Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12. Nam e: Period: Description Reaction Types Activty

Size: px
Start display at page:

Download "Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12. Nam e: Period: Description Reaction Types Activty"

Transcription

1 Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12 Nam e: Period: Unit Goals- As you work through this unit, you should be able to: 1. Write formula equations from word equations using appropriate symbols. 2. Balance chemical reactions. 3. Classify the equations into the five basic reaction types. 4. Calculate the empirical formula of a compound using experimental reaction data. 5. Understand the different quantitative relationships derived from a balanced equation. 6. Be able to do simple Mass-mole to mole-mass conversions using a balanced equation. 7. Solve stoichiometric problems using mass, volume, and number of particles. 8. Understand the concept of a limiting reagent 9. Identify which reagent is a limiting reagent based on quantities of each reagent and a balanced chemical equation 10. Understand the concept of percent yield and calculate percent yields. Assignments: Activities, Labs & Test Description Reaction Types Activty A1 A2 Water Rockets Activity Mole Ratio & Stoichiometry Lab Making Chalk and Limiting Reagent Lab Unit 6 Test A3 A4 Late Lab Stamp (this stamp means you are not qualified to do lab and test corrections) A5 A6 Readings: Chapter 11: Sections , Chapter 12 Key Terms: empirical formula, word equation, reactant, product, chemical change, physical change, formula equation, product, precipitate, symbols, catalyst, coefficient, conservation of atoms, conservation of mass, combination, decomposition, singlereplacement, double-replacement, combustion, stoichiometry, mole-ratio, limiting reagent, actual yield, theoretical yield Demo s: Calcium carbonate & potassium chlorate decomposition, ethanol & glucose combustion, Calcium Oxide w/ water & sulfur & iron combination, acid base and precipitation of barium sulfate double replacement, silver nitrate w/ copper & lead nitrate w/ zinc single replacement reactions.

2 Ch ap t er 11.1: Chem ical Eq uat ions. What is a chemical equation? Why must chemical equations be balanced? Symbols in a chemical equation and their meanings: *Acids and Bases Chapter 11.2: There are 5 general types of chemical reactions (If A = metal) 4. (If X = nonmetal) 5. (Complete) Define Reactants Define Products A. Write balanced complete equations for each of these chemical reactions. Identify the type of reaction 1. Aluminum metal reacts with oxygen in the air to form aluminum oxide. 2. When solid mercury (II) sulfide is heated with oxygen, liquid mercury metal and gaseous sulfur dioxide are produced.

3 3. Oxygen gas can be made by heating potassium chlorate in the presence of the catalyst manganese dioxide. Potassium chloride is left as a solid residue. 4. Gaseous hydrogen + solid sulfur aqueous hydrosulfuric acid. 5. aqeous iron (III) chloride + aqueous calcium hydroxide solid iron (III) hydroxide + aqueous calcium chloride. 6. Solid Carbon reacts with oxygen from the air gaseous carbon monoxide. 7. Aqueous silver nitrate reacts with solid copper to produce aqueous copper (II) nitrate and solid silver metal. 8. Aluminum metal reacts with oxygen from the air to form solid aluminum oxide. B. COMBINATION REACTIONS 1. Pot assium m et al r eact s w it h Chlorine gas 2. Write the equations for the teacher demonstration: a. C. DECOMPOSITION REACTIONS 1. Silver oxid e d ecom p oses w hen heat ed 2. Write the equations for the teacher demonstration: a.

4 D. SINGLE-REPLACEMENT REACTIONS Will every single replacement reaction work? Yes/No (circle one) Define the activity series, from page 361, and explain what it is used for: 1. Solid m agnesium m et al r eact s w it h aq ueous silver nit r at e 2. Chlorine gas r eact s w it h aq ueo us m agnesium io d id e 3. Write the equations for the teacher demonstration here: a. E. DOUBLE-REPLACEMENT REACTIONS Practice Problems: Write complete balanced equations for the following reactions. 1. Aqueous sodium hydroxide reacts with aqueous iron (III) nitrate (solid Iron (III) hydroxide is formed) (demo) 2. Aqueous sodium hydroxide reacts with hydrochloric acid (demo) 3. Aqueous sodium carbonate reacts with acetic acid to produce three products, one of which is a gas (carbonic acid always decomposes into carbon dioxide and water instantly) (demo). F. COMBUSTION REACTIONS: 1. Methanol, CH 3 OH completely combusts: 2. Write the equations for the teacher demonstration: a The arithmetic of equations A. What is Stoichiometry?

