) at 8k magnification. Figure S23. SEM image of PET/HDPE/ATPE-6 (89/10/1) at 35k magnification. S19

20 Figure S24. SEM image of PET/HDPE/ATPE-17 (89/10/1) at 8k magnification. Figure S25. SEM image of PET/HDPE/ATPE-17 (89/10/1) at 35k magnification. Figure S26. SEM image of PET/HDPE/ATPE-6 (89.5/10/0.5) at 8k magnification. S20

21 Figure S27. SEM image of PET/HDPE/ATPE-6 (89.5/10/0.5) at 35k magnification. Figure S28. SEM image of PET/HDPE/HDPE-4 (89/10/1) at 8k magnification. Figure S29. SEM image of PET/HDPE/HPE-4 (89/10/1) at 35k magnification. S21

22 Figure S30. SEM image of PET/HDPE/Phth-PE (89/10/1) at 4k magnification. Figure S31. SEM image of PET/HDPE/Phth-PE (89/10/1) at 8k magnification. Figure S32. SEM image of PET/HDPE/Phth-PE (89/10/1) at 35k magnification. S22

Bulk ring-opening transesterification polymerization of the renewable δ-decalactone using

Bulk ring-opening transesterification polymerization of the renewable δ-decalactone using Bulk ring-opening transesterification polymerization of the renewable δ-decalactone using an organocatalyst Mark T. Martello, Adam Burns, and Marc Hillmyer* *Department of Chemistry, University of Minnesota,

More information

Supporting Information

Supporting Information Supporting Information Molecular Weight Dependence of Zero-Shear Viscosity in Atactic Polypropylene Bottlebrush Polymers Samuel J. Dalsin, Marc A. Hillmyer,*, and Frank S. Bates*, Department of Chemical

More information

Self-Healing Polymers with PEG Oligomer Side Chains. Based on Multiple H-Bonding and Adhesion Properties

Self-Healing Polymers with PEG Oligomer Side Chains. Based on Multiple H-Bonding and Adhesion Properties Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Self-Healing Polymers with PEG Oligomer Side Chains Based on Multiple

More information

ELECTRONIC SUPPLEMENTARY INFORMATION

ELECTRONIC SUPPLEMENTARY INFORMATION Unprecedented Scissor Effect of Macromolecular Cross-linkers on the Glass Transition Temperature of Poly(Nvinylimidazole), Crystallinity Suppression of Poly(tetrahydrofuran) and Molecular Mobility by Solid

More information

Supporting Information

Supporting Information Supporting Information Z-Selective Homodimerization of Terminal Olefins with a Ruthenium Metathesis Catalyst Benjamin K. Keitz, Koji Endo, Myles B. Herbert, Robert H. Grubbs* Arnold and Mabel Beckman Laboratories

More information

Supporting information

Supporting information 1 Supporting information Lilian I. Olvera, Mikhail G. Zolotukhin,*, Olivia Hernández-Cruz, Sergei Fomine, Jorge Ca rdenas, Rube n L. Gavin o-ramírez, and Fransico A. Ruiz-Trevino. Instituto de Investigaciones

More information

Supplementary Information

Supplementary Information Facile Preparation of Fluorovinylene Aryl Ether Telechelic Polymers with Dual Functionality for Thermal Chain Extension and Tandem Crosslinking Scott T. Iacono, Stephen M. Budy, Dirk Ewald, and Dennis

More information

RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol solvent mixtures

RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol solvent mixtures Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting information for RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol

More information

Dendritic Star Polymer of Polyacrylamide Based on β-cyclodextrin Trimer: A. Flocculant and Drug Vehicle

Dendritic Star Polymer of Polyacrylamide Based on β-cyclodextrin Trimer: A. Flocculant and Drug Vehicle Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016 Electronic Supporting Information

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of Poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Nanoparticle-to-vesicle and nanoparticle-to-toroid transitions of ph-sensitive

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2014 Supporting Information for Application of thermal azide-alkyne cycloaddition

More information

1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via RAFT

1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via RAFT Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via

