Titration region & buffer calculations. An acid base region is a circumstance

Size: px
Start display at page:

Download "Titration region & buffer calculations. An acid base region is a circumstance"

Transcription

1 CH102 Summer Boston University An acid base region is a circumstance not a sequence of operations Region 1: Only weak acid (base) Region 2: Both weak acid (base) and its conjugate base (acid) Region 3: Only conjugate of weak acid (base) Region 4: Strong base (acid), no matter what else For each of these circumstances it does not matter how they arise 2 1

2 Region 1: Strong acid only HA H 3 O + A Initial c a Revised initial, K a > c a c a c a Change + x x x Equilibrium x c a x c a c a x c a c a c a because K a > K w c a x c a because K a > 1 (HA) = x c a2 /K a 3 Region 1: Strong acid only example K a of HA is 1 x What is the ph and (HA) in M HA? (H 3 O + ) = c a = ph = 3.0 (HA) = x = c a2 /K a = (0.001) 2 /(1 x ) = 1 x 10 12!!! 4 2

3 Region 1: Weak acid only HA H 3 O + A Initial c a Change x + x + x Equilibrium c a x c a x x x x x because K a > K w c a x c a because 1 > K a (H 3 O + ) = x (K a c a ) 5 Region 1: Weak acid only example K a of HA is 1 x 10 7 What is the ph of M HA? (H 3 O + ) = (K a c a ) = (1 x ) = 1 x 10 5 ph =

4 Region 2: Partially neutralized HA H 3 O + A Initial c a 10 7 c b Change x + x + x Equilibrium c a x c a x x c b + x c b x x because K a > K w c a x c a and c b + x c b because 1 > K a (H 3 O + ) = x K a (c a /c b ) = K a (mol a /mol b ) 7 Region 2: Partially neutralized example K a of HA is 1 x L each of M HA and M NaOH are combined. What is the ph? mol a = mol, mol b = mol (H 3 O + ) = x = K a (mol a /mol b ) = 2 x 10 6 ph = =

5 Region 3: Equivalence point H 2 O(l) + A (aq) HA(aq) + OH (aq) A HA OH Initial c b Change x + x + x Equilibrium c b x c b x x x x x because K b = K w /K a >> K w c b x c b because 1 >> K b (OH ) = x (K b c b ) 9 Region 3: Equivalence point example H 2 O(l) + A (aq) HA(aq) + OH (aq) K a of HA is 1 x L each of M HA and M NaOH are combined. What is the ph? c b = mol/(2 L) = M K b = K w /K a = 1 x 10 7 (OH ) = (K b c b ) = (1 x ) = 1 x 10 5 poh = 5.0 ph =

6 Region 4: Beyond equivalence example H 2 O(l) + A (aq) HA(aq) + OH (aq) K a of HA is 1 x L each of M HA and M NaOH are combined. What is the ph? (OH ) = mol/(2 L) = M poh = = 3.3 ph = Buffers resist change in ph 12 6

7 Buffers resist change in ph Let s see what causes these changes in ph to be so drastic in pure water, but so muted in a buffer. 13 Buffers resist change in ph Added strong base (say, OH ) is gobbled up HA(aq) + OH (aq) H 2 O(l) + A (aq) c a lowered, c b raised, c a /c b lowered Added strong acid (say, HCl) is gobbled up HCl(aq) + A (aq) HA(aq) + Cl (aq) c b lowered, c a raised, c a /c b raised 14 7

8 Add strong base to buffer 1 L buffer, c a = c b = 1.00 M, K a = 1 x 10 5, ph = 5.00 Add 100. ml of M NaOH HA(aq) + OH (aq) H 2 O(l) + A (aq) HA 1.00 mol mol = 0.99 mol A 1.00 mol mol = 1.01 mol c a = 0.99 mol/1.10 L, c b = 1.01 mol/1.10 L c a /c b = /1.01, ph 5.01 (tiny change!) 15 Add strong acid to buffer 1 L buffer, c a = c b = 1.00 M, K a = 1 x 10 5, ph = 5.00 Add 100. ml of M HCl HCl(aq) + A (aq) HA(aq) + Cl (aq) HA 1.00 mol mol = 1.01 mol A 1.00 mol mol = 0.99 mol c a = 1.01 mol/1.10 L, c b = 0.99 mol/1.10 L c a /c b = /0.99, ph 4.99 (tiny change!) 16 8

9 Add strong acid/base to water 1 L of water, K a = 1 x 10 14, ph = 7.00 Add 100. ml of M HCl (H 3 O + ) = mol/1.10 L = ph = 2.04 (huge change!) Add 100. ml of M NaOH (OH ) = mol/1.10 L = poh = 2.04, ph = (huge change!) 17 Buffers resist change in ph 18 9

