Important Aspects of Fragment Screening Collection Design

Size: px
Start display at page:

Download "Important Aspects of Fragment Screening Collection Design"

Transcription

1 Important Aspects of Fragment Screening Collection Design Phil Cox, Ph. D., Discovery Chemistry and Technology, AbbVie, USA Cresset User Group Meeting, Cambridge UK. Thursday, June 29 th 2017 Disclosure- Phil Cox is an Employee at AbbVie. The design, study conduct, and financial support for this research was provided by AbbVie. AbbVie participated in the interpretation of data, review, and approval of this presentation.

2 AbbVie Fragment Screening Paradigm Fragment Collections Fragment Screening Fragment Optimization Ro3 (4K) and Ro3.5 (9K) Collections For both high concentration HTS and BioPhysical Screens (BPS) HTS Biochemical assays Triage XRC SBDD Design (XRC and Props) BP Collection (1K) BPS N O N N Screening Synthesis Biophysical (BP) collection for primary and secondary site BP screens only NMR SPR Screening and confirmation Purification and sample logistics Lead 2

3 Property Space of Fragment Decks (Ro3, 3.5, and BP) CLogP MWt TPSA HBD HBA NRTB NHA Ro <20 Ro3.5 <3.5 <300 < BP <2 < <17 Rule of three represents the generally accepted ideal physicochemical property space of fragment hits. For Ro3.5 deck a number of parameters were relaxed beyond Ro3. BP (Biophysical Library for BP screening only) 3

4 Design of the Ro3 Deck- Saturation? Analysis of AbbVie legacy and commercial fragment decks Fsp3 distribution of AbbVie legacy fragment deck Saturation of commercial decks varies greatly (Swain) Key Organics Infarmatik Less saturated More saturated No real consensus on how saturated fragments should be Analyzed internal data to look for trends 4

5 Effect of Saturation (Fsp3) on Potency? pic50 data of 78K fragment-like compounds (maximum Ro4) vs Binned Fsp3 < >0.9 Binned Fsp3 Fsp3 ( ) bin contains fragments with the highest odds of pic50 >7. These fragments contain approximately equal numbers of saturated and unsaturated carbon atoms 5

6 Effect of Saturation(Fsp3 and NAR) on Potency? Mapping Fsp3, Num aromatic rings (NAR), and pic50 NAR Binned Fsp3 NAR = 1 and Fsp3 ( ) highest odds of pic50 > 6 and 7 criteria to purchase new fragments 6

7 Ro3 Fragment Collection 10 K Legacy library Aroom compounds >50mg Monomer Collection Vendors Ro3 Filter 3.5 K Fragments 3 K Fragments Ro3 Filter Deprotect Ro3 NAR = 1 Fsp3 = Design Synthesis 2.5 K Fragments 1 K Fragments 500 Fragments 1837 Fragments 4011 Ro3 Fragments Structural confirmation and solubility data 7

8 Ro3 Deck- Structures Confirmed and Solubility Measured Solubility (CAC, µm) NHA Ro3 fragments have high solubility (Average CAC=2330 µm) and purity (>95% LC/MS). High quality collection. 8

9 Case Study-Ro3 Fragment to Lead in 6 Months A B C Fragment Hit Ki=15 µm, LipE=5.2, BEI=18, LigE= 0.33 Biacore KD =16 µm, NMR Q score=5 From Ro3 fragment library XRC of Fragment Hit First Iteration Ki=0.02µM, LipE=5.2, BEI=21, LigE=0.39 Second Iteration TR-Fret Ki=0.003µM, LipE=5.3, BEI=20, LigE=0.40 Properties Fragment Hit ClogP 0.4 MWt 272 NAR 1 Fsp3 0.5 Tier 1 HLM Cl int,u 2.6 PAMPA 4.5 elogd 2.1 PFI 3.1 First Iteration Second Iteration

10 LigE vs LipE plot Lead Compound LigE Many compounds in very good property and efficiency space Ro3 fragment rapidly optimized to high quality drug-like chemical matter LipE 10

11 Advantages of a BP Library Probability of engaging a target and extent of chemical space NHA Probability of hitting a target is inversely proportional to the extent of chemical space with increasing number of heavy atoms 11

12 Advantages of a BP Library Probability of engaging a target and extent of chemical space M. Hann, Nature Reviews Drug Discovery, 2012, 11, 359 NHA Probability of hitting a target is inversely proportional to the extent of chemical space with increasing number of heavy atoms 12

13 Extent of chemical space BP chemical space much smaller than R03/3.5 % Compounds Per Heavy Atom BP library- Extent of chemical space = 3 x Ro3-3.5 librariesextent of chemical space = 5 x NHA Extent of chemical space is much smaller for BP than Ro3 and Ro3.5 chemical space and can be sampled by a smaller set of compounds. 13

14 Extent of chemical space Average MWt mapped onto NHA % Compounds Per Heavy Atom, Mean MWt BP library- Extent of chemical space = 3 x Ro3-3.5 librariesextent of chemical space = 5 x NHA Extent of chemical space is much smaller for BP than Ro3 and Ro3.5 chemical space and may be sampled by a smaller number of compounds. 14

