LESSON PLAN TEMPLATE FOR THE AGENDA FOR EDUCATION IN A DEMOCRACY. Name: Drew Parliment Date: 11/13/14

Size: px
Start display at page:

Download "LESSON PLAN TEMPLATE FOR THE AGENDA FOR EDUCATION IN A DEMOCRACY. Name: Drew Parliment Date: 11/13/14"

Transcription

1 LESSON PLAN TEMPLATE FOR THE AGENDA FOR EDUCATION IN A DEMOCRACY Name: Drew Parliment Date: 11/13/14 Unit Essential Question: How does the electron configuration of a molecule effect its 3D structure? Lesson Topic: Molecular Shape Class: General Chemistry PLANNING THE LESSON With Democracy and Social Justice at the Center of Instruction Focusing on the National Network for Educational Renewal (NNER) Mission the 4-Part Agenda for Education in a Democracy EQUAL ACCESS ENCULTURATION NURTURING PEDAGOGY STEWARDSHIP To Knowledge In Democratic Society Safe and Caring for All of the Mission What are you and your students doing today to advance the 4-Part Mission? Connections: With which part(s) of the Agenda does this lesson connect most clearly? And how? Today, we are participating in an inquiry activity that gives students ownership of their own learning. This connects most clearly with enculturation in a democratic society because each student is equally given a voice in how they learn the material. STANDARDS ( Content: Apply an understanding of atomic and molecular structure to explain the properties of matter, and predict outcomes of chemical and nuclear reactions Literacy and Numeracy: Apply Knowledge of mathematics to problem solve, analyze issues, and make critical decisions that arise in everyday life. Democracy and 21 st Century Skills: Evaluate the credibility and relevance of information, ideas, and arguments. OBJECTIVES Content: SWBAT propose the 3D structure of a molecule with one central atom and defend their claim with reasoning Literacy and Numeracy: SWBAT keep track of the number of valance electrons in their Lewis structure and understand how bonds, lone Democracy and 21 st Century Skills: SWBAT evaluate arguments about the 3D structure of the molecules in the example and

2 based on the Lewis structure. pairs and free radicals account for these electrons. They will use their problem solving abilities to find a configuration that fills are octets and has the appropriate formal charge. come to a consensus. ASSESSMENTS What is your evidence of achieving each objective? How will students know and demonstrate what they have learned in each of the areas, all of the objectives? Content: Students will be able to answer the questions and describe their reasoning at each stop sign, and will ultimately produce 3D drawings of the molecules and show these molecules with the molecular modeling kits. Literacy and Numeracy: Proper application of this method will result in the correct Lewis structure for the atom, so students who are answering the Lewis structure questions correctly are by extension fulfilling their mathematics standard. Democracy and 21 st Century Skills: Mr. Anastasia and I will walk around the room and listen to arguments, ensure that a discussion is being had about them, and making sure that the discussion remains evidence based. KEY VOCABULARY Content Lewis Structure 3D structure Electron domain Bond Lone pair Trigonal Planar, Linear, Tetrahedral, Pyramidal, and Bent. Literacy and Numeracy Valance electrons Democracy and 21 st Century Skills Argument Evidence HIGHER ORDER QUESTIONS for this lesson Content What are the driving forces behind the way 3D molecular structures arise? Literacy and Numeracy How does the number and placement of electrons relate to the Lewis structure and 3D Democracy and 21 st Century Skills What constitutes a valid argument for the 3D structure

3 How might 3D structures effect the reactivity of a molecule? structure of the molecule? of a molecule? LESSON FLOW This is the actual planning of the lesson activities. Time Anticipatory Set Purpose and Relevance Warm-up may include any of the following: hook, pre-assessment, introduction to topic, motivation, etc. -Have a student read the why? at the top of the packet. Time Pre-Assessment Cold call questions: -What is an electron domain? -What determines the 3D structure of a molecule? Time Building Background Link to Experience: Way that domains spread out due to repulsion makes intuitive sense. These 3D structures are the ones that maximize bond angles. Link to Learning: Builds off of Lewis Structures. Time Instructional Input Models of Teaching: Inquiry, Cooperative Learning, Concept Attainment Discussion SIOP Techniques: I do, We do, You do. Guided Practice, Cooperative Learning Reading, Writing, Listening, Speaking

4 Independent Practice Students will be given similar questions on their CALM homework assignments. Time Accommodations, Modifications, and Student Adjustments Consider: multiple intelligences, learning styles, cultural and ability diversity, etc. If the activity is too advanced or too easy for some, how will you modify instruction so all students will learn? What accommodations will be needed and for whom? (IEP, 504, Special Needs) If the material is too advanced, I will offer example problems that I will do myself (either on the board or on a scratch piece of paper, thus showing them the reasoning behind the activity. If students are having trouble predicting 3D structures, I will have them start by producing the model (The modeling kits will make it fairly obvious how the atoms fit together). Multiple intelegences will be reached by the visual, auditory, and kinesthetic nature of the Lewis structures, class discussion, and modeling kits, respectively. Time Review and Assessments of All Objectives Content: Were the 3D structures correct? Literacy and Numeracy: Did the Lewis structures fill all octets and have the correct number of electrons? Democracy and 21 st Century Skills: Did the discussions come to well-reasoned conclusions? Time Closure What will you and the students do at the end of the lesson or after a chunk of learning to synthesize, organize and connect the learning to the essential