Copyright 2018 Dan Dill 1

Copyright 2018 Dan Dill 1 TP The expression for the equilibrium constant for the solubility equilibrium M 2 X 2 M X 2 is 1. sp 2 M X 2 / M 2 X 2. sp 2 M 2 X 2 / M 2 X 3. sp 2 M 2 X 2 4. sp M 2 X 2 Lecture 21 CH102 A1 (MWF 9:05

More information

Titration a solution of known concentration, called a standard solution

Titration a solution of known concentration, called a standard solution Acid-Base Titrations Titration is a form of analysis in which we measure the volume of material of known concentration sufficient to react with the substance being analyzed. Titration a solution of known

More information

Lecture #11-Buffers and Titrations The Common Ion Effect

Lecture #11-Buffers and Titrations The Common Ion Effect Lecture #11-Buffers and Titrations The Common Ion Effect The Common Ion Effect Shift in position of an equilibrium caused by the addition of an ion taking part in the reaction HA(aq) + H2O(l) A - (aq)

More information

Discussion 7 Chapter Key:

Discussion 7 Chapter Key: Discussion 7 Chapter 14 2018 Key: 1. 2 M of HCN has a K a = 5 10 10. What is the ph at equilibrium and the percent reaction of the acid? HCN H 2 O H 3 O + CN I Q=0

More information

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Review acid-base theory and titrations. For all titrations, at the equivalence point, the two reactants have completely reacted with

More information

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base.

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base. 16.2 Bronsted-Lowry Acids and Bases An acid is a substance that can transfer a proton to another substance. A base is a substance that can accept a proton. A proton is a hydrogen ion, H +. Proton transfer

More information

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban CHEM191 Tutorial 1: Buffers Preparing a Buffer 1. How many moles of NH 4 Cl must be added to 1.0 L of 0.05 M NH 3 to form

More information

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base.

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. 1 A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. after addition of H 3 O + equal concentrations of weak

More information

Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes i

Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes i 18.3 ph Curves Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes in ph even when acids and bases are added

More information

Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS

Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS Buffer solutions Definition Solutions which resist changes in ph when small quantities of acid or alkali are added. a solution that

More information

Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section

Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section 1. If 1.0 liter solution has 5.6mol HCl, 5.mol NaOH and 0.0mol NaA is added together what is the ph when the resulting solution

More information

Last Time Strong Acid/Strong Base Titration. Today. Titration determining something about an unknown by reacting it with a known solution

Last Time Strong Acid/Strong Base Titration. Today. Titration determining something about an unknown by reacting it with a known solution Today Titration determining something about an unknown by reacting it with a known solution Neutralization (again) we'll need this to figure out titration Solubility The easiest of all the equilibria we'll

More information

Chem 116 POGIL Worksheet - Week 11 - Solutions Titration. millimol NaOH added = millimol HCl initially present

Chem 116 POGIL Worksheet - Week 11 - Solutions Titration. millimol NaOH added = millimol HCl initially present Chem 116 POGIL Worksheet - Week 11 - Solutions Titration Key Questions 1. A 25.0-mL sample of 0.100 M HCl(aq) is titrated with 0.125 M NaOH(aq). How many milliliters of the titrant will be need to reach

More information

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate Chapter 16 Table of Contents Chapter 16 16.1 16.2 16.3 16.4 16.5 16.6 Buffered Solutions Copyright Cengage Learning. All rights reserved 2 Models of Arrhenius: Acids produce H + ions in solution, bases

More information

Chapter 15 - Acids and Bases Behavior of Weak Acids and Bases

Chapter 15 - Acids and Bases Behavior of Weak Acids and Bases Chapter 15 - Acids and Bases Behavior of Weak Acids and Bases 6) Calculate [H+] and ph for 1.0 10 8 M HCl. HCl H + + Cl - For a strong acid, [H+] = 1.0 10 8 M, ph = 8.0, BUT THIS DOES NOT MAKE SENSE!!!

More information

Acids and bases. for it cannot be But I am pigeon-liver d and lack gall To make oppression bitter Hamlet. Different concepts Calculations and scales

Acids and bases. for it cannot be But I am pigeon-liver d and lack gall To make oppression bitter Hamlet. Different concepts Calculations and scales Acids and bases for it cannot be But I am pigeon-liver d and lack gall To make oppression bitter Hamlet Different concepts Calculations and scales Learning objectives You will be able to: Identify acids

More information

LECTURE #25 Wed. April 9, 2008

LECTURE #25 Wed. April 9, 2008 CHEM 206 section 01 LECTURE #25 Wed. April 9, 2008 LECTURE TOPICS: TODAY S CLASS: 18.1-18.2 NEXT CLASS: finish Ch.18 (up to 18.5) (1) 18.1 The Common Ion Effect basis of all Ch.18 = shift in eqm position