15 Biophysical Deck (BP)- initial concept Ro3 library Ro 3.5 library Aroom Monomer Initiative Vendors MWt <200 LogD <=1 NAR <=2 Mean NHA = 11 Highly Soluble Fragments Measure Solubility NMR Aldrich MS BP fragments overlap with 75% of all other BP fragments. AMS used as sole source of BP fragments BP Library 15

16 Analysis of Vendor Overlap in BP Fragment Space* Libraries Total # # BP Fragments % Coverage by Aldrich Aldrich MS Abbvie Ro Abbvie Ro Aroom (ROOT, >50mg) ChemBridge ChemDiv Chem-X-Infinity DuPont Enamine Informatik Innovapharm InterBioscreen Key Organics LC Maybridge OTAVA Prestwick Vitas Wuxi Aldrich MS BP fragments overlap with 75% of all other BP fragments. AMS used as sole source of BP fragments BP Fragment Space Thanks to AbbVie s Cheminformatics group* 16

17 Aldrich MS BP Fragments- Selection Process 37,272 BP Fragments- 750 clusters Remove NAR=0 and NR=0 NAR>0, pick 20 per cluster* NAR= 0 and NR>0, pick 5 per cluster* 4.9K BP Fragments 7 scientists 1K BP Fragments 37K clustered (t-sne) 4.9K most diverse per cluster * most diverse per cluster 17

18 Size Distributions of Screening Decks % Compounds Per Heavy Atom BP Fragment Deck Ro3 Fragment Deck Ro3.5 Fragment Deck HTS Deck Number of Heavy Atoms Well positioned to cover fragment space with new fragment libraries 18

19 Size Distributions of Screening Decks and Hits Known fragment hits from literature (Swain analysis) % Compounds Per Heavy Atom BP Fragment Deck Ro3 Fragment Deck Ro3.5 Fragment Deck HTS Deck Number of Heavy Atoms Average NHA for hits from literature = 14.3, MWt =

20 Size Distributions of Screening Decks and Hits Known fragment hits from literature (Swain analysis) AZ comparison Fuller et al, DDT, 2016, % Compounds Per Heavy Atom BP Fragment Deck Ro3 Fragment Deck Ro3.5 Fragment Deck HTS Deck NHA Number of Heavy Atoms AZ fragment hits- NHAs trend higher 20

21 Size distributions of screening decks and hits AZ comparison Fuller et al, DDT, 2016, % Compounds Per Heavy Atom BP Fragment Deck Ro3 Fragment Deck Ro3.5 Fragment Deck HTS Deck NHA Number of Heavy Atoms AZ fragment hits- NHAs trend higher 21

22 Size distributions of screening decks and hits % Compounds Per Heavy Atom BP Fragment Deck Ro3 Fragment Deck Ro3.5 Fragment Deck HTS Deck AbbVie Fragment Hits Similar size to AZ hits Number of Heavy Atoms Internal fragment hits- average NHA = 16, MWt =

23 Lipophilicity distributions of fragment decks CLogP BP library least lipophilic with an average CLogP <=2 23

24 Saturation distributions of fragment decks Ar-sp3 = Aromatic atoms sp3 carbons Unsaturated Saturated Ar-sp3 Unsaturated Ro3 library contains the most saturated fragments 24

25 Property distribution maps Parallel coordinate plot of property space for fragment libraries Each line is a unique fragment BP library map most dissimilar Ro3 and Ro3.5 similar except for saturation space 25

26 Shape- 3D character of fragment decks PMI: Sauer and Schwartz J. Chem. Inf. Comput. Sci 2003, 43,

27 Using CRUK 3D Criteria* Cancer Research UK*: Firth et al J. Chem. Inf. Model. 2012, 52, D fragment hits from literature. Relatively flat Data courtesy of Chris Swain. 27

28 PBF (Plain of Best Fit) vs saturation (NAR and Fsp3) PBF: Firth, Brown, and Blagg J. Chem. Inf. Model. 2012, 52,

29 Charge state distributions of fragment decks Charge state of fragment libraries Charge state of fragment hits (Swain) Distribution similar to known fragment hits (Swain) 29

30 Potential for synthesis follow up Not trivial to determine the potential for synthetic follow up of fragments We have determined distribution of synthetic handles Overall Distribution However if the handles are required for binding or are embedded within a protein they are no longer useful for elaboration of the fragment Concept: C-H activation chemistry provides a Latent-Active approach to fragment optimization C-H bond the most ubiquitous bond in fragments! 30

31 C-H Activation for fragment follow-up We determined which substructures have potential for C-H activation from the current literature Analyzed the potential for C-H activation based on whether the substructure was present in the fragment Overall Distribution Have a number of collaborations focused on employing C-H activation chemistry to produce novel fragments Using this chemistry for both potential fragment follow-up and to provide bespoke fragments for augmentation. 31