5 question(s)? Students will show me their 3D models, and we will discuss why those arrangements occurred as opposed to other possibilities. Time Next Step Future lessons will likely cover 3D structures of larger molecules, as well as molecules with expanded octets. Post-Lesson Reflection ( For the Teacher) 1. To what extent were all objectives achieved? 2. What changes would you make if you teach the lesson again? 3. What do you envision for the next lesson? 4. To what extent does this lesson achieve the Mission of the Agenda for Education in a Democracy? To what extent does this lesson achieve the 21 st Century Skills?

6 Date Assigned: Date Due: Why? Molecular Shapes What would covalent molecules look like if you were wearing 3D glasses? When you draw a Lewis structure for a molecule on paper, you are making a two-dimensional representation of the atoms. However, in reality, molecules are not flat - they are three-dimensional. The true shape of a molecule is important because it determines many physical and chemical properties for the substance. In this activity, you will use the VSEPR theory to predict molecular shapes. Model 1 True 3-D Molecular Shape Trigonal Planar Linear BH 3 3 electron domains (3 bonding, 0 non-bonding) BeF 2 2 electron domains (2 bonding, 0 non-bonding) CH 4 4 electron domains (4 bonding, 0 non-bonding) Tetrahedral NH 3 4 electron domains (3 bonding, 1 non-bonding) Pyramidal H 2 O 4 electron domains (2 bonding, 2 non-bonding) lone pair = Bent Linear CO 2 2 electron domains (2 bonding, 0 non-bonding) HSPI The POGIL Project

7 1. What type of structures are shown in the left column of Model 1? 2. a. What does a solid line between element symbols represent on the molecules of Model 1? (Be as specific as possible.) b. What subatomic particle (protons, neutrons or electrons) make up these solid lines? 3. a. What does a pair of dots represent on the molecules of Model 1? b. What subatomic particle (protons, neutrons or electrons) makes up these dots? 4. In the English language, what does the word domain mean? (Your group must come to consensus on this question.) 5. a. Which molecule(s) in Model 1 has three electron domains? b. Circle or highlight the three electron domains on the Lewis structure for the molecule(s) which you identified above. 6. a. Which molecule(s) in Model 1 has two electron domains? b. Circle or highlight the two electron domains on the Lewis structure for the molecule(s) which you identified above. 7. a. Which molecule(s) in Model 1 has four electron domains? b. Circle or highlight the four electron domains on the Lewis structure for the molecule(s) which you identified above. 8. When determining the number of electron domains on a Lewis structure, which of the following should you count? Find evidence to support your answer(s) from Model 1. Cross out any that do not count. bonds on the center atom total number of atoms in the molecule lone pairs on the center atom lone pairs on peripheral atoms 9. When determining the number of electron domains on a Lewis structure, do you count double bonds as one domain or two domains? Find evidence to support your answer from Model Explain the difference between a bonding electron domain and a non-bonding electron domain using the examples in Model 1. HSPI The POGIL Project

8 11. Circle the correct word or phrase to complete the sentences: Read This! Pairs of electrons will ( attract / repel ) each other. Two bonds on the same atom will try to get as (close to / far from ) each other as possible. A lone pair of electrons and a bonded pair of electrons will (push away from / move toward ) each other. The VSEPR (Valence Shell Electron Pair Repulsion) Theory helps predict the shape of molecules and is based on the premise that electrons around a central atom repel each other. Electron domains are areas of high electron density such as bonds (single, double, or triple) and lone-pairs of electrons. In simple terms, VSEPR means that all electron bonding domains and electron non-bonding domains around a central atom need to be positioned as far apart as possible in three-dimensional space. 12. The VSEPR theory specifies valence shell electrons. Explain why these are the most critical electrons for determining molecular shape based on your exploration of Model In the VSEPR theory, what is repelling what? 14. Often we draw Lewis structures with 90 angles. Do any of the molecular shapes in Model 1 have 90 angles between bonds? 15. Are the angles on the 3-D molecules generally larger or smaller than the Lewis structures drawn on the notebook paper? Explain. 16. Why is it possible to get larger angles separating electron domains in three-dimensions versus two-dimensions? 17. a. Identify the three molecules in Model 1 with four electron domains. What happens to the size of the bond angle(s) in that molecule as the number of lone pairs on the central atom increases? HSPI The POGIL Project

9 b. Discuss in your group some possible explanations for the trend in part a. Your spokesperson should be ready to present to the class one or two of your hypotheses for full class discussion. 18. A student does not waste their time drawing a Lewis structure before determining the shape of PF 3. The student thinks that the shape of PF 3 must be Trigonal Planar because there are three fluorine atoms bonded to the central phosphorus atom. a. Draw the Lewis structure for PF 3. b. Was the student s answer for the shape of a PF 3 molecule correct? Explain. c. Why is it important to draw the Lewis structure for a molecule before identifying the shape of the molecule? HSPI The POGIL Project