More information

Chapter 16 Aqueous Ionic Equilibrium Buffer Solutions

Chapter 16 Aqueous Ionic Equilibrium Buffer Solutions Chapter 16 Aqueous Ionic Equilibrium 16.1-16.2 Buffer Solutions Why? While a weak acid will partially ionize to produce its conjugate base, it will not produce enough conjugate base to be considered a

More information

Introduction to Acids & Bases. Packet #26

Introduction to Acids & Bases. Packet #26 Introduction to Acids & Bases Packet #26 Review I Svante Arrhenius was the first person to recognize the essential nature of acids and bases. Review II Arrhenius postulated that: Acids produce hydrogen

More information

Chapter 16. Acids and Bases. Copyright Cengage Learning. All rights reserved 1

Chapter 16. Acids and Bases. Copyright Cengage Learning. All rights reserved 1 Chapter 16 Acids and Bases Copyright Cengage Learning. All rights reserved 1 Section 16.1 Acids and Bases Models of Acids and Bases Arrhenius: Acids produce H + ions in solution, bases produce OH ions.

More information

Acid Base Equilibria

Acid Base Equilibria Acid Base Equilibria Critical for most aqueous chemistry (if you ve missed it biochemistry is mostly aqueous chemistry) H2O(l) H + (aq) + OH - (aq) For this reaction which has a higher entropy? H2O(l)

More information

Introduction to Acids & Bases II. Packet #26

Introduction to Acids & Bases II. Packet #26 Introduction to Acids & Bases II Packet #26 1 Review I Svante Arrhenius was the first person to recognize the essential nature of acids and bases. 2 Review II Arrhenius postulated that: Acids produce hydrogen

More information

Buffer Calculations. The Standard Equilibrium Approach to Calculating a Buffer s ph

Buffer Calculations. The Standard Equilibrium Approach to Calculating a Buffer s ph Buffer Calculations A buffer is a solution that has the ability to resist a change in ph upon the addition of a strong acid or a strong base. For a buffer to exist it must satisfy two conditions: (1) the

More information

5.111 Lecture Summary #22 Wednesday, October 31, 2014

5.111 Lecture Summary #22 Wednesday, October 31, 2014 5.111 Lecture Summary #22 Wednesday, October 31, 2014 Reading for Today: Sections 11.13, 11.18-11.19, 12.1-12.3 in 5 th ed. (10.13, 10.18-10.19, 11.1-11.3 in 4 th ed.) Reading for Lecture #23: Sections

More information

Chem Midterm 4 May 14, 2009

Chem Midterm 4 May 14, 2009 Chem. 101 - Midterm 4 May 14, 009 Name All work must be shown on the exam for partial credit. Points will be taken off for incorrect or no units and for the incorrect number of significant figures. Only

More information

Mixtures of Acids and Bases

Mixtures of Acids and Bases Mixtures of Acids and Bases CH202, lab 6 Goals : To calculate and measure the ph of pure acid and base solutions. To calculate and measure the ph of mixtures of acid and base solutions. Safety : Hydrochloric

More information

Practice test Chapters 15 and 16: Acids and Bases

Practice test Chapters 15 and 16: Acids and Bases Name: Class: Date: Practice test Chapters 15 and 16: Acids and Bases 1. Which of the following pairs of species is not a conjugate acid base pair? A) HOCl, OCl B) HNO 2, NO + 2 C) O 2, OH D) HSO 4, SO

More information

CHAPTER 8: ACID/BASE EQUILIBRIUM

CHAPTER 8: ACID/BASE EQUILIBRIUM CHAPTER 8: ACID/BASE EQUILIBRIUM Already mentioned acid-base reactions in Chapter 6 when discussing reaction types. One way to define acids and bases is using the Brønsted-Lowry definitions. A Brønsted-Lowry

More information

Acid-Base Solutions - Applications

Acid-Base Solutions - Applications Acid-Base Solutions - Applications 1 The Common Ion Effect Consider the equilibrium established when acetic acid, HC 2 H 3 O 2, is added to water. CH 3 COOH(aq) + H 2 O(l) CH 3 COO - (aq) + H 3 O + (aq)

More information

ACID-BASE EQUILIBRIA. Chapter 14 Big Idea Six

ACID-BASE EQUILIBRIA. Chapter 14 Big Idea Six ACID-BASE EQUILIBRIA Chapter 14 Big Idea Six Acid-Base Equilibria Common Ion Effect in Acids and Bases Buffer SoluDons for Controlling ph Buffer Capacity ph-titradon Curves Acid-Base TitraDon Indicators

More information

Titration Curves equivalence point

Titration Curves equivalence point 1 Here is an example of a titration curve, produced when a strong base is added to a strong acid. This curve shows how ph varies as 0.100 M NaOH is added to 50.0 ml of 0.100 M HCl. The equivalence point