5 B. Let s examine stoichiometry a bit closer by looking at the production of ammonia (NH 3 ) from it s elements: Write the equation below: What kind of information can be derived from this equation? Write sentences to describe the equation - 1. In terms of PARTICLES 2. In terms of MOLES 3. In terms of MASS 4. In terms of VOLUME(for gases only!) C. What was conserved (stayed the same from left to right) in this equation? (2 answers) D. Write the balance equation for the single replacement reaction between Aluminum and Copper (II) Chloride. This is when we saw aluminum appearing to become copper, and the blue solution became clear. Write sentences to describe the equation - 1. In terms of representative PARTICLES 2. In terms of MOLES 3. In terms of MASS 4. In terms of VOLUME(for gases only!)

6 12.2: Chemical Calculations Copy the stoichiometry road map here A. Mole-Mole Calculations 1. What is a mole ratio in a balanced equation? 2. Write a balanced equation for the formation of Ammonia (NH 3 ) from it s elements. 3. Write down all the mole ratios as fractions. Teacher guided example Problem 1: How many moles of ammonia [NH 3(g) ] are produced when 0.60 mol of nitrogen reacts with hydrogen? Teacher guided example Problem 2: How many moles of hydrogen [H 2(g) ] are needed to perfectly react with 1.20 mol of nitrogen gas? Example Problem 3: Write the equation for the formation of aluminum oxide from it s elements.

7 Sample Problems. 1. How many moles of aluminum are needed to form 3.70 moles of aluminum oxide? 2. How many moles of oxygen are required to react completely with 14.8 mole of aluminum? 3. How many moles of aluminum oxide are formed when 0.78 mol of oxygen reacts with aluminum? B. Mass-Mass Calculations: Since you can convert from moles of one substance to moles of another substance using a balanced equation, you can also convert to and from,, & of gasses. We all know how to convert to the mole, and away from the mole based on last chapter. Use the Stoichiometry map to aid in this process. Example Problem: Write the equation for the production of ammonium (NH 3 ) from it s elements: Calculate the mass of water produced by the reaction of 5.4 grams of hydrogen with an excess of oxygen. Example Problems: Aqueous lead (II) nitrate reacts with aqueous potassium iodide to produce the yellow precipitate lead (II) iodide and aqueous potassium nitrate. Write the balanced equation for this reaction. You re a chemical engineer whose job is to produce the maximum amount of the precipitate (used in paints for automobiles) and with the minimum amount of waste possible. What is the most efficient recipe you would use, in terms of grams of both reactants? How many grams of the precipitate would this yield if you completely reacted 5.0 grams of KI? You must produce 1,000 grams of the precipitate in one batch, how many grams of each reactant would you start with? Remember your job depends on not wasting any reactant!

8 C. Other Stoichiometric Calculations Example Problem: How many molecules of oxygen are produced when a sample of 29.2 grams of water is decomposed by electrolysis? Example Problem: How many molecules of oxygen are produced by the decomposition of 6.54 grams of potassium chlorate? Potassium chloride is also produced. Example Problem: Assuming STP, how many liters of oxygen gas are needed to produce 19.8 L sulfur trioxide according to this balanced equation? 2SO 2 (g) + O 2 (g) 2SO 3 (g) Example Problem: Nitrogen monoxide and oxygen gas combine to form the brown gas nitrogen dioxide. How many milliliters of nitrogen dioxide are produced when 3.4 milliliters of oxygen react with an excess of nitrogen monoxide? Assume STP conditions. Section 12.3 Limiting and Excess Reagents A. In a chemical reaction, an quantity of any reactant will limit the amount of that forms. 1. Write the equation for the production of water: This represents the most efficient recipe that a chemist can follow. What if this equation is run at any other mole ratio? Define Limiting Reagent- Define Excess Reagent- If you react 5 moles of hydrogen gas with 5 moles of oxygen gas, which is limiting and which is excess. Prove it showing your work.

9 2. Example Problem: Sodium chloride can be prepared by the reaction of sodium with chlorine gas according to this equation: Suppose that 6.7 mol of sodium reacts with 3.2 mol chlorine. a. What is the limiting reagent? b. How many moles of sodium chloride are produced 3. Example Problem: Write the equation for the complete combustion of ethene, C 2 H 4 : If 2.7 mol of ethene is reacted with 6.3 mole of oxygen: a. what is the limiting reagent? b. calculate the moles of water produced 4. Example Problem: Write the equation for the incomplete combustion of ethene. If 2.7 mole of ethene is reacted with 6.3 mole of oxygen: a. what is the limiting reagent?

10 b. calculate the moles of water produced 5. Example Problem: When copper reacts with sulfur, solid copper (I) sulfide is produced. Write this combination reaction. a. What is the limiting reagent when 80.0 grams of copper reacts with 25.0 grams of sulfur? b. What is the maximum number of grams of product that can be formed? 6. Example Problem: Hydrogen gas can be produced in the lab by reaction of magnesium metal with hydrochloric acid. Write the COMPLETE balanced equation on the top of the next page: a. Identify the limiting reagent when 6 grams of HCl reacts with 5 grams of Mg. b. How many grams of hydrogen can be produced?