10 19. Complete the following chart: Molecule Lewis Structure 3-D Picture Shape Name Shape Angle H 2 S PH 3 CCl 4 CS 2 At this point, you should be able to identify the number of electron domains in a covalent molecule based on its bonding and non-bonding electrons. predict basic molecular shapes of Lewis structures using the VSEPR model. explain the difference between a trigonal planar molecule and a pyramidal molecule. describe and explain the bond angles of basic molecular shapes. HSPI The POGIL Project

11 HSPI The POGIL Project Page Left Blank Intentionally

12 Molecular Shapes - On Your Own 1. Ozone, O 3 is not a linear molecule. Actually it is bent with an angle that is a little less than 120 o. a. Draw the Lewis structure of ozone, O 3. b. Describe why ozone has a bent shape instead of a linear shape. c. Describe why ozone s bond angle is larger than that of water, H 2 O. d. Add a description of the ozone molecule below Model 1 to demonstrate another way a molecule can have a bent shape. 2. a. Complete the following chart: Molecule Lewis Structure 3-D Picture Shape Name Shape Angle ClO3 - Name: NO3 - Name: b. Explain the difference between these two molecules. HSPI The POGIL Project

13 HSPI The POGIL Project Page Left Blank Intentionally

14 Drew Parliment November 13 th lesson reflection 11/25/14 This general chemistry lesson focused on molecular geometry, again using the POGIL inquiry packets they have worked with all semester. Students were given a list of different molecular shapes and the Lewis structures that give rise to them, and then answered questions about molecular geometry and made predictions about the molecular geometries of certain molecules based on their Lewis structures. At Joe Anastasia s request, I made use of the molecular modeling kits for this lesson by having the students confirm the predictions they made by recreating the molecule with the modeling kits. After the lesson, we had a brief closure in which I quizzed students on the molecular geometries that arise from certain electron domain geometries, and demonstrated these geometries using the molecular modeling kits. Elizabeth Urban evaluated this lesson, and her primary criticism is that I need to spend more class time evaluating what students are understanding about the material and how they feel about it, thus creating a safe environment that helps all students learn the material. I felt that my closure and the questions I asked at the POBIL stop sign was the best example of my evaluation of student knowledge this semester (although I acknowledge that I need to be more aware of how to change my lesson as a result of this information), but I did little to address how students felt about the content. Does it seem difficult? Does it seem pointless? These are questions that, if not addressed, will cause serious problems for a student s learning. I feel that these kinds of interactions are easier in a class you teach for a full semester, but it is important that I push myself out of my comfort zone to ensure that students are comfortable and engaged in the material.

15 Overall I felt this was my most successful lesson of the semester, and I feel that it has made clear to me some more nuanced issues with my teaching methods. In time, I hope to create a classroom that is ideal for all students to succeed.

16

17

18

19

20 Drew Parliment Authentic Assessment 12/10/14 Authentic Assessment for Molecular Bonding Unit Standards Content Standard: Apply an understanding of atomic and molecular structure to explain the properties of matter, and predict outcomes of chemical and nuclear reactions. Literacy Standard: Write clearly and coherently for a variety of purposes and audiences. Democracy Standard: Develop new connections where none previously existed. Assignment Description Write a science fiction short story involving on one or more concept you have learned about the nature of the atom and molecular bonding. This story can be set in the past, present or future, but must involve an accurate description and understanding of the chosen scientific concept. Outside of the chosen concept, feel free to be as creative and inventive as you would like when describing the world in which your story takes place. In order to receive full points, your story must provide detail of the setting of the story, all chemistry concepts must be accurate and plausible, and the assignment must be well written. Due Dates Students will work on this assignment concurrently with the next unit. They will have one full week to turn in their first draft, and another week to submit their final draft. Rubric

21 Students will receive up to 5 points from 4 different sections, to a total of 20 points. Half points may be awarder were appropriate. Creativity the story is creative and fun to read Student made a clear effort to write a compelling story with details on the setting. Student made a clear effort to write a compelling story, but the setting was not well explored. Student focused only on the chemistry concept required for the assignment. Student wrote an unoriginal story that did not explore the setting it s setting. Student chooses a setting inappropriate for the assignment (ex. fantasy). Student ignored prompt and did not write a science fiction story. Writing Story is well written in terms of grammar, spelling and structure Story is well written with no spelling or grammar errors. Story is well written with few spelling or grammar errors. Story is reasonably well written, and spelling and grammar errors do not interfere with the reading of it. Organization, spelling and/or grammar render the story difficult to understand. Organization, spelling and grammar are all well below the expectations. Student ignored the prompt and did not write their story as a short story (ex. Bulleted list).