More information

Titration of a Weak Acid with a Strong Base

Titration of a Weak Acid with a Strong Base Titration of a Weak Acid with a Strong Base Weak Acid w/ Strong Base Overall: INITIAL ph: Weak acids do not fully dissociate we need to do an ICE table to determine initial ph. We expect it to be weakly

More information

CHEM1109 Answers to Problem Sheet Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by:

CHEM1109 Answers to Problem Sheet Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by: CHEM1109 Answers to Problem Sheet 5 1. Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by: Π = MRT where M is the molarity of the solution. Hence, M = Π 5 (8.3 10 atm)

More information

Buffer Effectiveness, Titrations & ph curves. Section

Buffer Effectiveness, Titrations & ph curves. Section Buffer Effectiveness, Titrations & ph curves Section 16.3-16.4 Buffer effectiveness Buffer effectiveness refers to the ability of a buffer to resist ph change Effective buffers only neutralize small to

More information

1) Write the Brønsted-Lowry reaction for weak acid HCN reacting with H 2 O.

1) Write the Brønsted-Lowry reaction for weak acid HCN reacting with H 2 O. 1) Write the Brønsted-Lowry reaction for weak acid HCN reacting with H O. HCN + H O º H O + + CN ) Write the Brønsted-Lowry reaction for weak base NH reacting with H O NH + H O º OH + NH + ) Using the

More information

Acid Base Equilibria

Acid Base Equilibria Acid Base Equilibria Acid Ionization, also known as acid dissociation, is the process in where an acid reacts with water to produce a hydrogen ion and the conjugate base ion. HC 2 H 3 O 2(aq) H + (aq)

More information

Unless otherwise stated, all images in this file have been reproduced from:

Unless otherwise stated, all images in this file have been reproduced from: Unless otherwise stated, all images in this file have been reproduced from: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3 rd Edition 2016 (John Wiley & Sons) The University of Sydney Page

More information

2] What is the difference between the end point and equivalence point for a monobasicmonoacid

2] What is the difference between the end point and equivalence point for a monobasicmonoacid 4 Titrations modified October 9, 2013 1] A solution of 0.100 M AgNO 3 is used to titrate a 100.00 ml solution of 0.100 M KCl. The K sp of AgCl is 1.8e-11 a) What is pag if 50.00 ml of the titrant is added

More information

Acid-Base Chemistry. Brønsted-Lowry Acids & Bases. Conjugate Acids & Bases. Conjugate Acids & Bases 7/6/12

Acid-Base Chemistry. Brønsted-Lowry Acids & Bases. Conjugate Acids & Bases. Conjugate Acids & Bases 7/6/12 AcidBase Chemistry BrønstedLowry Acids & Bases n There are a couple of ways to define acids and bases n BrønstedLowry acids and bases n Acid: H + ion donor n Base: H + ion acceptor n Lewis acids and bases

More information

Acids and Bases Notes (Ch. 15) A. Acids Vs. Bases

Acids and Bases Notes (Ch. 15) A. Acids Vs. Bases Acids and Bases Notes (Ch. 15) A. Acids Vs. Bases Acids * *Conduct electricity well *React with (mostly produce ) *ph *Turns blue litmus paper. Ex. Lemon juice, citrus, stomach juice, vinegar, yogurt Bases

More information

mol of added base 36. Equal moles of which of the following chemicals could be used to make a basic (1 mark)

mol of added base 36. Equal moles of which of the following chemicals could be used to make a basic (1 mark) 59. 34. Consider the following titration curve: 14 13 Consider the following titration curve: 14 1 13 11 14 1 1 13 119 1 18 ph 119 7 18 6 ph 97 5 86 4 ph 75 3 64 53 1 4 31 mol of added base Select a suitable

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

capable of neutralizing both acids and bases

capable of neutralizing both acids and bases Buffers Buffer n any substance or mixture of compounds that, added to a solution, is capable of neutralizing both acids and bases without appreciably changing the original acidity or alkalinity of the

More information

Chemistry 132 NT. Acids and Bases

Chemistry 132 NT. Acids and Bases Chemistry 132 NT It is the mark of an instructed mind to rest satisfied with the degree of precision that the nature of a subject permits, and not to seek exactness where only an approximation of the truth

More information

Exam Practice. Chapters

Exam Practice. Chapters Exam Practice Chapters 16.6 17 1 Chapter 16 Chemical Equilibrium Concepts of: Weak bases Percent ionization Relationship between K a and K b Using structure to approximate strength of acids Strength of

More information

Chapter 8: Phenomena. Chapter 8: Applications of Aqueous Equilibrium

Chapter 8: Phenomena. Chapter 8: Applications of Aqueous Equilibrium Chapter 8: Phenomena ph ph ph ph 14 12 10 8 6 4 2 0 14 12 10 8 6 4 2 0 Phenomena: Buffers are sometimes defined as: a solution that resists changes in ph when an acid base is added to it. This definition