11 Section 12.3 Percent Yield A. Calculating the Percent Yield 1. Define Yield This is the amount of that could be formed during a reaction based on calculations. 2. Define Yield In contrast to Theoretical Yield, yield is the amount of that actually during a. 3. Define Yield Is the ration of to expressed as a. 4. Note that in order to calculate the theoretical amount produced, you must first identify the so you can find the reactant that limits the amount of product that can actually. Example Problem Calcium carbonate is decomposed by heating. Write the balanced equation for this reaction. a. What is the theoretical yield of CaO if 24.8 grams CaCO 3 is heated? b. What is the percent yield if 13.1 grams CaO is produced? Example Problem When 101 grams of solid iron (III) oxide reacts with 62.3 L of carbon monoxide gas, 40.3 grams of solid iron is produced. The other product in the reaction is carbon dioxide gas. Write the balanced equation here: What is the percent yield of this reaction? -1 st, find the limiting reagent so you know how much product theoretically is produced -2 nd, Calcualte % yeild

12 Example Problem If 50.0 grams of silicon dioxide is heated with 35.0 grams of carbon, 27.9 grams of silicon carbide, SiC, is produced. The other product is carbon monoxide gas. Write the balanced equation here: What is the percent yield of this reaction? -1 st, find the limiting reagent so you know how much product theoretically is produced -2 nd, Calcualte % yeild -3 rd, how much excess reagent is left over?

Chemistry Chapter 9. Unit 6 Stoichiometry

Chemistry Chapter 9. Unit 6 Stoichiometry Chemistry Chapter 9 Unit 6 Stoichiometry The arithmetic of equations Equations are recipes. They tell chemists what amounts of reactants to mix and what amounts of products to expect. What is Stoichiometry?

More information

Stoichiometry Chapter 9 Practice Assessment B

Stoichiometry Chapter 9 Practice Assessment B NAME Hour Date Stoichiometry Chapter 9 Practice Assessment B Objective 1: Interpret balanced chemical equations in terms of interacting moles, representative particles, masses, and gas volume at STP. Directions:

More information

Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind.

Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind. Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind. 1. calcium + oxygen 2. cupric carbonate 3. aluminum + hydrochloric

More information

Chemical Reactions Chapter 8 PART TWO

Chemical Reactions Chapter 8 PART TWO NAME Hour Date Chemical Reactions Chapter 8 PART TWO Practice A Assessment 1 Objective 5: Predict the product of a combination reaction by writing a complete balanced equation. Directions: Write a complete

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

This exam will be given over 2 days. Part 1: Objectives 1-13 Part 2: Objectives 14-24

This exam will be given over 2 days. Part 1: Objectives 1-13 Part 2: Objectives 14-24 Name Hour January Exam Practice A This exam will be given over 2 days. Part 1: Objectives 1-13 Part 2: Objectives 14-24 This practice exam will be graded in the exam portion of the grade book. Objectives

More information

UNIT 3 IB MATERIAL BONDING, MOLES & STOICHIOMETRY

UNIT 3 IB MATERIAL BONDING, MOLES & STOICHIOMETRY UNIT 3 IB MATERIAL Name: BONDING, MOLES & STOICHIOMETRY ESSENTIALS: Know, Understand, and Be Able To Apply the mole concept to substances. Determine the number of particles and the amount of substance

More information

Description Mole Activity. Late Lab Stamp (this stamp means you are not qualified to do lab and test corrections)

Description Mole Activity. Late Lab Stamp (this stamp means you are not qualified to do lab and test corrections) Unit 5 Notepack: Chapters 10 Chemical Quantities NAME Unit 5 Chemical Names, and Formulas & Moles Unit Goals- As you work through this unit, you should be able to: 1. Distinguish between ionic and molecular

More information

Unit IV: Chemical Equations & Stoichiometry

Unit IV: Chemical Equations & Stoichiometry Unit IV: Chemical Equations & Stoichiometry A. The chemical equation B. Types of chemical reactions A. Activity series of metals B. Solubility rules C. Rules for writing and balancing equations D. Calculations

More information

5. The mass of oxygen required to completely convert 4.0 grams of hydrogen to water is 1) 8.0 grams; 2) 2.0 grams; 3) 32 grams; 4) 16 grams.