22 Use of chemistry concept Students must use a chemistry concept as directed Student seamlessly integrates a relevant chemistry concept into their story. Student integrates a relevant chemistry concept into their story, but its place in the story is clunky. Chemistry concept is mentioned in passing or not well understood. Student integrates a chemistry concept, but they do not fully explore it in the assignment or appear to lack a complete understanding of it. Chemistry concept is introduced and partially understood, but one or more misconception about it is demonstrated by the author. Chemistry concept from the class is not used in the story. Plausibility When it comes to the chemistry in this story, could it happen based on our current understanding of the phenomenon? All chemistry concepts are truly plausible. Some misconceptions are demonstrated, but they are mostly outside of the scope of the class. (note: this would only be an issue for something that I pointed out in the draft). Some minor misconceptions that are within the scope of the class. Scientific information is incorrect more often than not, but at least some insights are demonstrated. Scientific information is almost all wrong. The story contains no scientific information whatsoever. Note: Students may be held in double jeopardy for plausibility and chemistry concept. A story that does not contain any chemistry concepts ignored the purpose of the assignment, and at best can receive a 50%.

LESSON PLAN TEMPLATE FOR THE AGENDA FOR EDUCATION IN A DEMOCRACY. Name: Drew Parliment Date: October 30th

LESSON PLAN TEMPLATE FOR THE AGENDA FOR EDUCATION IN A DEMOCRACY. Name: Drew Parliment Date: October 30th LESSON PLAN TEMPLATE FOR THE AGENDA FOR EDUCATION IN A DEMOCRACY Name: Drew Parliment Date: October 30th Unit Essential Question:_How can you predict the 3D structure and resonance of a molecule from its

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

Unit 6 Topic: Molecular Geometry VSEPR Date: February 25, 2011

Unit 6 Topic: Molecular Geometry VSEPR Date: February 25, 2011 Unit 6 Topic: Molecular Geometry VSEPR Date: February 25, 2011 NSES: STS A-E; ASE A-E; SCS 9-12 B Grade level: 10 th and 11 th SOL: CH.2 The student will investigate and understand that the placement of

More information

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations.

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations. Name: Period: Date: What Is VSEPR? Exploring The Valence Shell Electron Pair Repulsion (VSEPR) model. Go to the Purdue University website to explore VSEPR theory. http://www.chem.purdue.edu/gchelp/vsepr/structur2.html

More information

Lesson Plan Bond Prediction Tenth Grade Chemistry By Rich Wilczewski

Lesson Plan Bond Prediction Tenth Grade Chemistry By Rich Wilczewski Lesson Plan Bond Prediction Tenth Grade Chemistry By Rich Wilczewski LEARNING OUTCOMES: Students will use their textbook outlines to define the following: Chemical Bond, Covalent Bond, Ionic Bond and Polar

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

CHEM-UP! D A Y The Academic Support Daytona State College (Chem-Up 3, Page 1 of 101)

CHEM-UP! D A Y The Academic Support Daytona State College (Chem-Up 3, Page 1 of 101) CHEM-UP! D A Y 3-2013 The Academic Support Center @ Daytona State College (Chem-Up 3, Page 1 of 101) Chapter 4 Lecture Basic Chemistry Chem Up! An Introduction to Basic Chemistry Concepts Day 3 Fourth

More information

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and lesson the best experience on this site: Update your browser Ignore Political Borders Why are the borders of countries located

More information

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups.

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups. Chapter 10 Lecture Chapter 10 Bonding and Properties of Solids and Liquids 10.3 Shapes of Molecules and Ions (VSEPR Theory) Learning Goal Predict the three-dimensional structure of a molecule or a polyatomic

More information

Do now: Brainstorm how you would draw the Lewis diagram for: H 2 O CO 2

Do now: Brainstorm how you would draw the Lewis diagram for: H 2 O CO 2 Do now: Brainstorm how you would draw the Lewis diagram for: 2 O CO 2 Shapes of molecules C 4 N 3 2 O C 2 O CO 2 Shapes of molecules Shapes of molecules are determined by the number of bonding and non-bonding

More information

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion.

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. VSEPR & Geometry Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. Lewis structures are not intended to show the 3-dimensional structure (i.e. shape or geometry)

More information

Unit 1 Atomic Theory

Unit 1 Atomic Theory Unit 1 Atomic Theory 1.0 You are expected to be already familiar with. Ionic nomenclature (binary, polyatomic, multivalency) Covalent nomenclature Writing chemical formulas for ionic and covalent compounds

More information

Wold of Chemistry Notes for Students [Chapter 12, page 1] Chapter 12 Chemical Bonding

Wold of Chemistry Notes for Students [Chapter 12, page 1] Chapter 12 Chemical Bonding Wold of Chemistry Notes for Students [Chapter 12, page 1] Chapter 12 Chemical Bonding 1) The History of the Development of the Period Table (Not in the book!) Similarities between the chemical and physical

More information

4.2.7 & Shapes, and bond angles for molecules with two, three and four negative charge centers