More information

Supplementary Information for: Sequential ROMP of cyclooctenes as a route to linear polyethylene block. copolymers

Supplementary Information for: Sequential ROMP of cyclooctenes as a route to linear polyethylene block. copolymers Supplementary Information for: Sequential ROMP of cyclooctenes as a route to linear polyethylene block copolymers Louis M. Pitet, Jihua Zhang and Marc A. Hillmyer* Department of Chemistry, University of

More information

Supporting Information

Supporting Information Supporting Information for Macromol. Chem. Phys, DOI: 10.1002/macp.201700302 Phase Segregation in Supramolecular Polymers Based on Telechelics Synthesized via Multicomponent Reactions Ansgar Sehlinger,

More information

Functional p-type, polymerized organic. electrode interlayer in CH 3 NH 3 PbI 3. perovskite/fullerene planar heterojunction. hybrid solar cells

Functional p-type, polymerized organic. electrode interlayer in CH 3 NH 3 PbI 3. perovskite/fullerene planar heterojunction. hybrid solar cells Supporting Information Functional p-type, polymerized organic electrode interlayer in CH 3 NH 3 PbI 3 perovskite/fullerene planar heterojunction hybrid solar cells Tsung-Yu Chiang 1, Gang-Lun Fan 5, Jun-Yuan

More information

Supporting Information

Supporting Information Supporting Information A Rational Design of Highly Controlled Suzuki-Miyaura Catalyst-Transfer Polycondensation for Precision Synthesis of Polythiophenes and their Block Copolymers: Marriage of Palladacycle

More information

Organized polymeric submicron particles via selfassembly. and crosslinking of double hydrophilic. poly(ethylene oxide)-b-poly(n-vinylpyrrolidone) in

Organized polymeric submicron particles via selfassembly. and crosslinking of double hydrophilic. poly(ethylene oxide)-b-poly(n-vinylpyrrolidone) in Supporting Information Organized polymeric submicron particles via selfassembly and crosslinking of double hydrophilic poly(ethylene oxide)-b-poly(n-vinylpyrrolidone) in aqueous solution Jochen Willersinn,

More information

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Supporting Information for Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Michael R. Kember, Charlotte K. Williams* Department

More information

Functional nickel complexes of N-heterocyclic carbene ligands in pre-organized and supported thin film materials

Functional nickel complexes of N-heterocyclic carbene ligands in pre-organized and supported thin film materials Supporting Information Functional nickel complexes of N-heterocyclic carbene ligands in pre-organized and supported thin film materials Xinjiao Wang, a Marek Sobota, b Florian T. U. Kohler, c Bruno Morain,

More information

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting

More information

Supporting Information

Supporting Information Supporting Information Branched polyethylene mimicry by metathesis copolymerization of fatty acid-based α,ω-dienes. Thomas Lebarbé, a,b,d Mehdi Neqal, a,b Etienne Grau, a,b Carine Alfos, c and Henri Cramail

More information

Electronic Supplementary Information for New Journal of Chemistry

Electronic Supplementary Information for New Journal of Chemistry Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015 Electronic Supplementary Information

More information

Scheme 1: Reaction scheme for the synthesis of p(an-co-mma) copolymer

Scheme 1: Reaction scheme for the synthesis of p(an-co-mma) copolymer Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Design and Development of Poly (acrylonitrile-co-methyl methacrylate) Copolymer to Improve

More information

Supporting Information for

Supporting Information for Supporting Information for Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis Koji Endo and Robert H. Grubbs* Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information The directing effect of linking unit on building microporous architecture in tetraphenyladmantane-based poly(schiffbase) networks Guiyang Li, Biao Zhang, Jun Yan and

More information

Utilization of star-shaped polymer architecture in the creation of high-density polymer

Utilization of star-shaped polymer architecture in the creation of high-density polymer Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is The Royal Society of Chemistry 2014 Supplementary Information Utilization of star-shaped polymer architecture in the creation

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ES) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016 Supporting nformation for BODPY-Containing

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 2017 Supporting Information Upper Critical Solution Temperature Thermo-Responsive

More information

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) A solution of propenyl magnesium bromide in THF (17.5 mmol) under nitrogen atmosphere was cooled in an ice bath and

More information

Supplementary Information. Low volume shrinkage polymers by photo Polymerization of 1,1- Bis(ethoxycarbonyl)-2-vinylcyclopropanes

Supplementary Information. Low volume shrinkage polymers by photo Polymerization of 1,1- Bis(ethoxycarbonyl)-2-vinylcyclopropanes Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Supplementary Information Low volume shrinkage polymers by photo Polymerization of 1,1-

More information

Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution.

Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution. Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution. Supplementary Figure 2. 1 H nuclear magnetic resonance (NMR) spectra (a) and

More information

Direct Synthesis of Ethylene-Acrylic Acid Copolymers by Insertion Polymerization

Direct Synthesis of Ethylene-Acrylic Acid Copolymers by Insertion Polymerization Supporting information Direct Synthesis of Ethylene-Acrylic Acid Copolymers by Insertion Polymerization Thomas Rünzi, Dominik Fröhlich and Stefan Mecking* Chair of Chemical Materials Science, Department

More information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via Chiral Transfer of the Conjugated

More information

Supporting Information for: End-capping ROMP Polymers with Vinyl. Lactones

Supporting Information for: End-capping ROMP Polymers with Vinyl. Lactones Supporting Information for: End-capping RMP Polymers with Vinyl Lactones Stefan Hilf, Robert H. Grubbs and Andreas F.M. Kilbinger * Institut für rganische Chemie, Johannes Gutenberg-Universität Mainz,

More information

Rational design of light-directed dynamic spheres

Rational design of light-directed dynamic spheres Electronic Supplementary Information (ESI) Rational design of light-directed dynamic spheres Yumi Okui a and Mina Han* a,b a Department of Chemistry and Department of Electronic Chemistry Tokyo Institute

More information

Influence of photo-isomerisation on host-guest interaction in poly(azocalix[4]arene)s

Influence of photo-isomerisation on host-guest interaction in poly(azocalix[4]arene)s Electronic Supplementary Information Influence of photo-isomerisation on host-guest interaction in poly(azocalix[4]arene)s Szymon Wiktorowicz, Heikki Tenhu and Vladimir Aseyev *, Department of Chemistry,

More information

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J. A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones Jin-Quan Yu, a and E. J. Corey b * a Department of Chemistry, Cambridge University, Cambridge CB2 1EW, United

More information

Decisive Ligand Metathesis Effects in Au/Pd Bimetallic Catalysis

Decisive Ligand Metathesis Effects in Au/Pd Bimetallic Catalysis Supplementary information to: Decisive Ligand Metathesis Effects in Au/Pd Bimetallic Catalysis Juan delpozo, Juan A. Casares * and Pablo Espinet * Química Inorgánica, I. U. CINQUIMA, Facultad de Ciencias.

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2018 Supporting Information 2-Methylimidazole-Assisted Synthesis of Two-Dimensional MOF-5 Catalyst

More information

Supporting Information

Supporting Information Supporting Information An Extremely Active and General Catalyst for Suzuki Coupling Reactions of Unreactive Aryl Chlorides Dong-Hwan Lee and Myung-Jong Jin* School of Chemical Science and Engineering,

More information

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide 217 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide O O Cl NH 3 NH 2 C 9 H 7 ClO (166.6) (17.) C 9 H 9 NO (147.2) Classification Reaction types and substance classes reaction of

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany A Distinctive Organocatalytic Approach to Complex Macromolecular Architectures Olivier Coulembier, Matthew 5. 5iesewetter, Andrew Mason, Philippe

More information

Supporting Information

Supporting Information Supporting Information For the manuscript Catalyst-free Preparation of Melamine-based Microporous Polymer Networks through Schiff Base Chemistry by Matthias Georg Schwab, + Birgit Faßbender, + Hans Wolfgang

More information

Introduction 1. DSC scan 5-bromo-2-aminopyridine..3. DSC scan 5-bromo-2-nitropyridine...4