32 Examples of enabling C-H activation chemistry S N Me C H Borylation Hartwig Bpin S N Me OMe Me N C H Silylation Stoltz & Grubbs OMe Me N Sin-Bu O N O NH Me C H Borylation Hartwig Bpin O N O NH Me Me N NH NH 2 2 N N N C H and hv MacMillan Me O O N N N C H Borylation Hartwig Bpin O N N N The burgeoning field of CH activation chemistry brings more potential flexibility to fragment follow-up as well as providing methodology for producing novel fragments for library enrichment. 32

33 Fragment chemistry collaborations Collaboration with Professor Brian Cox at the University of Sussex/Photodiversity to provide 3-D fragment scaffolds Most fragments within Ro3, with good balance of saturation (Average Fsp3 = 0.53). Collaboration with Professor Phil Garner (WSU) to supply uniquely substituted pyrrolidines. Stereo and enantiomerically enriched pyrrolidines accessible via Garner s 1,3- dipolar cycloaddition chemistry. 33

34 Summary A significant amount of time, effort, and investment has been dedicated to revamping and augmenting the fragment screening collection. Ro3 and Ro3.5 and BP fragment libraries cover all important regions of fragment space. Consistent with known fragment hits. The team has demonstrated the successful utility of FBDD in a number of programs. 34

35 Acknowledgements FBDD Chemistry HtL and HTC Chemistry FBDD Biophys and GPS Structural Biology Cheminformatics TEST Leadership 35

Enamine Golden Fragment Library

Enamine Golden Fragment Library Enamine Golden Fragment Library 14 March 216 1794 compounds deliverable as entire set or as selected items. Fragment Based Drug Discovery (FBDD) [1,2] demonstrates remarkable results: more than 3 compounds

More information

AMRI COMPOUND LIBRARY CONSORTIUM: A NOVEL WAY TO FILL YOUR DRUG PIPELINE

AMRI COMPOUND LIBRARY CONSORTIUM: A NOVEL WAY TO FILL YOUR DRUG PIPELINE AMRI COMPOUD LIBRARY COSORTIUM: A OVEL WAY TO FILL YOUR DRUG PIPELIE Muralikrishna Valluri, PhD & Douglas B. Kitchen, PhD Summary The creation of high-quality, innovative small molecule leads is a continual

More information

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences Fragment based lead discovery - introduction György M. Keserű H2020 FRAGET etwork Hungarian Academy of Sciences www.fragnet.eu Hit discovery from screening Druglike library Fragment library Large molecules

More information

Design and Synthesis of the Comprehensive Fragment Library

Design and Synthesis of the Comprehensive Fragment Library YOUR INNOVATIVE CHEMISTRY PARTNER IN DRUG DISCOVERY Design and Synthesis of the Comprehensive Fragment Library A 3D Enabled Library for Medicinal Chemistry Discovery Warren S Wade 1, Kuei-Lin Chang 1,

More information

Hit Finding and Optimization Using BLAZE & FORGE

Hit Finding and Optimization Using BLAZE & FORGE Hit Finding and Optimization Using BLAZE & FORGE Kevin Cusack,* Maria Argiriadi, Eric Breinlinger, Jeremy Edmunds, Michael Hoemann, Michael Friedman, Sami Osman, Raymond Huntley, Thomas Vargo AbbVie, Immunology

More information

Unlocking the potential of your drug discovery programme

Unlocking the potential of your drug discovery programme Unlocking the potential of your drug discovery programme Innovative screening The leading fragment screening platform with MicroScale Thermophoresis at its core Domainex expertise High quality results

More information

Introduction to FBDD Fragment screening methods and library design

Introduction to FBDD Fragment screening methods and library design Introduction to FBDD Fragment screening methods and library design Samantha Hughes, PhD Fragments 2013 RSC BMCS Workshop 3 rd March 2013 Copyright 2013 Galapagos NV Why fragment screening methods? Guess

More information

ChemDiv Beyond the Flatland 3D-Fragment Library for Fragment-Based Drug Discovery (FBDD)

ChemDiv Beyond the Flatland 3D-Fragment Library for Fragment-Based Drug Discovery (FBDD) ChemDiv Beyond the Flatland 3D-Fragment Library for Fragment-Based Drug Discovery (FBDD) CEMDIV BEYD TE FLATLAD 3D-FRAGMET LIBRARY BACKGRUD Fragment-based drug discovery (FBDD) has become an efficient

More information

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC )

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) SARomics Biostructures AB & Red Glead Discovery AB Medicon Village, Lund, Sweden Fragment-based lead discovery The basic idea:

More information

The Changing Requirements for Informatics Systems During the Growth of a Collaborative Drug Discovery Service Company. Sally Rose BioFocus plc

The Changing Requirements for Informatics Systems During the Growth of a Collaborative Drug Discovery Service Company. Sally Rose BioFocus plc The Changing Requirements for Informatics Systems During the Growth of a Collaborative Drug Discovery Service Company Sally Rose BioFocus plc Overview History of BioFocus and acquisition of CDD Biological