4.2.7 & Shapes, and bond angles for molecules with two, three and four negative charge centers 4.2.7 & 4.2.8 Shapes, and bond angles for molecules with two, three and four negative charge centers The shape of a molecule has an important part to play in determining its chemical (e.g. reactivity and

More information

VSEPR. Valence Shell Electron Pair Repulsion Theory

VSEPR. Valence Shell Electron Pair Repulsion Theory VSEPR Valence Shell Electron Pair Repulsion Theory Vocabulary: domain = any electron pair or bond (single, double or triple) is considered one domain. bonding pair = shared pair = any electron pair that

More information

Chapters 9&10 Structure and Bonding Theories

Chapters 9&10 Structure and Bonding Theories Chapters 9&10 Structure and Bonding Theories Ionic Radii Ions, just like atoms, follow a periodic trend in their radii. The metal ions in a given period are smaller than the non-metal ions in the same

More information

At the end of this lesson, students should be able to :

At the end of this lesson, students should be able to : At the end of this lesson, students should be able to : (a) Explain Valence Shell Electron Pair Repulsion theory (VSEPR) (b) Draw the basic molecular shapes: linear, planar, tetrahedral, and octahedral.

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

VSEPR Theory. Shapes of Molecules. Molecular Structure or Molecular Geometry

VSEPR Theory. Shapes of Molecules. Molecular Structure or Molecular Geometry VSEPR Theory VSEPR Theory Shapes of Molecules Molecular Structure or Molecular Geometry The 3-dimensional arrangement of the atoms that make-up a molecule. Determines several properties of a substance,

More information

Molecular shapes. Balls and sticks

Molecular shapes. Balls and sticks Molecular shapes Balls and sticks Learning objectives Apply VSEPR to predict electronic geometry and shapes of simple molecules Determine molecule shape from electronic geometry Distinguish between polar

More information

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding Chapter 10 Chemical Bonding Valence Electrons Recall: the outer electrons in an atom are valence electrons. Valence electrons are related to stability Valence electrons can be represented with dots in

More information

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons 212 A DOT STRUCTURE FOR A LARGER MOLECULE Count valence electrons Pick central atom and draw skeletal structure - central atom is usually the one that needs to gain the most electrons! - skeletal structure

More information

Lewis Structure and Electron Dot Models

Lewis Structure and Electron Dot Models Lewis Structure and Electron Dot Models The Lewis Structure is a method of displaying the electrons present in any given atom or compound. Steps: 1. Make a skeleton structure 2. Count all e- available

More information

MOLECULAR MODELS OBJECTIVES

MOLECULAR MODELS OBJECTIVES MOLECULAR MODELS OBJECTIVES 1. To learn to draw Lewis structures for common compounds 2. To identify electron pairs as bonding pairs or lone pairs 3. To use electron pair repulsion theory to predict electronic

More information

CHEMICAL BONDING. Valence Electrons. Chapter Ten

CHEMICAL BONDING. Valence Electrons. Chapter Ten CHEMICAL BONDING Chapter Ten Valence Electrons! The electrons occupying the outermost energy level of an atom are called the valence electrons; all other electrons are called the core electrons.! The valence

More information

In this lesson, students will use Collisions to explore molecular geometry and VSEPR Theory.

In this lesson, students will use Collisions to explore molecular geometry and VSEPR Theory. Collisions Lesson Plan VSEPR Theory Time: 1-2 class periods Lesson Description In this lesson, students will use Collisions to explore molecular geometry and VSEPR Theory. Key Essential Questions 1. What

More information

Test Bank for Introductory Chemistry Essentials 5th Edition by Tro

Test Bank for Introductory Chemistry Essentials 5th Edition by Tro Test Bank for Introductory Chemistry Essentials 5th Edition by Tro Sample Introductory Chemistry, 5e (Tro) Chapter 10 Chemical Bonding 10.1 True/False Questions 1) Bonding theories are used to predict

More information

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Fructose Water Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Carbon Dioxide Ammonia Title and Highlight TN Ch 10.1 Topic: EQ: Right Side NOTES

More information

Chapter 9 Molecular Geometries. and Bonding Theories

Chapter 9 Molecular Geometries. and Bonding Theories Chapter 9 Molecular Geometries and Bonding Theories Coverage of Chapter 9 9.1 All 9.2 All 9.3 All 9.4 All 9.5 Omit Hybridization Involving d Orbitals 9.6 All 9.7 and 9.8 Omit ALL MOLECULAR SHAPES The shape

More information

Lewis Dot Structures and Molecular Geometry

Lewis Dot Structures and Molecular Geometry Experiment 11 Lewis Dot Structures and Molecular Geometry Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose

More information

LESSON 10. Glossary: Molecular Geometry. a quantitative measure of the degree of charge separation in a molecule. Dipole moment

LESSON 10. Glossary: Molecular Geometry. a quantitative measure of the degree of charge separation in a molecule. Dipole moment LESSON 10 Glossary: Molecular Geometry Dipole moment Electronegativity Molecular geometry Pi bond Polar covalent bond Sigma bond Valence-shell electronpair repulsion (VSEPR) model a quantitative measure

More information

Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES

Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES LEARNING OBJECTIVES To build models of selected molecules using VSEPR theory. To illustrate patterns of molecular shapes. BACKGROUND The shapes exhibited

More information

Science & Literacy Activity GRADES 6-8

Science & Literacy Activity GRADES 6-8 Science & Literacy Activity GRADES 6-8 OVERVIEW This activity, which is aligned to the Common Core State Standards (CCSS) for English Language Arts, introduces students to scientific knowledge and language

More information

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results.