Introduction 1. DSC scan 5-bromo-2-aminopyridine..3. DSC scan 5-bromo-2-nitropyridine...4 SUPPORTING INFORMATION Introduction 1 DSC scan 5-bromo-2-aminopyridine..3 DSC scan 5-bromo-2-nitropyridine.....4 Oxidant mixture. Adiabatic test stability, glass cell and Hastelloy C22 test cell 5 Hastelloy

More information

A novel smart polymer responsive to CO 2

A novel smart polymer responsive to CO 2 A novel smart polymer responsive to CO 2 Zanru Guo, a,b Yujun Feng,* a Yu Wang, a Jiyu Wang, a,b Yufeng Wu, a,b and Yongmin Zhang a,b a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences,

More information

Supporting Information. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria Řež, Czech Republic

Supporting Information. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria Řež, Czech Republic Supporting Information Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria Jan Hynek, a,b Jaroslav Zelenka, c Jiří Rathouský, d Pavel Kubát, d Tomáš Ruml, c

More information

Novel Supercapacitor Materials Including OLED emitters

Novel Supercapacitor Materials Including OLED emitters Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015 Supporting Information Novel

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 Supplementary Information for: Scrambling Reaction between Polymers Prepared by Step-growth and Chain-growth Polymerizations: Macromolecular Cross-metathesis between 1,4-Polybutadiene and Olefin-containing

More information

Supporting Information. Precise Synthesis of Poly(N-Acryloyl Amino Acid) Through

Supporting Information. Precise Synthesis of Poly(N-Acryloyl Amino Acid) Through Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Precise Synthesis of Poly(N-Acryloyl Amino Acid) Through Photoinduced

More information

Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification

Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification Supporting Information to Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification by Tina I. Löbling, Olli Ikkala, André H. Gröschel *, Axel H. E. Müller * Materials

More information

Supporting Information

Supporting Information Supporting Information Anion Conductive Triblock Copolymer Membranes with Flexible Multication Side Chain Chen Xiao Lin a,b, Hong Yue Wu a, Ling Li a, Xiu Qin Wang a, Qiu Gen Zhang a, Ai Mei Zhu a, Qing

More information

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Supporting information Porosity induced emission: exploring color-controllable

More information

Supplementary Information T. Ebert, a A. Wollbrink, b A. Seifert, a R. John, a and S. Spange a

Supplementary Information T. Ebert, a A. Wollbrink, b A. Seifert, a R. John, a and S. Spange a Electronic Supplementary Material (ESI for Polymer Chemistry. This journal is The Royal Society of Chemistry Please do 216 not adjust margins ARTICLE Supplementary Information T. Ebert, a A. Wollbrink,

More information

How does A Tiny Terminal Alkynyl End Group Drive Fully Hydrophilic. Homopolymers to Self-Assemble into Multicompartment Vesicles and

How does A Tiny Terminal Alkynyl End Group Drive Fully Hydrophilic. Homopolymers to Self-Assemble into Multicompartment Vesicles and Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 04 Electronic Supplementary Information for How does A Tiny Terminal Alkynyl End Group Drive

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 206 Supporting Information N-heterocyclic carbene based MOFs catalyst for Sonogashira

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Polymerization-induced Self-Assembly of Homopolymer and Diblock copolymer: A Facile Approach for preparing Polymer Nano-objects with Higher Order Morphologies Jianbo Tan *a,b, Chundong

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Iridium-Catalyzed Dehydrocoupling of Primary Amine-Borane Adducts: A Route to High Molecular Weight Polyaminoboranes, Boron-Nitrogen Analogues

More information

Supporting Information. Vesicles of double hydrophilic pullulan and. poly(acrylamide) block copolymers: A combination

Supporting Information. Vesicles of double hydrophilic pullulan and. poly(acrylamide) block copolymers: A combination Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Vesicles of double hydrophilic pullulan and poly(acrylamide) block