More information

Amorphous Blobs of Hope and Other Flights of Fancy. Steve Muchmore Chemaxon UGM April 18, 2011 Budapest

Amorphous Blobs of Hope and Other Flights of Fancy. Steve Muchmore Chemaxon UGM April 18, 2011 Budapest Amorphous Blobs of Hope and Other Flights of Fancy Steve Muchmore Chemaxon UGM April 18, 2011 Budapest Rules of Thumb help folks make objective and informed decisions in the face of incomplete or inaccurate

More information

Automated Compound Collection Enhancement: how Pipeline Pilot preserved our sanity. Darren Green GSK

Automated Compound Collection Enhancement: how Pipeline Pilot preserved our sanity. Darren Green GSK Automated Compound Collection Enhancement: how Pipeline Pilot preserved our sanity Darren Green GSK The Compound Collection Enhancement Challenge A diversity of ideas Which are novel Which have the desired

More information

Structure-Based Drug Discovery An Overview

Structure-Based Drug Discovery An Overview Structure-Based Drug Discovery An Overview Edited by Roderick E. Hubbard University of York, Heslington, York, UK and Vernalis (R&D) Ltd, Abington, Cambridge, UK RSC Publishing Contents Chapter 1 3D Structure

More information

Drug Informatics for Chemical Genomics...

Drug Informatics for Chemical Genomics... Drug Informatics for Chemical Genomics... An Overview First Annual ChemGen IGERT Retreat Sept 2005 Drug Informatics for Chemical Genomics... p. Topics ChemGen Informatics The ChemMine Project Library Comparison

More information

Increasing the Coverage of Medicinal Chemistry-Relevant Space in Commercial Fragments Screening

Increasing the Coverage of Medicinal Chemistry-Relevant Space in Commercial Fragments Screening pubs.acs.org/jcim Increasing the Coverage of Medicinal Chemistry-Relevant Space in Commercial Fragments Screening N. Yi Mok,, Ruth Brenk,*,,# and Nathan Brown*, Cancer Research UK Cancer Therapeutics Unit,

More information

Use of data mining and chemoinformatics in the identification and optimization of high-throughput screening hits for NTDs

Use of data mining and chemoinformatics in the identification and optimization of high-throughput screening hits for NTDs Use of data mining and chemoinformatics in the identification and optimization of high-throughput screening hits for NTDs James Mills; Karl Gibson, Gavin Whitlock, Paul Glossop, Jean-Robert Ioset, Leela

More information

The use of Design of Experiments to develop Efficient Arrays for SAR and Property Exploration

The use of Design of Experiments to develop Efficient Arrays for SAR and Property Exploration The use of Design of Experiments to develop Efficient Arrays for SAR and Property Exploration Chris Luscombe, Computational Chemistry GlaxoSmithKline Summary of Talk Traditional approaches SAR Free-Wilson

More information

Introduction. OntoChem

Introduction. OntoChem Introduction ntochem Providing drug discovery knowledge & small molecules... Supporting the task of medicinal chemistry Allows selecting best possible small molecule starting point From target to leads

More information

Building innovative drug discovery alliances

Building innovative drug discovery alliances Building innovative drug discovery alliances Hit optimisation o using fragments Mark kwhittaker Evotec AG, Fragments 2015, March 2015 Agenda Fragment optimisation in an ideal world Fragment optimisation

More information

A Picture Paints a Thousand Words Visualisation of SAR. John Cumming, AstraZeneca, Alderley Park, UK

A Picture Paints a Thousand Words Visualisation of SAR. John Cumming, AstraZeneca, Alderley Park, UK A Picture Paints a Thousand Words Visualisation of AR John Cumming, AstraZeneca, Alderley Park, UK Outline Why visualisation? Multi-parameter visualisation tructure fragmentation Matched pair analysis

More information

Similarity Search. Uwe Koch

Similarity Search. Uwe Koch Similarity Search Uwe Koch Similarity Search The similar property principle: strurally similar molecules tend to have similar properties. However, structure property discontinuities occur frequently. Relevance

More information

Medicinal Chemistry and Chemical Biology

Medicinal Chemistry and Chemical Biology Medicinal Chemistry and Chemical Biology Activities Drug Discovery Imaging Chemical Biology Computational Chemistry Natural Product Synthesis Current Staff Mike Waring Professor of Medicinal Chemistry

More information

The Institute of Cancer Research PHD STUDENTSHIP PROJECT PROPOSAL

The Institute of Cancer Research PHD STUDENTSHIP PROJECT PROPOSAL The Institute of Cancer Research PHD STUDENTSHIP PROJECT PROPOSAL PROJECT DETAILS Project Title: Design and synthesis of libraries of bifunctional degraders for the discovery of new cancer targets SUPERVISORY

More information

Using AutoDock for Virtual Screening

Using AutoDock for Virtual Screening Using AutoDock for Virtual Screening CUHK Croucher ASI Workshop 2011 Stefano Forli, PhD Prof. Arthur J. Olson, Ph.D Molecular Graphics Lab Screening and Virtual Screening The ultimate tool for identifying