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results. Predicting the Shape of a Molecule (Student textbook page 236) 11. What molecular shape is represented by each of the following VSEPR notations? a. AX 3 b. AX 5 E You need to assign a molecular shape that

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

To visualize the three-dimensional structures of some common molecules. To obtain bond angle, bond length, and hybridization data for molecules.

To visualize the three-dimensional structures of some common molecules. To obtain bond angle, bond length, and hybridization data for molecules. Molecular Geometry PURPOSE A B C To explore some simple molecular structures. To explore the relationship between bond order and bond length. To explore resonance structures. GOALS To compare Lewis structures

More information

https://tinyurl.com/lanksummermath

https://tinyurl.com/lanksummermath Lankenau Environmental Science Magnet High School 11 th Grade Summer Assignments English- Questions email Ms. Joseph- mmkoons@philasd.org Choose one: The Teen Guide to Global ActionHow to Connect with

More information

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons? REVIEW: VALENCE ELECTRONS 13 CHEMICAL BONDING What are valence electrons? Which groups on the periodic table readily give up electrons? What group readily accepts electrons? CHEMICAL BONDS: What are chemical

More information

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004 Molecular Geometry and Bonding Theories Chapter 9 Part 2 November 16 th, 2004 8 Molecular Shapes When considering the geometry about the central atom, we consider all electrons (lone pairs and bonding

More information

Fill in the chart below to determine the valence electrons of elements 3-10

Fill in the chart below to determine the valence electrons of elements 3-10 Chemistry 11 Atomic Theory IV Name: Date: Block: 1. Lewis Diagrams 2. VSEPR Lewis Diagrams Lewis diagrams show the bonding between atoms of a molecule. Only the outermost electrons of an atom (called electrons)

More information

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Molecular Shape What information does a structural formula give

More information

Lab #11- Molecular Geometry

Lab #11- Molecular Geometry Objectives Chesapeake Campus Chemistry 111 Laboratory Lab #11- Molecular Geometry Determine the shape of a molecule using the VSEPR. Draw the Lewis structures of a molecule including bond angles and formal

More information

Chemical bonding & structure

Chemical bonding & structure Chemical bonding & structure Ionic bonding and structure Covalent bonding Covalent structures Intermolecular forces Metallic bonding Ms. Thompson - SL Chemistry Wooster High School Topic 4.3 Covalent structures

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

VSEPR Theory. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table.

VSEPR Theory. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table. 2. Complete the words of the week assignment. You need to have answers for Tuesday, Thursday and today. Today s : Draw

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds An attractive force that holds two atoms together in a more complex unit Three basic types of bonds Ionic Electrons are transferred from one

More information

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept Chem 1075 Chapter 12 Chemical Bonding Lecture Outline Slide 2 Chemical Bond Concept Recall that an atom has and electrons. Core electrons are found to the nucleus. Valence electrons are found in the s

More information

TITLE Intermolecular forces and molecules. AUTHORS Ted Clark (The Ohio State University) Julia Chamberlain (University of Colorado Boulder)

TITLE Intermolecular forces and molecules. AUTHORS Ted Clark (The Ohio State University) Julia Chamberlain (University of Colorado Boulder) TITLE Intermolecular forces and molecules AUTHORS Ted Clark (The Ohio State University) Julia Chamberlain (University of Colorado Boulder) COURSE General Chemistry TYPE Interactive Lecture Demonstration

More information

SECTION II: BUILDING MODELS

SECTION II: BUILDING MODELS SECTION II: BUILDING MODELS Lesson 9 New Smells, New Ideas Lesson 10 Two s Company Lesson 11 Let s Build It Lesson 12 What Shape Is That Smell? Lesson 13 Sorting It Out Lesson 14 How Does the Nose Know?

More information

Honors Chemistry Unit 6 ( )

Honors Chemistry Unit 6 ( ) Honors Chemistry Unit 6 (2017-2018) Lewis Dot Structures VSEPR Structures 1 We are learning to: 1. Represent compounds with Lewis structures. 2. Apply the VSEPR theory to determine the molecular geometry

More information

Outline for Today. Monday, Nov. 12. Wednesday Friday. Chapter 8: Chemical Bonding. Bond Enthalpies. Chapter 9: Theories of Bonding

Outline for Today. Monday, Nov. 12. Wednesday Friday. Chapter 8: Chemical Bonding. Bond Enthalpies. Chapter 9: Theories of Bonding Outline for Today Monday, Nov. 12 Chapter 8: Chemical Bonding Bond Enthalpies Chapter 9: Theories of Bonding VSEPR (Valence Shell Electron Pair Repulsion) Theory Valence Bond Orbital ybridization Molecular