More information

Supporting information

Supporting information Supporting information Imidazolium end-functionalized poly(l-lactide) for Efficient Carbon Nanotube Dispersion. Franck Meyer, a Jean-Marie Raquez, a Olivier Coulembier, a Julien De Winter, b Pascal Gerbaux,

More information

From epoxide to cyclodithiocarbonate telechelic polycyclooctene through chain-transfer

From epoxide to cyclodithiocarbonate telechelic polycyclooctene through chain-transfer From epoxide to cyclodithiocarbonate telechelic polycyclooctene through chain-transfer ring-opening metathesis polymerization (ROMP): precursors to non-isocyanate polyurethanes (NIPUs) Elise Vanbiervliet,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Synthetic chemistry ML5 and ML4 were identified as K P.(TREK-) activators using a combination of fluorescence-based thallium flux and automated patch-clamp assays. ML5, ML4, and ML5a were synthesized using

More information

Supplementary Information

Supplementary Information Supplementary Information C aryl -C alkyl bond formation from Cu(ClO 4 ) 2 -mediated oxidative cross coupling reaction between arenes and alkyllithium reagents through structurally well-defined Ar-Cu(III)

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Selective Diels-Alder cycloaddition on semiconducting single-walled carbon nanotubes for potential separation application Jiao-Tong Sun, Lu-Yang Zhao, Chun-Yan Hong,

More information

N-Spirocyclic Quaternary Ammonium Ionenes for Anion- Exchange Membranes

N-Spirocyclic Quaternary Ammonium Ionenes for Anion- Exchange Membranes Supporting Information N-Spirocyclic Quaternary Ammonium Ionenes for Anion- Exchange Membranes Thanh Huong Pham, Joel S. Olsson and Patric Jannasch* Polymer & Materials Chemistry, Department of Chemistry,

More information

Synthesis of Secondary and Tertiary Amine- Containing MOFs: C-N Bond Cleavage during MOF Synthesis

Synthesis of Secondary and Tertiary Amine- Containing MOFs: C-N Bond Cleavage during MOF Synthesis Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Synthesis of Secondary and Tertiary Amine- Containing MFs: C-N Bond

More information

Supporting Information. Well-defined polyelectrolyte and its copolymers by reversible. addition fragmentation chain transfer (RAFT) polymerization:

Supporting Information. Well-defined polyelectrolyte and its copolymers by reversible. addition fragmentation chain transfer (RAFT) polymerization: Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Well-defined polyelectrolyte and its copolymers by reversible addition

More information

Solvent-controlled selective synthesis of biphenols and quinones via oxidative coupling of phenols

Solvent-controlled selective synthesis of biphenols and quinones via oxidative coupling of phenols Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Solvent-controlled selective synthesis of biphenols and quinones via oxidative coupling of phenols

More information

Supporting Information

Supporting Information Supporting Information UCST or LCST? Composition-Dependent Thermoresponsive Behavior of Poly(N-Acryloylglycinamide-co-Diacetone Acrylamide) Wenhui Sun, Zesheng An*, Peiyi Wu * Experimental Materials Glycinamide

More information

*Correspondence to:

*Correspondence to: Supporting Information for Carbonate-promoted hydrogenation of carbon dioxide to multi-carbon carboxylates Aanindeeta Banerjee 1 and Matthew W. Kanan 1 * 1 Department of Chemistry, Stanford University,

More information

Supporting Information

Supporting Information Supporting Information One Pot Synthesis of 1,3- Bis(phosphinomethyl)arene PCP/PNP Pincer Ligands and Their Nickel Complexes Wei-Chun Shih and Oleg V. Ozerov* Department of Chemistry, Texas A&M University,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 A rare case of a dye co-crystal showing better dyeing performance Hui-Fen Qian, Yin-Ge Wang,

More information

Electronic Supplementary Information. Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture

Electronic Supplementary Information. Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture Electronic Supplementary Information Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture Hasmukh A. Patel and Cafer T. Yavuz* Oxide and Organic Nanomaterials

More information

Electronic Supplementary Information. Reversible, Solid State Capture of Carbon Dioxide by Hydroxylated Amidines. Myungsook Kim, and Ji-Woong Park*