More information

Fragment Screening in Drug Discovery

Fragment Screening in Drug Discovery Fragment Screening in Drug Discovery Marc Martinell SEQT, Sitges, 19th-20th October 2006 Crystax Pharmaceuticals SL Barcelona Science Park Josep Samitier 1-5, E-08028 Barcelona Tel: +34 93 403 4703 Fax

More information

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry Bioorganic & Medicinal Chemistry 20 (2012) 5324 5342 Contents lists available at SciVerse ScienceDirect Bioorganic & Medicinal Chemistry journal homepage: www.elsevier.com/locate/bmc Early phase drug discovery:

More information

Implementation of novel tools to facilitate fragment-based drug discovery by NMR:

Implementation of novel tools to facilitate fragment-based drug discovery by NMR: Implementation of novel tools to facilitate fragment-based drug discovery by NMR: Automated analysis of large sets of ligand-observed NMR binding data and 19 F methods Andreas Lingel Global Discovery Chemistry

More information

How IJC is Adding Value to a Molecular Design Business

How IJC is Adding Value to a Molecular Design Business How IJC is Adding Value to a Molecular Design Business James Mills Sexis LLP ChemAxon TechTalk Stevenage, ov 2012 james.mills@sexis.co.uk Overview Introduction to Sexis Sexis IJC use cases Data visualisation

More information

Chemical library design

Chemical library design Chemical library design Pavel Polishchuk Institute of Molecular and Translational Medicine Palacky University pavlo.polishchuk@upol.cz Drug development workflow Vistoli G., et al., Drug Discovery Today,

More information

Computational Chemistry in Drug Design. Xavier Fradera Barcelona, 17/4/2007

Computational Chemistry in Drug Design. Xavier Fradera Barcelona, 17/4/2007 Computational Chemistry in Drug Design Xavier Fradera Barcelona, 17/4/2007 verview Introduction and background Drug Design Cycle Computational methods Chemoinformatics Ligand Based Methods Structure Based

More information

Building innovative drug discovery alliances. Just in KNIME: Successful Process Driven Drug Discovery

Building innovative drug discovery alliances. Just in KNIME: Successful Process Driven Drug Discovery Building innovative drug discovery alliances Just in KIME: Successful Process Driven Drug Discovery Berlin KIME Spring Summit, Feb 2016 Research Informatics @ Evotec Evotec s worldwide operations 2 Pharmaceuticals

More information

Crystal structure-based virtual screening for. fragment-like ligands of the human histamine. H 1 receptor

Crystal structure-based virtual screening for. fragment-like ligands of the human histamine. H 1 receptor Supporting Information Crystal structure-based virtual screening for fragment-like ligands of the human histamine H 1 receptor Chris de Graaf 1*, Albert J. Kooistra 1*, Henry F. Vischer 1, Vsevolod Katritch

More information

Introduction to Chemoinformatics and Drug Discovery

Introduction to Chemoinformatics and Drug Discovery Introduction to Chemoinformatics and Drug Discovery Irene Kouskoumvekaki Associate Professor February 15 th, 2013 The Chemical Space There are atoms and space. Everything else is opinion. Democritus (ca.

More information

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a Retrieving hits through in silico screening and expert assessment M.. Drwal a,b and R. Griffith a a: School of Medical Sciences/Pharmacology, USW, Sydney, Australia b: Charité Berlin, Germany Abstract:

More information

Computational chemical biology to address non-traditional drug targets. John Karanicolas

Computational chemical biology to address non-traditional drug targets. John Karanicolas Computational chemical biology to address non-traditional drug targets John Karanicolas Our computational toolbox Structure-based approaches Ligand-based approaches Detailed MD simulations 2D fingerprints

More information

Fragment-Based Drug Discovery (FBDD) Using the dispr Technique on Pioneer Systems with OneStep and NeXtStep Injection Methodologies

Fragment-Based Drug Discovery (FBDD) Using the dispr Technique on Pioneer Systems with OneStep and NeXtStep Injection Methodologies APPLICATION NOTE 21 Fragment-Based Drug Discovery (FBDD) Using the dispr Technique on Pioneer Systems with OneStep and NeXtStep Injection Methodologies Eric L. Reese, Ph.D, SensiQ Technologies, Aaron Martin

More information

Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation

Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation Charles Blundell charles.blundell@c4xdiscovery.com www.c4xdiscovery.com Rigid: single

More information

Navigation in Chemical Space Towards Biological Activity. Peter Ertl Novartis Institutes for BioMedical Research Basel, Switzerland

Navigation in Chemical Space Towards Biological Activity. Peter Ertl Novartis Institutes for BioMedical Research Basel, Switzerland Navigation in Chemical Space Towards Biological Activity Peter Ertl Novartis Institutes for BioMedical Research Basel, Switzerland Data Explosion in Chemistry CAS 65 million molecules CCDC 600 000 structures