5. The mass of oxygen required to completely convert 4.0 grams of hydrogen to water is 1) 8.0 grams; 2) 2.0 grams; 3) 32 grams; 4) 16 grams. CHEMISTRY TEST NAME: MASS AND VOLUME DATE: EQUATION RELATIONSHIPS Directions: For each of the following questions, choose the number that best answers the question and place it on your answer sheet. Directions:

More information

Chemical Reactions and Stoichiometry. Ms. Grobsky

Chemical Reactions and Stoichiometry. Ms. Grobsky Chemical Reactions and Stoichiometry Ms. Grobsky Wrapping Up the Lab As we know, the function of the airbags is to protect the occupant from injuring themselves by hitting against the windshield, steering

More information

AP Chemistry Summer Assignment

AP Chemistry Summer Assignment AP Chemistry Summer Assignment Due Date: Thursday, September 1 st, 2011 Directions: Show all of your work for full credit. Include units and labels. Record answers to the correct number of significant

More information

Unit Two Worksheet WS DC U2

Unit Two Worksheet WS DC U2 Unit Two Worksheet WS DC U2 Name Period Short Answer [Writing]. Write skeleton equations representing the following reactions and then balance them. Then identify the reaction type. Include all needed

More information

UNIT 1 Chemical Reactions Part II Workbook. Name:

UNIT 1 Chemical Reactions Part II Workbook. Name: UNIT 1 Chemical Reactions Part II Workbook Name: 1 Molar Volume 1. How many moles of a gas will occupy 2.50 L at STP? 2. Calculate the volume that 0.881 mol of gas at STP will occupy. 3. Determine the

More information

1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen?

1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen? Stoichiometry Mole-to-Mole 1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen? N 2 + H 2 NH 3 2. If 5.50 moles of calcium carbide (CaC 2 ) reacts with an excess of

More information

CHAPTER 9 CHEMICAL QUANTITIES

CHAPTER 9 CHEMICAL QUANTITIES Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 9 CHEMICAL QUANTITIES Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 11.1 notes 1 MOLE = 6.02 x 10 23 representative particles representative particles

More information

Example Exercise 10.1 Interpreting Chemical Equation Calculations

Example Exercise 10.1 Interpreting Chemical Equation Calculations Example Exercise 10.1 Interpreting Chemical Equation Calculations Given the chemical equation for the combustion of methane, CH 4, balance the equation and interpret the coefficients in terms of (a) moles

More information

Chemical Reactions. Chemical changes are occurring around us all the time

Chemical Reactions. Chemical changes are occurring around us all the time Chemical changes are occurring around us all the time Food cooking Fuel being burned in a car s engine Oxygen being used in the human body The starting materials are called reactants The ending materials

More information

Unit 4: Reactions and Stoichiometry

Unit 4: Reactions and Stoichiometry Unit 4: Reactions and Stoichiometry Reactions Chemical equation Expression representing a chemical reaction Formulas of reactants on the left side Formulas of products on the right side Arrow(s) connect(s)

More information

(DO NOT WRITE ON THIS TEST)

(DO NOT WRITE ON THIS TEST) Final Prep Chap 8&9 (DO NOT WRITE ON THIS TEST) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. After the correct formula for a reactant in an equation

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

4 CO O 2. , how many moles of KCl will be produced? Use the unbalanced equation below: PbCl 2. PbSO 4

4 CO O 2. , how many moles of KCl will be produced? Use the unbalanced equation below: PbCl 2. PbSO 4 Honors Chemistry Practice Final 2017 KEY 1. Acetylene gas, C 2, is used in welding because it generates an extremely hot flame when combusted with oxygen. How many moles of oxygen are required to react

More information

Stoichiometry. Homework EC. cincochem.pbworks.com. Academic Chemistry DATE ASSIGNMENT

Stoichiometry. Homework EC. cincochem.pbworks.com. Academic Chemistry DATE ASSIGNMENT Unit 10 Resournces Name Academic Chemistry Stoichiometry Homework On-Time LATE DATE ASSIGNMENT 100 70 10.1 10.2 10.3 10.4 10.5 10.6 EC 16 cincochem.pbworks.com Stoichiometry Live in the now. Garth Algar

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

January Semester Exam Practice B This exam will be given over 2 days. Part 1: Objectives 1-13 Part 2: Objectives 14-24

January Semester Exam Practice B This exam will be given over 2 days. Part 1: Objectives 1-13 Part 2: Objectives 14-24 Name Hour January Semester Exam Practice B This exam will be given over 2 days. Part 1: Objectives 1-13 Part 2: Objectives 14-24 This practice exam will be graded in the exam portion of the grade book

More information

Name: Unit 9- Stoichiometry Day Page # Description IC/HW

Name: Unit 9- Stoichiometry Day Page # Description IC/HW Name: Unit 9- Stoichiometry Day Page # Description IC/HW Due Date Completed ALL 2 Warm-up IC 1 3 Stoichiometry Notes IC 1 4 Mole Map IC X 1 5 Mole to Mole Practice IC 1 6 Mass to Mole Practice IC 1/2 X

More information

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date»

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date» Slide 1 / 90 Stoichiometry HW Grade:«grade» Subject: Date:«date» Slide 2 / 90 1 The calculation of quantities in chemical equations is called. A B C D E accuracy and precision dimensional analysis percent

More information

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles representative particles = ATOMS, IONS,

More information

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles Unit 8: Quantification of Chemical Reactions Chapter 10: The mole Chapter 12: Stoichiometry Counting by mass: The Mole Chemists can t count individual atoms Use moles to determine amounts instead mole

More information

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard Chapter 1 IB Chemistry Warm Ups Stoichiometry Mrs. Hilliard Vocabulary 1. Atomic theory 2. Kelvin 3. Mole 4. Relative abundance 5. Molar Mass 6. Empirical formula 7. Molecular formula 8. Stoichiometry

More information

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product?