More information

Monoprotic Acid/Base Equilibria. Monoprotic Acid/Base Equilibria

Monoprotic Acid/Base Equilibria. Monoprotic Acid/Base Equilibria Monoprotic Acid/Base Equilibria Strong acids and bases: What is the ph of 0.10 M HCl? How do you calculate it? Why? Concentration (F) 0.10 (10-1 ) 0.01 (10-2 ) 0.001 (10-3 ) 0.0001 (10-4 ) 0.00001 (10-5

More information

Acid-Base Titration Solution Key

Acid-Base Titration Solution Key Key CH3NH2(aq) H2O(l) CH3NH3 (aq) OH - (aq) Kb = 4.38 x 10-4 In aqueous solution of methylamine at 25 C, the hydroxide ion concentration is 1.50 x 10-3 M. In answering the following, assume that temperature

More information

Homework #7 Chapter 8 Applications of Aqueous Equilibrium

Homework #7 Chapter 8 Applications of Aqueous Equilibrium Homework #7 Chapter 8 Applications of Aqueous Equilibrium 15. solution: A solution that resists change in ph when a small amount of acid or base is added. solutions contain a weak acid and its conjugate

More information

Acid-Base Chemistry. There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases. Lewis acids and bases

Acid-Base Chemistry. There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases. Lewis acids and bases Acid-Base Chemistry There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases Acid: H + ion donor Base: H + ion acceptor Lewis acids and bases Acid: electron pair acceptor Base:

More information

A 95 g/mol B 102 /mol C 117 g/mol D 126 g/mol E 152 g/mol

A 95 g/mol B 102 /mol C 117 g/mol D 126 g/mol E 152 g/mol Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

More information

What is an acid? What is a base?

What is an acid? What is a base? What is an acid? What is a base? Properties of an acid Sour taste Turns litmus paper red Conducts electric current Some acids are strong and some are weak Properties of a base Bitter taste Slippery to

More information

Responses of Chemical Equilibria

Responses of Chemical Equilibria Responses of Chemical Equilibria Chapter 9 of Atkins: Section 9.5 The Response of Chemical Equilibria to Conditions Acid-base equilibria in water The ph of acids and bases Acid-base titrations The ph curve

More information

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute)

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) CHAPTER 16: ACID-BASE EQUILIBRIA Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) A. Weak Monoprotic Acids. (Section 16.1) 1. Solution of Acetic Acid: 2. See Table

More information

Chapter 16 ACIDS AND BASES. (Part I) Dr. Al Saadi. Brønsted Acids and Bases

Chapter 16 ACIDS AND BASES. (Part I) Dr. Al Saadi. Brønsted Acids and Bases Chapter 16 ACIDS AND BASES (Part I) Dr. Al Saadi 1 Brønsted Acids and Bases A Brønsted acid is a species that donates a proton. (a proton donor). HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl (aq) acid hydronium

More information

What is an acid? What is a base?

What is an acid? What is a base? What is an acid? What is a base? Properties of an acid Sour taste Turns litmus paper red Conducts electric current Some acids are strong and some are weak Properties of a base Bitter taste Slippery to

More information

Acids and Bases. Reviewing Vocabulary CHAPTER ASSESSMENT CHAPTER 19. Compare and contrast each of the following terms.

Acids and Bases. Reviewing Vocabulary CHAPTER ASSESSMENT CHAPTER 19. Compare and contrast each of the following terms. Acids and Bases Reviewing Vocabulary Compare and contrast each of the following terms. 1. Arrhenius model, Brønsted-Lowry model 2. acid ionization constant, base ionization constant 3. conjugate acid,

More information

Grade A buffer: is a solution that resists changes in its ph upon small additions of acid or base.sq1

Grade A buffer: is a solution that resists changes in its ph upon small additions of acid or base.sq1 Chapter 15 Lesson Plan Grade 12 402. The presence of a common ion decreases the dissociation. BQ1 Calculate the ph of 0.10M CH 3 COOH. Ka = 1.8 10-5. [H + ] = = ( )( ) = 1.34 10-3 M ph = 2.87 Calculate

More information

Chapter 15. Acid-Base Equilibria

Chapter 15. Acid-Base Equilibria Chapter 15 Acid-Base Equilibria Section 15.1 Solutions of Acids or Bases Containing a Common Ion Common Ion Effect Shift in equilibrium position that occurs because of the addition of an ion already involved

More information

Consider a 1.0 L solution of 0.10 M acetic acid. Acetic acid is a weak acid only a small percent of the weak acid is ionized

Consider a 1.0 L solution of 0.10 M acetic acid. Acetic acid is a weak acid only a small percent of the weak acid is ionized Chemistry 12 Acid- Base Equilibrium V Name: Date: Block: 1. Buffers 2. Hydrolysis Buffers An acid- base buffer is a solution that resists changes in ph following the addition of relatively small amounts

More information

CHM 112 Dr. Kevin Moore

CHM 112 Dr. Kevin Moore CHM 112 Dr. Kevin Moore Reaction of an acid with a known concentration of base to determine the exact amount of the acid Requires that the equilibrium of the reaction be significantly to the right Determination

More information

Ch 18 Acids and Bases Big Idea: Acids and Bases can be defined in terms of hydrogen ions and hydroxide ions or in terms of electron pairs.