More information

Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery

Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery 21 th /June/2018@CUGM Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery Kaz Ikeda, Ph.D. Keio University Self Introduction Keio University, Tokyo, Japan (Established

More information

The Rockefeller University Compound Library

The Rockefeller University Compound Library The Rockefeller University Compound Library J. Fraser Glickman Rockefeller University High Throughput and Spectroscopy Resource Center April 4 th, 2014 Technologies Resources Available Microplate assay

More information

Interpretation of Organic Spectra. Chem 4361/8361

Interpretation of Organic Spectra. Chem 4361/8361 Interpretation of Organic Spectra Chem 4361/8361 Characteristics of Common Spectrometric Methods H-1 C-13 MS IR/RAMAN UV-VIS ORD/CD X- RAY Radiation type RF RF Not relevant IR UV to visible UV to visible

More information

Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME

Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME Iván Solt Solutions for Cheminformatics Drug Discovery Strategies for known targets High-Throughput Screening (HTS) Cells

More information

Design and Synthesis of 3-Dimensional Fragments to Explore Pharmaceutical Space

Design and Synthesis of 3-Dimensional Fragments to Explore Pharmaceutical Space Design and Synthesis of 3-Dimensional Fragments to Explore Pharmaceutical Space Mary Christine Wheldon Doctor of Philosophy University of York Chemistry September 2016 Abstract This thesis describes an

More information

Synthetic organic compounds

Synthetic organic compounds Synthetic organic compounds for research and drug discovery Compounds for TS Fragment libraries Target-focused libraries Chemical building blocks Custom synthesis Drug discovery services Contract research

More information

Design Drugs Collaboratively Using Spotfire Visualization and Analysis

Design Drugs Collaboratively Using Spotfire Visualization and Analysis Design Drugs Collaboratively Using Spotfire Visualization and Analysis Anthony Donofrio PKI Data Analysis & R&D Informatics East Coast User Conference GSK Upper Merion, PA 09/15/2016 Merck Research Laboratories

More information

Data Quality Issues That Can Impact Drug Discovery

Data Quality Issues That Can Impact Drug Discovery Data Quality Issues That Can Impact Drug Discovery Sean Ekins 1, Joe Olechno 2 Antony J. Williams 3 1 Collaborations in Chemistry, Fuquay Varina, NC. 2 Labcyte Inc, Sunnyvale, CA. 3 Royal Society of Chemistry,

More information

Exploring the chemical space of screening results

Exploring the chemical space of screening results Exploring the chemical space of screening results Edmund Champness, Matthew Segall, Chris Leeding, James Chisholm, Iskander Yusof, Nick Foster, Hector Martinez ACS Spring 2013, 7 th April 2013 Optibrium,

More information

Cheminformatics Role in Pharmaceutical Industry. Randal Chen Ph.D. Abbott Laboratories Aug. 23, 2004 ACS

Cheminformatics Role in Pharmaceutical Industry. Randal Chen Ph.D. Abbott Laboratories Aug. 23, 2004 ACS Cheminformatics Role in Pharmaceutical Industry Randal Chen Ph.D. Abbott Laboratories Aug. 23, 2004 ACS Agenda The big picture for pharmaceutical industry Current technological/scientific issues Types

More information

Early Stages of Drug Discovery in the Pharmaceutical Industry

Early Stages of Drug Discovery in the Pharmaceutical Industry Early Stages of Drug Discovery in the Pharmaceutical Industry Daniel Seeliger / Jan Kriegl, Discovery Research, Boehringer Ingelheim September 29, 2016 Historical Drug Discovery From Accidential Discovery

More information

Virtual Screening: How Are We Doing?

Virtual Screening: How Are We Doing? Virtual Screening: How Are We Doing? Mark E. Snow, James Dunbar, Lakshmi Narasimhan, Jack A. Bikker, Dan Ortwine, Christopher Whitehead, Yiannis Kaznessis, Dave Moreland, Christine Humblet Pfizer Global

More information

A reliable computational workflow for the selection of optimal screening libraries

A reliable computational workflow for the selection of optimal screening libraries DOI 10.1186/s13321-015-0108-0 RESEARCH ARTICLE Open Access A reliable computational workflow for the selection of optimal screening libraries Yocheved Gilad 1, Katalin Nadassy 2 and Hanoch Senderowitz

More information

An Integrated Approach to in-silico

An Integrated Approach to in-silico An Integrated Approach to in-silico Screening Joseph L. Durant Jr., Douglas. R. Henry, Maurizio Bronzetti, and David. A. Evans MDL Information Systems, Inc. 14600 Catalina St., San Leandro, CA 94577 Goals

More information

ASSESSING THE DRUG ABILITY OF CHALCONES USING IN- SILICO TOOLS

ASSESSING THE DRUG ABILITY OF CHALCONES USING IN- SILICO TOOLS Page109 IJPBS Volume 5 Issue 1 JAN-MAR 2015 109-114 Research Article Pharmaceutical Sciences ASSESSING THE DRUG ABILITY OF CHALCONES USING IN- SILICO TOOLS Department of Pharmaceutical Chemistry, Institute