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product? Unit 6: Stoichiometry How do manufacturers know how to make enough of their desired product? Chocolate Chip Cookies Using the following recipe, complete the questions. Cookie Recipe 1.5 c sugar 1 c. butter

More information

Stoichiometry Dry Lab

Stoichiometry Dry Lab Stoichiometry Dry Lab Name: Mole-Mass Conversions The molar mass of a substance is the conversion factor that allows us to convert between the mass of a substance (in grams) and the number of moles of

More information

2.9 The Mole and Chemical Equations:

2.9 The Mole and Chemical Equations: 2.9 The Mole and Chemical Equations: Stoichiometry Whether you are making omelettes in a kitchen or soap in a factory, you need to know the quantities of ingredients required to produce a certain quantity

More information

C2.6 Quantitative Chemistry Foundation

C2.6 Quantitative Chemistry Foundation C2.6 Quantitative Chemistry Foundation 1. Relative masses Use the periodic table to find the relative masses of the elements below. (Hint: The top number in each element box) Hydrogen Carbon Nitrogen Oxygen

More information

Name. Academic Chemistry Stoichiometry Notes. Unit #10 Test Date: cincochem.pbworks.com

Name. Academic Chemistry Stoichiometry Notes. Unit #10 Test Date: cincochem.pbworks.com Name Academic Chemistry Stoichiometry Notes Unit #10 Test Date: cincochem.pbworks.com Resources Unit 10 Common Polyatomic Ions List 20 Name Common Polyatomic Ion Ions Name Ion acetate C 2 H 3 O 2 or CH3

More information

Stoichiometry Part 1

Stoichiometry Part 1 Stoichiometry Part 1 Formulae of simple compounds Formulae of simple compounds can be deduced from their ions/valencies but there are some that you should know off by heart. You will learn these and more

More information

Polyatomic ions You should know the symbols, names, and charges for these common polyatomic ions. Polyatomic Ions to Know + ClO 3. ClO 4 NO

Polyatomic ions You should know the symbols, names, and charges for these common polyatomic ions. Polyatomic Ions to Know + ClO 3. ClO 4 NO AP Chemistry Summer Review Packet 2018 Section 1: Names and Formulas of ionic compounds. Name: Polyatomic ions You should know the symbols, names, and charges for these common polyatomic ions. Polyatomic

More information

This packet contains review material from Pre-AP Chemistry. Be prepared to take a quiz over this material during the first week of school.

This packet contains review material from Pre-AP Chemistry. Be prepared to take a quiz over this material during the first week of school. This packet contains review material from Pre-AP Chemistry. Be prepared to take a quiz over this material during the first week of school. How many significant figures (digits) are represented by each

More information

Funsheet 3.0 [WRITING & BALANCING EQUATIONS] Gu/R. 2017

Funsheet 3.0 [WRITING & BALANCING EQUATIONS] Gu/R. 2017 Funsheet 3.0 [WRITING & BALANCING EQUATIONS] Gu/R. 2017 Balance the following chemical equations. Remember, it is not necessary to write "1" if the coefficient is one. 1. N 2 + H 2 NH 3 2. KClO 3 KCl +

More information

TOPIC 4: THE MOLE CONCEPTS

TOPIC 4: THE MOLE CONCEPTS TOPIC 4: THE MOLE CONCEPTS INTRODUCTION The mass is gram (g) of 1 mole of substances is called its.. 1 mole of substances has.. particles of a substances The mass of 1 mole of substances is always equal

More information

How did JJ Thomson conclude that the mobile charged particle in the atom had a ( ) charge.

How did JJ Thomson conclude that the mobile charged particle in the atom had a ( ) charge. Name Veritas Class Period Chemistry: Final Exam Practice Problems The final exam will focus on material covered in the spring semester. However, note that much of the material learned early in the year

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. * The balanced equation gives the ratios for the reactants and products. 3 eggs

More information

Balancing Equations Notes

Balancing Equations Notes . Unit 9 Chemical Equations and Reactions What is a Chemical Equation? A is a written representation of the process that occurs in a chemical reaction. A chemical equation is written with the (starting

More information

Chapter 4: Stoichiometry of Chemical Reactions. 4.1 Writing and Balancing Chemical Equations

Chapter 4: Stoichiometry of Chemical Reactions. 4.1 Writing and Balancing Chemical Equations Chapter 4: Stoichiometry of Chemical Reactions 4.1 Writing and Balancing Chemical Equations A chemical equation represents or symbolizes a chemical reaction. o Substances are represents by their chemical

More information

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Chemistry 11 Notes on Chemical Reactions Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Evidence to indicate that a chemical reaction has occurred:

More information

Name Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages )

Name Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages ) Name Date Class 1 STOICHIOMETRY SECTION 1.1 THE ARITHMETIC OF EQUATIONS (pages 353 358) This section explains how to calculate the amount of reactants required or product formed in a nonchemical process.