Electronic Supplementary Information. Reversible, Solid State Capture of Carbon Dioxide by Hydroxylated Amidines. Myungsook Kim, and Ji-Woong Park* Electronic Supplementary Information Reversible, Solid State Capture of Carbon Dioxide by Hydroxylated Amidines Myungsook Kim, and Ji-Woong Park* Department of Materials Science and Engineering, Gwangju

More information

A Poly(ethylene glycol)-supported Quaternary Ammonium Salt: An Efficient, Recoverable, and Recyclable Phase-Transfer Catalyst

A Poly(ethylene glycol)-supported Quaternary Ammonium Salt: An Efficient, Recoverable, and Recyclable Phase-Transfer Catalyst Supplementary Information for A Poly(ethylene glycol)-supported Quaternary Ammonium Salt: An Efficient, Recoverable, and Recyclable Phase-Transfer Catalyst Rita Annunziata, Maurizio Benaglia, Mauro Cinquini,

More information

Supporting Information for Poly(allyl alcohol) Homo- and Block Polymers by Postpolymerization Reduction of an Activated Polyacrylamide Materials.

Supporting Information for Poly(allyl alcohol) Homo- and Block Polymers by Postpolymerization Reduction of an Activated Polyacrylamide Materials. S1 Supporting Information for Poly(allyl alcohol) Homo- and Block Polymers by Postpolymerization Reduction of an Activated Polyacrylamide Michael B. Larsen, Shao-Jie Wang, and Marc A. Hillmyer * Department

More information

Supplementary Figure 1 IR Spectroscopy. 1Cu 1Ni Supplementary Figure 2 UV/Vis Spectroscopy. 1Cu 1Ni

Supplementary Figure 1 IR Spectroscopy. 1Cu 1Ni Supplementary Figure 2 UV/Vis Spectroscopy. 1Cu 1Ni Supplementary Figure 1 IR Spectroscopy. IR spectra of 1Cu and 1Ni as well as of the starting compounds, recorded as KBr-pellets on a Bruker Alpha FTIR spectrometer. Supplementary Figure 2 UV/Vis Spectroscopy.

More information

Experiment 24. Chemical recycling of poly(ethylene) terephthalate (PET)

Experiment 24. Chemical recycling of poly(ethylene) terephthalate (PET) Methods of pollution control and waste management Experiment 24 Chemical recycling of poly(ethylene) terephthalate (PET) Manual Department of Chemical Technology The aim of this experiment is to gain knowledge

More information

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous

More information

Supporting Information for

Supporting Information for Supporting Information for Solution Self-Assembly of Block Copolymers Containing a Branched Hydrophilic Block into Inverse Bicontinuous Cubic Mesophases Tae Hyun An, Yunju La, Arah Cho, Moon Gon Jeong,

More information

Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins

Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins S1 Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins Antonia Kouridaki, Tamsyn Montagnon, Maria Tofi and Georgios Vassilikogiannakis* Department of

More information

Supporting Information

Supporting Information Supporting Information An efficient and general method for the Heck and Buchwald- Hartwig coupling reactions of aryl chlorides Dong-Hwan Lee, Abu Taher, Shahin Hossain and Myung-Jong Jin* Department of

More information

1 Synthesis and characterization of the amphiphilic ionic dendrimers

1 Synthesis and characterization of the amphiphilic ionic dendrimers Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2015 Supplementary information 1 Synthesis and characterization of the amphiphilic ionic dendrimers

More information

Tunable thermo-responsive water-dispersed multi walled. carbon nanotubes

Tunable thermo-responsive water-dispersed multi walled. carbon nanotubes Tunable thermo-responsive water-dispersed multi walled carbon nanotubes Gaojian Chen, Peter M. Wright, Jin Geng, Giuseppe Mantovani, and David M. Haddleton* Department of Chemistry, University of Warwick,

More information

One-Pot and Rapid Synthesis of Uniformed Silica Spheres. Via Mediation of Linear Poly(ethyleneimine)s and Dyes