More information

Structure-based maximal affinity model predicts small-molecule druggability

Structure-based maximal affinity model predicts small-molecule druggability Structure-based maximal affinity model predicts small-molecule druggability Alan Cheng alan.cheng@amgen.com IMA Workshop (Jan 17, 2008) Druggability prediction Introduction Affinity model Some results

More information

Small-Molecule Library Subset Screening as an Aid for Accelerating Lead Identification

Small-Molecule Library Subset Screening as an Aid for Accelerating Lead Identification 522515JBXXXX10.1177/1087057114522515Journal of Biomolecular ScreeningBeresini et al. research-article2014 Original Research Small-Molecule Library Subset Screening as an Aid for Accelerating Lead Identification

More information

Rapid Application Development using InforSense Open Workflow and Daylight Technologies Deliver Discovery Value

Rapid Application Development using InforSense Open Workflow and Daylight Technologies Deliver Discovery Value Rapid Application Development using InforSense Open Workflow and Daylight Technologies Deliver Discovery Value Anthony Arvanites Daylight User Group Meeting March 10, 2005 Outline 1. Company Introduction

More information

COMBINATORIAL CHEMISTRY: CURRENT APPROACH

COMBINATORIAL CHEMISTRY: CURRENT APPROACH COMBINATORIAL CHEMISTRY: CURRENT APPROACH Dwivedi A. 1, Sitoke A. 2, Joshi V. 3, Akhtar A.K. 4* and Chaturvedi M. 1, NRI Institute of Pharmaceutical Sciences, Bhopal, M.P.-India 2, SRM College of Pharmacy,

More information

Ignasi Belda, PhD CEO. HPC Advisory Council Spain Conference 2015

Ignasi Belda, PhD CEO. HPC Advisory Council Spain Conference 2015 Ignasi Belda, PhD CEO HPC Advisory Council Spain Conference 2015 Business lines Molecular Modeling Services We carry out computational chemistry projects using our selfdeveloped and third party technologies

More information

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre Dr. Sander B. Nabuurs Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre The road to new drugs. How to find new hits? High Throughput

More information

bcl::cheminfo Suite Enables Machine Learning-Based Drug Discovery Using GPUs Edward W. Lowe, Jr. Nils Woetzel May 17, 2012

bcl::cheminfo Suite Enables Machine Learning-Based Drug Discovery Using GPUs Edward W. Lowe, Jr. Nils Woetzel May 17, 2012 bcl::cheminfo Suite Enables Machine Learning-Based Drug Discovery Using GPUs Edward W. Lowe, Jr. Nils Woetzel May 17, 2012 Outline Machine Learning Cheminformatics Framework QSPR logp QSAR mglur 5 CYP

More information

In Silico Investigation of Off-Target Effects

In Silico Investigation of Off-Target Effects PHARMA & LIFE SCIENCES WHITEPAPER In Silico Investigation of Off-Target Effects STREAMLINING IN SILICO PROFILING In silico techniques require exhaustive data and sophisticated, well-structured informatics

More information

Visualization and manipulation of Matched Molecular Series for decision support

Visualization and manipulation of Matched Molecular Series for decision support 250 th ACS National Meeting, Boston 16 th Aug 2015 Visualization and manipulation of Matched Molecular Series for decision support Noel O Boyle and Roger Sayle NextMove Software Matched (Molecular) Pairs

More information

New Synthetic Technologies in Medicinal Chemistry

New Synthetic Technologies in Medicinal Chemistry New Synthetic Technologies in Medicinal Chemistry Edited by Elizabeth Farrant Worldwide Medicinal Chemistry, Pfizer Ltd., Sandwich, Kent, UK Chapter 1 Chapter 2 Introduction Elizabeth Farrant 1.1 Introduction

More information

Structural biology and drug design: An overview

Structural biology and drug design: An overview Structural biology and drug design: An overview livier Taboureau Assitant professor Chemoinformatics group-cbs-dtu otab@cbs.dtu.dk Drug discovery Drug and drug design A drug is a key molecule involved

More information

Contact ACS Webinars at Join a global community of over 150,000 chemistry professionals

Contact ACS Webinars at Join a global community of over 150,000 chemistry professionals Have Questions? Type them into questions box! Why am I muted? Don t worry. Everyone is muted except the presenter and host. Thank you and enjoy the show. Contact ACS Webinars at acswebinars@acs.org 1 Join

More information

In silico generation of novel, drug-like chemical matter using the LSTM deep neural network

In silico generation of novel, drug-like chemical matter using the LSTM deep neural network In silico generation of novel, drug-like chemical matter using the LSTM deep neural network Peter Ertl Novartis Institutes for BioMedical Research, Basel, CH September 2018 Neural networks in cheminformatics

More information

COMBINATORIAL CHEMISTRY IN A HISTORICAL PERSPECTIVE

COMBINATORIAL CHEMISTRY IN A HISTORICAL PERSPECTIVE NUE FEATURE T R A N S F O R M I N G C H A L L E N G E S I N T O M E D I C I N E Nuevolution Feature no. 1 October 2015 Technical Information COMBINATORIAL CHEMISTRY IN A HISTORICAL PERSPECTIVE A PROMISING

More information

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017 Isothermal Titration Calorimetry in Drug Discovery Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 217 Introduction Introduction to ITC Strengths / weaknesses & what is required

More information

A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors

A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors Rajarshi Guha, Debojyoti Dutta, Ting Chen and David J. Wild School of Informatics Indiana University and Dept.