More information

Show your work for all questions; answer all parts of all questions. No work = no credit.

Show your work for all questions; answer all parts of all questions. No work = no credit. Quiz: Ch 3 & 4 Name: Version M (32 pts) September 16, 2005 AP Chem Period: 1 2 3 4 Show your work for all questions; answer all parts of all questions. No work = no credit. 1. (10 pts) A compound contains

More information

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules) Stoichiometry Introduction Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Or Avogadros Number: (number of Molecules) Or Moles (amount of a substance containing avogadros number

More information

If Sally has 4.56 x atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have?

If Sally has 4.56 x atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have? If Sally has 4.56 x 10 34 atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have? Bertha has.025 milligrams of sodium that she got from a sample of Sodium phosphate,

More information

SCH4U Chemistry Review: Fundamentals

SCH4U Chemistry Review: Fundamentals SCH4U Chemistry Review: Fundamentals Particle Theory of Matter Matter is anything that has mass and takes up space. Anything around us and in the entire universe can be classified as either matter or energy.

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Table of Contents Click on the topic to go to that section Stoichiometry Calculations with Moles Stoichiometry Calculations with Particles

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Slide 4 / 109 Table of Contents Stoichiometry Calculations with Moles Click on the topic to go to that section Stoichiometry Calculations

More information

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination.

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Unit 2: The Atom, The Mole & Stoichiometry Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Postulates of the atomic theory: 1. All matter

More information

Chapter 8 Chemical Reactions

Chapter 8 Chemical Reactions Chemistry/ PEP Name: Date: Chapter 8 Chemical Reactions Chapter 8: 1 7, 9 18, 20, 21, 24 26, 29 31, 46, 55, 69 Practice Problems 1. Write a skeleton equation for each chemical reaction. Include the appropriate

More information

CHAPTER 12: STOICHIOMETRY

CHAPTER 12: STOICHIOMETRY Name: CHAPTER 12: STOICHIOMETRY Period: MOLE TO MOLE RATIO When nitrogen and hydrogen gas are heated under the correct conditions, ammonia gas (NH 3 ) is formed. a. RXN: 1N 2 + 3H 2 2NH 3 b. How many moles

More information

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12.

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12. CHAPTER 12 Stoichiometry is the calculation of quantities using different substances in chemical equations. Based on the Law of Conservation of Mass. Mg(s) + How many moles of H Chemists use balanced to

More information

Exe r c i s es Answers to odd-numbered Exercises are in Appendix I. Key Te rm s Answers to Key Terms are in Appendix H.

Exe r c i s es Answers to odd-numbered Exercises are in Appendix I. Key Te rm s Answers to Key Terms are in Appendix H. 284 CHAPTER 10 CHEMICAL EQUATION CALCULATIONS Moles reactant (b) 'llljll!llim'.lllill!w 11r1 nrr1111 Moles product.,.. Concept Map-Summary Stoichiometry We use a strategy map to show the application unit

More information

Chapter 8. Chemical Equations and Reactions

Chapter 8. Chemical Equations and Reactions Chapter 8 Chemical Equations and Reactions Chemical Equations Represents, w/ symbols & formulas, the reactants & products in a chemical reaction Requirements Must represent the known facts Must contain

More information

Unit 9 Stoichiometry Notes

Unit 9 Stoichiometry Notes Unit 9 Stoichiometry Notes Stoichiometry is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations to

More information

Summer Assignment for AP Chemistry: I hope you are all ready for a fun, yet challenging year. You have a good foundation in basic chemistry from Chem

Summer Assignment for AP Chemistry: I hope you are all ready for a fun, yet challenging year. You have a good foundation in basic chemistry from Chem Summer Assignment for AP Chemistry: I hope you are all ready for a fun, yet challenging year. You have a good foundation in basic chemistry from Chem 1, but AP Chem will be a little different. Rather than

More information

ACP Chemistry (821) - Mid-Year Review

ACP Chemistry (821) - Mid-Year Review ACP Chemistry (821) - Mid-Year Review *Be sure you understand the concepts involved in each question. Do not simply memorize facts!* 1. What is chemistry? Chapter 1: Chemistry 2. What is the difference

More information

Unit 7: Stoichiometry Homework Packet (85 points)