One-Pot and Rapid Synthesis of Uniformed Silica Spheres. Via Mediation of Linear Poly(ethyleneimine)s and Dyes Supporting Information One-Pot and Rapid Synthesis of Uniformed Silica Spheres Via Mediation of Linear Poly(ethyleneimine)s and Dyes Ren-Hua Jin* and Jian-Jun Yuan Synthetic Chemistry Lab, Kawamura Institute

More information

A Sumanene-based Aryne, Sumanyne

A Sumanene-based Aryne, Sumanyne A Sumanene-based Aryne, Sumanyne Niti Ngamsomprasert, Yumi Yakiyama, and Hidehiro Sakurai* Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

More information

Supporting information. A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes.

Supporting information. A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes. Supporting information A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes Tieqiao Chen, a,b Cancheng Guo, a Midori Goto, b and Li-Biao Han* a,b

More information

Supporting informations for

Supporting informations for Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting informations for Isoprene chain shuttling polymerization between cis and trans regulating

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION A Novel Copper Containing Photoinitiator, Copper (II) Acylphosphinate, and Its Application in Both the Photomediated CuAAC Reaction and in Atom Transfer Radical Polymerization Tao Gong, Brian J. Adzima

More information

A Bifunctional, Site-Isolated Metal-organic Framework-based Tandem Catalyst

A Bifunctional, Site-Isolated Metal-organic Framework-based Tandem Catalyst A Bifunctional, Site-Isolated Metal-organic Framework-based Tandem Catalyst Phuong V. Dau and Seth M. Cohen Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California

More information

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information A supramolecular approach for fabrication of photo- responsive

More information

Matthew B. E. Griffiths, Peter J. Pallister, David J. Mandia, and Seán T. Barry *

Matthew B. E. Griffiths, Peter J. Pallister, David J. Mandia, and Seán T. Barry * Atomic Layer Deposition of Gold Metal Matthew B. E. Griffiths, Peter J. Pallister, David J. Mandia, and Seán T. Barry * Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario,

More information

Supporting Information

Supporting Information Supporting Information Highly Cross-Linked Imidazolium Salts Entrapped Magnetic Particles Preparation and Applications Paola Agrigento, a Matthias Josef Beier, b Jesper T. N. Knijnenburg, c Alfons Baiker

More information

A functional polymer with chemically switchable crystallinity

A functional polymer with chemically switchable crystallinity Supplementary Informations (ESI) for A functional polymer with chemically switchable crystallinity Experimental Jean-Christophe Daigle, Alexandre A. Arnold, Laurence Piche and Jerome P. Claverie* Quebec

More information

Supplementary Information (Manuscript C005066K)

Supplementary Information (Manuscript C005066K) Supplementary Information (Manuscript C005066K) 1) Experimental procedures and spectroscopic data for compounds 6-12, 16-19 and 21-29 described in the paper are given in the supporting information. 2)

More information

Cationic Alkylaluminum-Complexed Zirconocene Hydrides as Participants in Olefin-Polymerization Catalysis. Supporting Information

Cationic Alkylaluminum-Complexed Zirconocene Hydrides as Participants in Olefin-Polymerization Catalysis. Supporting Information Cationic Alkylaluminum-Complexed Zirconocene Hydrides as Participants in Olefin-Polymerization Catalysis Steven M. Baldwin, John E. Bercaw, *, and Hans H. Brintzinger*, Contribution from the Arnold and

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Concise Syntheses of Insect Pheromones Using Z-Selective Cross Metathesis** Myles B. Herbert, Vanessa M. Marx, Richard L. Pederson, and Robert

More information

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NP 4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NaEt C 10 H 18 4 Na C 2 H 6 C 8 H 12 3 (202.2) (23.0) (46.1) (156.2) Classification Reaction types and substance

More information

Supporting Information

Supporting Information Supporting Information of Appointed exploding microcapsules as drug carriers By Jing Zhang, Cao Li, Ya Wang, Ren-Xi Zhuo and Xian-Zheng Zhang * Materials Propargyl alcohol (PA-OH), dextran (M w ~20 k &

More information