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 12 CHEMICAL BONDING Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs AP Chemistry - Problem Drill 13: Lewis Structures and VSPER No. 1 of 10 1. Lewis structure is used to model covalent bonds of a molecule or ion. Covalent bonds are a type of chemical bonding formed by

More information

Chemical Bonding. Types of Bonds. Ionic Bonding. Resonance Structures. Molecular Geometries. VSEPR Basic Shapes 3-D Notation Hybridization (Lab)

Chemical Bonding. Types of Bonds. Ionic Bonding. Resonance Structures. Molecular Geometries. VSEPR Basic Shapes 3-D Notation Hybridization (Lab) Chemical Bonding Types of Bonds Ionic Bonding Lewis Structures Covalent Bonding Resonance Structures Octet Rule Polar Molecules Molecular Geometries VSEPR Basic Shapes 3-D Notation Hybridization (Lab)

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information

Hey, Baby. You and I Have a Bond...Ch. 8

Hey, Baby. You and I Have a Bond...Ch. 8 I. IONIC BONDING FUNDAMENTALS A. They form between... 1. A and a a. A to become b. A to become B. How it happens (Let s first focus on two atoms): 1. When a metal and a nonmetal meet, electrons get transferred

More information

What is a Bond? Chapter 8. Ionic Bonding. Coulomb's Law. What about covalent compounds?

What is a Bond? Chapter 8. Ionic Bonding. Coulomb's Law. What about covalent compounds? Chapter 8 What is a Bond? A force that holds atoms together. Why? We will look at it in terms of energy. Bond energy- the energy required to break a bond. Why are compounds formed? Because it gives the

More information

Chemistry Day 30. Tuesday, November 13 th Wednesday, November 14 th, 2018

Chemistry Day 30. Tuesday, November 13 th Wednesday, November 14 th, 2018 Chemistry Day 30 Tuesday, November 13 th Wednesday, November 14 th, 2018 Do-Now: Covalent Bonding CN B 1. Write down today s FLT 2. How can you tell if atoms will form an ionic or a covalent bond? 3. What

More information

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model Molecular Geometry Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized Electron

More information

Chemical Bonding and Molecular Models

Chemical Bonding and Molecular Models 25 Chemical Bonding and Molecular Models A chemical bond is a force that holds groups of two or more atoms together and makes them function as a unit. Bonding involves only the valence (outer shell) electrons

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

Introduction to VSEPR Theory 1

Introduction to VSEPR Theory 1 1 Class 8: Introduction to VSEPR Theory Sec 10.2 VSEPR Theory: The Five Basic Shapes Two Electron Groups: Linear Geometry Three Electron Groups: Trigonal Planar Geometry Four Electron Groups: Tetrahedral

More information

Intramolecular Bonding. Chapters 4, 12 Chemistry Mr. McKenzie

Intramolecular Bonding. Chapters 4, 12 Chemistry Mr. McKenzie Intramolecular Bonding Chapters 4, 12 Chemistry Mr. McKenzie What determines the type of intramolecular bond? An intramolecular bond is any force that holds two atoms together to form a compound; 3 types

More information

Lewis Dot Formulas and Molecular Shapes

Lewis Dot Formulas and Molecular Shapes Lewis Dot Formulas and Molecular Shapes Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent chemical bonds are formed by valence electrons

More information

H O H C H H N H H. Valence Shell Electron Pair Repulsion: Predicting Shape & Polarity

H O H C H H N H H. Valence Shell Electron Pair Repulsion: Predicting Shape & Polarity Valence Shell Electron Pair Repulsion: Predicting Shape & Polarity BJECTIVES Students will develop the ability to: 1. Predict the arrangement that valence e pairs assume around an atom (e pair geometry)

More information

Science Department-High School

Science Department-High School Science Department-High School Course Description SUBJECT: CHEMISTRY I GRADE LEVEL: 11 DURATION: 1 ACADEMIC YEAR of 250 min per Week NUMBER OF CREDITS: 1.25 BOOK : MODERN CHEMISTRY (HOLT) - To cover part

More information

EXPERIMENT 15: MOLECULAR MODELS

EXPERIMENT 15: MOLECULAR MODELS EXPERIMENT 15: MLEULAR MDELS Introduction: Given formulas of some molecules and ions, you will use the periodic table, valence electron count, and electronegativities to deduce their geometry and polarities.

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Chemistry and the material world Lecture 3

Chemistry and the material world Lecture 3 Chemistry and the material world 123.102 Lecture 3 Electronic bookkeeping we need a way of finding out in which proportions two or more atoms make up a molecule is it CH 3 or CH 4 or CH 5? counting valence

More information

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights

More information

EXPERIMENT #13 Lewis Structures and Molecular Geometry

EXPERIMENT #13 Lewis Structures and Molecular Geometry OBJECTIVES: EXPERIMENT #13 s and Draw Lewis structures of atoms, ions, and molecules Build models of linear, trigonal planar tetrahedral, trigonal bipyramidal, and octahedral arrangements of electron pairs

More information

VSEPR. Ch10. Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions.