Unit 7: Stoichiometry Homework Packet (85 points) Name: Period: By the end of the Unit 7, you should be able to: Chapter 12 1. Use stoichiometry to determine the amount of substance in a reaction 2. Determine the limiting reactant of a reaction 3. Determine

More information

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Evidence to indicate that a chemical reaction has occurred: Temperature change Different coloured materials

More information

VOCABULARY Define. 1. reactants. 2. products. 3. chemical equation. 4. precipitate. 5. word equation

VOCABULARY Define. 1. reactants. 2. products. 3. chemical equation. 4. precipitate. 5. word equation CHAPTER 8 HOMEWORK 8-1 (pp. 241 245) Define. 1. reactants 2. products 3. chemical equation 4. precipitate 5. word equation GRAPHIC ORGANIZER Complete the chart by listing three signs that suggest that

More information

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2 Name: Class: _ Date: _ Chpt 12 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is conserved in the reaction shown below? H 2 + Cl 2 2HCl a.

More information

How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? How many neutrons are there in one atom of 24 Mg?

How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? How many neutrons are there in one atom of 24 Mg? 1 A 2 B 3 C The atomic number of Na is 11. How many electrons are there in a sodium ion, Na +? How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? What is the mass in grams

More information

AP Chemistry - Summer Assignment

AP Chemistry - Summer Assignment AP Chemistry - Summer Assignment NOTE: a. MUST SHOW ALL WORK FOR CREDIT!! b. Where work is required, do on a separate sheet of paper c. These are the foundational things you should be able to do when you

More information

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a catalyst. CO (g) + H 2 (g) CH 3 OH (l) If 75.0 g of CO reacts

More information

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry Name: Thermochemistry C Practice Test C General Chemistry Honors Chemistry 1 Objective 1: Use the relationship between mass, specific heat, and temperature change to calculate the heat flow during a chemical

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

C2.6 Quantitative Chemistry Foundation

C2.6 Quantitative Chemistry Foundation C2.6 Quantitative Chemistry Foundation 1. Relative masses Use the periodic table to find the relative masses of the elements below. (Hint: The top number in each element box) Hydrogen Carbon Nitrogen Oxygen

More information

STOICHIOMETRY CLASSWORK

STOICHIOMETRY CLASSWORK STOICHIOMETRY CLASSWORK Given the following equation: 2 C4H10 + 13 02 ---> 8 CO2 + 10 H20 Show what the following molar ratios should be. a, C4H10 / 02 b. 02 / CO2 o, 02 / H20 d, C4Hlo / CO2 e. C4Hlo /

More information

Ch. 8 Chemical Reactions

Ch. 8 Chemical Reactions Ch. 8 Chemical Reactions Intro to Reactions I II III IV V Signs of a Chemical Reaction Evolution of heat and light Formation of a gas Formation of a precipitate Color change Law of Conservation of Mass

More information

Unit 8 Chemical Reactions- Funsheets

Unit 8 Chemical Reactions- Funsheets Part A- Balancing Equations and Types of Reactions Balance AND identify the following reactions: Unit 8 Chemical Reactions- Funsheets 1) Mg + Zn(NO 3) 2 Zn Mg(NO 3) 2 2) Ba + AgNO 3 Ag + Ba(NO 3) 2 3)

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. Jan 16 7:57 AM May 24 10:03 AM * The balanced equation gives the ratios for

More information

Slide 1 / 90. Slide 2 / 90. Slide 3 / 90 A B. percent yield stoichiometry A B. atoms and mass

Slide 1 / 90. Slide 2 / 90. Slide 3 / 90 A B. percent yield stoichiometry A B. atoms and mass Stoichiometry HW Slide 1 / 90 Grade:«grade» Subject: ate:«date» 1 The calculation of quantities in chemical equations is called. Slide 2 / 90 accuracy and precision dimensional analysis percent composition

More information

Chemical Reactions and Equations

Chemical Reactions and Equations Chemical Reactions and Equations 5-1 5.1 What is a Chemical Reaction? A chemical reaction is a chemical change. A chemical reaction occurs when one or more substances is converted into one or more new

More information

Stoichiometry Dry Lab

Stoichiometry Dry Lab Stoichiometry Dry Lab Name: Mole-Mass Conversions The molar mass of a substance is the conversion factor that allows us to convert between the mass of a substance (in grams) and the number of moles of

More information

Final Exam Review Questions You will be given a Periodic Table, Activity Series, and a Common Ions Chart CP CHEMISTRY

Final Exam Review Questions You will be given a Periodic Table, Activity Series, and a Common Ions Chart CP CHEMISTRY Final Exam Review Questions You will be given a Periodic Table, Activity Series, and a Common Ions Chart CP CHEMISTRY Part A True-False State whether each statement is true or false. If false, correct

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry The study of quantities of materials consumed and produced in chemical reactions. Since atoms are so small, we must use the average