Ch 18 Acids and Bases Big Idea: Acids and Bases can be defined in terms of hydrogen ions and hydroxide ions or in terms of electron pairs. Ch 18 Acids and Bases Big Idea: Acids and Bases can be defined in terms of hydrogen ions and hydroxide ions or in terms of electron pairs. Ch 18 - Acids and Bases I CAN: 1) Compare properties of acids

More information

D. Ammonia can accept a proton. (Total 1 mark)

D. Ammonia can accept a proton. (Total 1 mark) 1. Which statement explains why ammonia can act as a Lewis base? A. Ammonia can donate a lone pair of electrons. B. Ammonia can accept a lone pair of electrons. C. Ammonia can donate a proton. D. Ammonia

More information

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Sec 1 The Common-Ion Effect: The dissociation of a weak electrolyte decreases when a strong electrolyte that has an ion in common with

More information

Follow- up Wkst Acid and Base ph Calculations

Follow- up Wkst Acid and Base ph Calculations CH302 LaBrake and Vanden Bout 2-23- 12 Follow- up Wkst Acid and Base ph Calculations For each of the following solutions: Write a chemical equation, identify the limiting reactant (if there is one), and

More information

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 17 Additional Aspects of John D. Bookstaver St. Charles Community College Cottleville, MO The Common-Ion Effect Consider a solution of acetic acid: CH 3 COOH(aq) + H 2 O(l)

More information

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations Chapter 16: Applications of Aqueous Equilibrium Part 2 Acid-Base Titrations When you add an acid and a base together, a neutralization rxn occurs. In the lab, we do neutralization rxns all the time as

More information

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions.

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions. Lecture 12 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

CHAPTER Acid & Base

CHAPTER Acid & Base CHAPTER 19 19.1 Acid & Base Common Reactions with Acids Dilute: small amount of solute 1-M Concentrated: large amount of solute Indicator: changes color to show the presence of acids or bases : eat or

More information

Chapter 15. Titration Curves for Complex Acid/Base Systems

Chapter 15. Titration Curves for Complex Acid/Base Systems Chapter 15 Titration Curves for Complex Acid/Base Systems Polyfunctional acids and bases Carbonic acid/bicarbonate buffer system Buffers for human blood ph = 7.35-7.45 CO 2(g) + H 2 O H 2 CO 3(aq) H 2

More information

Unit 9: Acid and Base Multiple Choice Practice

Unit 9: Acid and Base Multiple Choice Practice Unit 9: Acid and Base Multiple Choice Practice Name June 14, 2017 1. Consider the following acidbase equilibrium: HCO3 H2O H2CO3 OH In the reaction above, the BrönstedLowry acids are: A. H2O and OH B.

More information

Introduc)on to Buffer Solu)ons Part 1 Instruc)onal Sequence (proto-type) 2018 Chemistry Interac)ve Demonstra)ons and Educa)onal Resources

Introduc)on to Buffer Solu)ons Part 1 Instruc)onal Sequence (proto-type) 2018 Chemistry Interac)ve Demonstra)ons and Educa)onal Resources Introduc)on to Buffer Solu)ons Part 1 Instruc)onal Sequence (proto-type) 2018 Chemistry Interac)ve Demonstra)ons and Educa)onal Resources Chemistry Interac/ve Demonstra/ons and Educa/onal Resources (CIDER)

More information

First Exam December 19---Christmas Break begins December 21. Silberberg Chapter 17-18, Skoog 2-7, 11-13

First Exam December 19---Christmas Break begins December 21. Silberberg Chapter 17-18, Skoog 2-7, 11-13 Announcements First Exam December 19---Christmas Break begins December 21. Silberberg Chapter 17-18, Skoog 2-7, 11-13 Please keep up with the work (lots of problems in this Chapter) and see me if you have

More information

What is an acid? What is a base?