VSEPR. Ch10. Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions. Ch10 VSEPR Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions. version 1.5 Nick DeMello, PhD. 2007-2016 Valence Shell Electron

More information

Chemical Bonds, Molecular Models, and Molecular Shapes

Chemical Bonds, Molecular Models, and Molecular Shapes Chemical Bonds, Molecular Models, and Molecular Shapes PRELAB ASSINGMENT Read the entire laboratory write up and answer the following questions before coming to lab. Read the entire laboratory write up

More information

Chapter 6. The Chemical Bond

Chapter 6. The Chemical Bond Chapter 6 The Chemical Bond Some questions Why do noble gases rarely bond to other elements? How does this relate to why the atoms of other elements do form bonds? Why do certain elements combine to form

More information

4 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

4 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Helpful Hints Lewis Structures Octet Rule For Lewis structures of covalent compounds least electronegative

Helpful Hints Lewis Structures Octet Rule For Lewis structures of covalent compounds least electronegative Helpful Hints Lewis Structures Octet Rule Lewis structures are a basic representation of how atoms are arranged in compounds based on bond formation by the valence electrons. A Lewis dot symbol of an atom

More information

CHM 151LL: Geometry of Covalent Compounds

CHM 151LL: Geometry of Covalent Compounds CM 151LL: Geometry of Covalent Compounds Introduction Octet Rule A Lewis structure (or electrondot formula) is a twodimensional structural formula showing the arrangement of electrons around atoms in covalently

More information

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Molecular Geometry Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Lewis Theory of Molecular Shape and Polarity

More information

Date: Monday, February 6, Obj: Write electron dot structures. Complete: How many valence electrons in the following? H Be B C.

Date: Monday, February 6, Obj: Write electron dot structures. Complete: How many valence electrons in the following? H Be B C. Do Now Date: Monday, February 6, 2017 Obj: Write electron dot structures. Complete: How many valence electrons in the following? H Be B C N O F Ne Valence Electrons Remember: in chemical bonds we re talking

More information

Lesson Plan. Lesson: Shape of Molecules. Aim: To investigate the shapes of molecules and ions. Learning Outcomes :

Lesson Plan. Lesson: Shape of Molecules. Aim: To investigate the shapes of molecules and ions. Learning Outcomes : Lesson Plan Lesson: Shape of Molecules Aim: To investigate the shapes of molecules and ions Learning Outcomes : At the end of the lesson, students will be able to : 1. explain the Valence Shell Electron

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210 Lecture outline: Section 9 Molecular l geometry and bonding theories 1. Valence shell electron pair repulsion theory 2. Valence bond theory 3. Molecular orbital theory 1 Ionic bonding Covalent bonding

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

Lesson Plan Unit Plan: Topic: Grade and Content: Do Now: Aim: Performance Objectives: Vocabulary: Material Lists: Safety and Disposal:

Lesson Plan Unit Plan: Topic: Grade and Content: Do Now: Aim: Performance Objectives: Vocabulary: Material Lists: Safety and Disposal: Lesson Plan Unit Plan: Chemical Bonding Topic: Hydrogen Bonding Grade and Content: 10th Grade Chemistry (Second Period 8:52 9:45) Do Now: Read the hydrogen bonding activity and be ready to explain the

More information

CP Covalent Bonds Ch. 8 &

CP Covalent Bonds Ch. 8 & CP Covalent Bonds Ch. 8 & 9 2015-2016 Why do atoms bond? Atoms want stability- to achieve a noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent

More information

Field 043: Science Chemistry Assessment Blueprint

Field 043: Science Chemistry Assessment Blueprint Field 043: Science Chemistry Assessment Blueprint Domain I Foundations of Science 0001 The Nature and Processes of Science (Standard 1) 0002 Central Concepts and Connections in Science (Standard 2) Domain

More information

NOTES: UNIT 6: Bonding

NOTES: UNIT 6: Bonding Name: Regents Chemistry: Mr. Palermo NOTES: UNIT 6: Bonding www.mrpalermo.com Name: Key Ideas Compounds can be differentiated by their chemical and physical properties. (3.1dd) Two major categories of

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction ionic compound- a metal reacts with a nonmetal Ionic bonds form when an atom that

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories MOLECULAR SHAPES 2 Molecular Shapes Lewis Structures show bonding and lone pairs do not denote shape Use Lewis Structures to determine shapes Molecular

More information

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons #60 Notes Unit 8: Bonding Ch. Bonding I. Bond Character Bonds are usually combinations of ionic and covalent character. The electronegativity difference is used to determine a bond s character. Electronegativity

More information

1.12 Covalent Bonding

1.12 Covalent Bonding 1.12 Covalent Bonding covalent bond a bond that arises when two atoms share one or more pairs of electrons between them. The shared electron pairs are attracted to the nuclei of both atoms. molecule two

More information