More information

Spring Semester Final Exam Study Guide

Spring Semester Final Exam Study Guide Honors Chemistry Name Period AlCl3 Cu2S NaCN HI PCl3 CrBr3 Naming and Formula Writing 1. Write the name or formula for each of the following: HClO2 (NH4)2SO4 I4O10 H3N NiN H3PO4 Mercury (II) bromide Phosphorous

More information

Balancing Equations Notes

Balancing Equations Notes . Unit 9 Chemical Equations and Reactions What is a Chemical Equation? A Chemical Equation is a written representation of the process that occurs in a chemical reaction. A chemical equation is written

More information

5. [7 points] What is the mass of gallons (a fifth) of pure ethanol (density = g/cm 3 )? [1 gallon = Liters]

5. [7 points] What is the mass of gallons (a fifth) of pure ethanol (density = g/cm 3 )? [1 gallon = Liters] 1 of 6 10/20/2009 3:55 AM Avogadro s Number, N A = 6.022 10 23 1. [7 points] Given the following mathematical expression: (15.11115.0)/(2.154 10 3 ) How many significant figures should the answer contain?

More information

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry Stoichiometry The quantitative study of reactants and products in a chemical reaction 1 Stoichiometry Whether the units given for reactants or products are moles, grams, liters (for gases), or some other

More information

Balancing Equations Notes

Balancing Equations Notes . Unit 7 Chemical Equations and Reactions What is a Chemical Equation? A is a written representation of the process that occurs in a chemical reaction. A chemical equation is written with the (starting

More information

Composion Stoichiometry

Composion Stoichiometry Composition Stoichiometry blank 3.3.13.notebook Due: Ch 10 RG Hummmm... How do you "measure" bananas? > How many? Count 1 dozen naners or 12 naners Composion Stoichiometry 3 new conversion factors > Avogadro's

More information

Honors text: Ch 10 & 12 Unit 06 Notes: Balancing Chemical Equations

Honors text: Ch 10 & 12 Unit 06 Notes: Balancing Chemical Equations Notes: Balancing Chemical Equations Effects of chemical reactions: Chemical reactions rearrange atoms in the reactants to form new products. The identities and properties of the products are completely

More information

Describing Chemical Reactions

Describing Chemical Reactions Describing Chemical Reactions Key Terms chemical equation precipitate coefficient word equation formula equation reversible reaction A chemical reaction is the process by which one or more substances are

More information

1. Hydrochloric acid is mixed with aqueous sodium bicarbonate Molecular Equation

1. Hydrochloric acid is mixed with aqueous sodium bicarbonate Molecular Equation NAME Hr Chapter 4 Aqueous Reactions and Solution Chemistry Practice A (Part 1 = Obj. 1-3) (Part 2 = Obj. 4-6) Objective 1: Electrolytes, Acids, and Bases a. Indicate whether each of the following is strong,

More information

Study Guide: Stoichiometry

Study Guide: Stoichiometry Name: Study Guide: Stoichiometry Period: **YOUR ANSWERS MUST INCLUDE THE PROPER NUMBER OF SIG FIGS AND COMPLETE UNITS IN ORDER TO RECEIVE CREDIT FOR THE PROBLEM.** BALANCE THE FOLLOWING EQUATIONS TO USE

More information

Exam III Material Chapter 7-CHEMICAL REACTIONS, continued

Exam III Material Chapter 7-CHEMICAL REACTIONS, continued Exam III Material Chapter 7-CHEMICAL REACTIONS, continued A chemical reaction occurs when there is a change in chemical composition. I. Double Replacement/Double Exchange/Metathesis Reactions In an double

More information

Chemical Reactions. Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions. (ionic equations and solubility rules)

Chemical Reactions. Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions. (ionic equations and solubility rules) Chemical Reactions Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions (ionic equations and solubility rules) Writing Equations REACTANTS PRODUCTS gold (III) sulfide is

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS http://www.youtube.com/watch?v=te4668aarck&feature=related The Five Major Class of Chemical Reaction http://www.youtube.com/watch?v=i HHvx1VC_8 Jan 2 8:07 PM 1 Nov 19 8:48 AM

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information

AP Chapter 3 Study Questions

AP Chapter 3 Study Questions Class: Date: AP Chapter 3 Study Questions True/False Indicate whether the statement is true or false. 1. The mass of a single atom of an element (in amu) is numerically EQUAL to the mass in grams of 1

More information

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass,

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, Stoichiometry Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, volume, and heat of reaction. Stoichiometry

More information

Mole Conversions Worksheet

Mole Conversions Worksheet Mole Conversions Worksheet There are three mole equalities. They are: 1 mol = 6.02 x 10 particles 1 mol = g-formula-mass (periodic table) 1 mol = 22.4 L for a gas at STP Each equality can be written as

More information