What is an acid? What is a base? What is an acid? What is a base? Properties of an acid Sour taste Turns litmus paper red Conducts electric current Some acids are strong and some are weak Properties of a base Bitter taste Slippery to

More information

Homework #6 Chapter 7 Homework Acids and Bases

Homework #6 Chapter 7 Homework Acids and Bases Homework #6 Chapter 7 Homework Acids and Bases 20. a) 2H 2O(l) H 3O (aq) OH (aq) K [H 3 O ][OH ] Or H 2O(l) H (aq) OH (aq) K [H ][OH ] b) HCN(aq) H 2O(l) H 3O (aq) CN (aq) K [H 3O ][CN ] [HCN] Or HCN(aq)

More information

Chapter 15. Preview. Lesson Starter Objectives Hydronium Ions and Hydroxide Ions The ph Scale Calculations Involving ph

Chapter 15. Preview. Lesson Starter Objectives Hydronium Ions and Hydroxide Ions The ph Scale Calculations Involving ph Preview Lesson Starter Objectives Hydronium Ions and Hydroxide Ions The ph Scale Calculations Involving ph Section 1 Aqueous Solutions and the Concept of ph Lesson Starter Describe what is taking place

More information

Exploring Equilibria

Exploring Equilibria Exploring Equilibria Name: Chem 112 This experiment explores a variety of equilibrium systems. A reference Table of Reactions is attached to aid in your explanations. In this qualitative lab, your observations,

More information

AP Chemistry: Acid-Base Chemistry Practice Problems

AP Chemistry: Acid-Base Chemistry Practice Problems Name AP Chemistry: Acid-Base Chemistry Practice Problems Date Due Directions: Write your answers to the following questions in the space provided. For problem solving, show all of your work. Make sure

More information

Acid-Base Character of Salt Solutions. Cations. Cations are potentially acidic, but some have no effect on ph.

Acid-Base Character of Salt Solutions. Cations. Cations are potentially acidic, but some have no effect on ph. Acid-Base Character of Salt Solutions The ph of a salt solution will depend on the acidbase nature of both the cation and anion. Cations Cations are potentially acidic, but some have no effect on ph. M(H

More information

CHEMISTRY 102 Fall 2010 Hour Exam III Page My answers for this Chemistry 102 exam should be graded with the answer sheet associated with:

CHEMISTRY 102 Fall 2010 Hour Exam III Page My answers for this Chemistry 102 exam should be graded with the answer sheet associated with: Hour Exam III Page 1 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with: a) Form A b) Form B c) Form C d) Form D e) Form E Consider the titration of 30.0 ml

More information

Assessment Schedule 2009 Chemistry: Describe properties of aqueous systems (90700)

Assessment Schedule 2009 Chemistry: Describe properties of aqueous systems (90700) Assessment Schedule 2009 Chemistry: Describe properties of aqueous systems (90700) Evidence Statement NCEA Level 3 Chemistry (90700) 2009 page 1 of 5 Question Evidence Achievement Achievement with Merit

More information

1. (3) The pressure on an equilibrium mixture of the three gases N 2, H 2 and NH 3

1. (3) The pressure on an equilibrium mixture of the three gases N 2, H 2 and NH 3 1. (3) The pressure on an equilibrium mixture of the three gases N 2, H 2 and NH 3 N 2 (g) + 3 H 2 (g) 2 NH 3 (g) is suddenly decreased by doubling the volume of the container at constant temperature.

More information

Problem 1. What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10-5 )?

Problem 1. What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10-5 )? Problem 1 What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10-5 )? Problem 2 A 489mL sample of 0.5542M HNO 3 is mixed with 427mL sample of NaOH (which has a ph of 14.06).

More information

Kotz 7 th ed. Section 18.3, pp

Kotz 7 th ed. Section 18.3, pp Lecture 15 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

IMPORTANT NOTE : any numbers to the left of the decimal in ph calculation do not count in significant figures for logarithms.

IMPORTANT NOTE : any numbers to the left of the decimal in ph calculation do not count in significant figures for logarithms. ph the measure of the acidity or alkalinity ph scale often used as a quick reference < 7 acid 7 neutral >7 base Sören Sörenson defined ph mathematically ph = - log 10 [H + ] the Ap@ in ph comes from the

More information

Advanced Chemistry Ch What is the concentration of a monoprotic weak acid if its ph is 5.50 and its K a = 5.7 x 10-10?

Advanced Chemistry Ch What is the concentration of a monoprotic weak acid if its ph is 5.50 and its K a = 5.7 x 10-10? Advanced Chemistry Ch. 15 Name 1. What is the concentration of a monoprotic weak acid if its ph is 5.50 and its K a = 5.7 x 10-10? 2. What is the concentration of a weak base if its K b = 1.4 x 10-11 and

More information

Representative Exam Questions On The Topic of Equilibrium (Includes Acid / Base Equilibria)

Representative Exam Questions On The Topic of Equilibrium (Includes Acid / Base Equilibria) Representative Exam Questions On The Topic of Equilibrium (Includes Acid / Base Equilibria) 1. If a chemical equilibrium very much favors the products over the reactants, what would we expect its equilibrium

More information

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases Chem 105 Tuesday March 8, 2011 Chapter 17. Acids and Bases 1) Define Brønsted Acid and Brønsted Base 2) Proton (H + ) transfer reactions: conjugate acid-base pairs 3) Water and other amphiprotic substances

More information

Strong and Weak. Acids and Bases

Strong and Weak. Acids and Bases Strong and Weak Acids and Bases Strength of Acids H2SO4 HSO4 - + H + HNO3 NO3 - + H + Strong Acids HCl Cl - + H + H3PO4 H2PO4 - + H + Phosphoric acid Moderate Acid CH3COOH CH3COO - + H + Acetic acid HF

More information

Grace King High School Chemistry Test Review

Grace King High School Chemistry Test Review CHAPTER 19 Acids, Bases & Salts 1. ACIDS Grace King High School Chemistry Test Review UNITS 7 SOLUTIONS &ACIDS & BASES Arrhenius definition of Acid: Contain Hydrogen and produce Hydrogen ion (aka proton),

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9) ( F - 32) F = ( 9 / 5)( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

(aq)], does not contain sufficient base [C 2 H 3 O 2. (aq)] to be a buffer. If acid is added, there is too little conjugate base [C 2 H 3 O 2

(aq)], does not contain sufficient base [C 2 H 3 O 2. (aq)] to be a buffer. If acid is added, there is too little conjugate base [C 2 H 3 O 2 PURPOSE: 1. To understand the properties of buffer solutions. 2. To calculate the ph of buffer solutions and compare the calculated values with the experimentally determined ph values. PRINCIPLES: I. Definition,

More information

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin)

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin) JASPERSE CHEM 210 PRACTICE TEST 3 VERSION 2 Ch. 17: Additional Aqueous Equilibria Ch. 18: Thermodynamics: Directionality of Chemical Reactions Key Equations: For weak acids alone in water: [H + ] = K a

More information

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases Chem 106 Thursday, March 10, 2011 Chapter 17 Acids and Bases K a and acid strength Acid + base reactions: Four types (s +s, s + w, w + s, and w + w) Determining K from concentrations and ph ph of aqueous

More information

Diprotic Acids Diprotic acids have two ionizable protons that undergo successive ionization.

Diprotic Acids Diprotic acids have two ionizable protons that undergo successive ionization. Diprotic Acids Diprotic acids have two ionizable protons that undergo successive ionization. + H2A + H2O º H3O + + HA [H3O [HA Ka [H2A + 2 HA + H2O º H3O + + A 2 [H3O [A Ka 2 [HA In general, Ka >> Ka 2.

More information

Announcements. Print worksheet #21 prior to your Thursday discussion section. LON-CAPA assignment #12 due NEXT Wednesday at 9am

Announcements. Print worksheet #21 prior to your Thursday discussion section. LON-CAPA assignment #12 due NEXT Wednesday at 9am Announcements Print worksheet #21 prior to your Thursday discussion section LON-CAPA assignment #12 due NEXT Wednesday at 9am Dr. Nicely s office hours (205 Chem Annex): Mondays from 3-4pm, Fridays from

More information

Return Exam 3 Review for final exam: kinetics, equilibrium, acid-base

Return Exam 3 Review for final exam: kinetics, equilibrium, acid-base Chem 106 Thurs. 5-5-2011 Return Exam 3 Review for final exam: kinetics, equilibrium, acid-base Hour Ex 3; Ave=64, Hi=94 5/5/2011 1 ACS Final exam question types Topic # Calcul n Qualitative Intermol forces

More information

Acids, Bases and the Common Ion Effect. More quantitative. Continued [F - ] = M. Consider the following acid equilibrium of a weak acid:

Acids, Bases and the Common Ion Effect. More quantitative. Continued [F - ] = M. Consider the following acid equilibrium of a weak acid: Acids, Bases and the Common Ion Effect Consider the following acid equilibrium of a weak acid: HF + H O H 3 O + + F - K a = [H 3 O + ][F - ] [HF] By LeChatelier s principle, we predict the HF dissociation

More information

CH102 Spring 2019 Discussion #7 Chapter 14 *Assume room temperature for all reactions* Student name TA name Section

CH102 Spring 2019 Discussion #7 Chapter 14 *Assume room temperature for all reactions* Student name TA name Section CH102 Spring 2019 Discussion #7 Chapter 14 *Assume room temperature for all reactions* Student name TA name Section Things you should know when you leave Discussion today: K w

More information

EXAM 3 REVIEW LBS 172 REACTION MECHANISMS

EXAM 3 REVIEW LBS 172 REACTION MECHANISMS EXAM 3 REVIEW LBS 172 REACTION MECHANISMS GENERAL -Step by step process of bond making and breaking by which reactants become products -Summation of steps must be equal to overall reaction -Example: NO

More information