More information

Biophysics Service at the MPIB Biochemistry Core Facility Stephan Uebel, Biochemistry Core Facility

Biophysics Service at the MPIB Biochemistry Core Facility Stephan Uebel, Biochemistry Core Facility Biophysics Service at the MPIB Biochemistry Core Facility 30.11.2015 Stephan Uebel, Biochemistry Core Facility uebel@biochem.mpg.de Overview Peptide Chemistry - Peptide synthesis -Amino acid analysis -

More information

Translating Methods from Pharma to Flavours & Fragrances

Translating Methods from Pharma to Flavours & Fragrances Translating Methods from Pharma to Flavours & Fragrances CINF 27: ACS National Meeting, New Orleans, LA - 18 th March 2018 Peter Hunt, Edmund Champness, Nicholas Foster, Tamsin Mansley & Matthew Segall

More information

LigandScout. Automated Structure-Based Pharmacophore Model Generation. Gerhard Wolber* and Thierry Langer

LigandScout. Automated Structure-Based Pharmacophore Model Generation. Gerhard Wolber* and Thierry Langer LigandScout Automated Structure-Based Pharmacophore Model Generation Gerhard Wolber* and Thierry Langer * E-Mail: wolber@inteligand.com Pharmacophores from LigandScout Pharmacophores & the Protein Data

More information

MSc Drug Design. Module Structure: (15 credits each) Lectures and Tutorials Assessment: 50% coursework, 50% unseen examination.

MSc Drug Design. Module Structure: (15 credits each) Lectures and Tutorials Assessment: 50% coursework, 50% unseen examination. Module Structure: (15 credits each) Lectures and Assessment: 50% coursework, 50% unseen examination. Module Title Module 1: Bioinformatics and structural biology as applied to drug design MEDC0075 In the

More information

DivCalc: A Utility for Diversity Analysis and Compound Sampling

DivCalc: A Utility for Diversity Analysis and Compound Sampling Molecules 2002, 7, 657-661 molecules ISSN 1420-3049 http://www.mdpi.org DivCalc: A Utility for Diversity Analysis and Compound Sampling Rajeev Gangal* SciNova Informatics, 161 Madhumanjiri Apartments,

More information

Application Note. Authors. Introduction. Lauren E. Frick and William A. LaMarr Agilent Technologies, Inc. Wakefield, MA, USA

Application Note. Authors. Introduction. Lauren E. Frick and William A. LaMarr Agilent Technologies, Inc. Wakefield, MA, USA Fragment-Based Drug Discovery: Comparing Labeled and Label-Free Screening of β-amyloid Secretase (BACE-1) Using Fluorescence Spectroscopy and Ultrafast SPE/MS/MS Application Note Authors Lauren E. Frick

More information

Web tools for Monomer selection, Library Design and Compound Acquisition. Andrew Leach GlaxoSmithKline Research and Development Stevenage

Web tools for Monomer selection, Library Design and Compound Acquisition. Andrew Leach GlaxoSmithKline Research and Development Stevenage Web tools for Monomer selection, Library Design and Compound Acquisition Andrew Leach GlaxoSmithKline Research and Development Stevenage Historical perspective Bench scientists unused to dealing with and

More information

Computational Methods and Drug-Likeness. Benjamin Georgi und Philip Groth Pharmakokinetik WS 2003/2004

Computational Methods and Drug-Likeness. Benjamin Georgi und Philip Groth Pharmakokinetik WS 2003/2004 Computational Methods and Drug-Likeness Benjamin Georgi und Philip Groth Pharmakokinetik WS 2003/2004 The Problem Drug development in pharmaceutical industry: >8-12 years time ~$800m costs >90% failure

More information

Pipeline Pilot Integration

Pipeline Pilot Integration Scientific & technical Presentation Pipeline Pilot Integration Szilárd Dóránt July 2009 The Component Collection: Quick facts Provides access to ChemAxon tools from Pipeline Pilot Free of charge Open source

More information

Synthetic organic compounds

Synthetic organic compounds Synthetic organic compounds for research and drug discovery chemicals Compounds for TS Fragment libraries Target-focused libraries Chemical building blocks Custom synthesis Drug discovery services Contract

More information

JCICS Major Research Areas

JCICS Major Research Areas JCICS Major Research Areas Chemical Information Text Searching Structure and Substructure Searching Databases Patents George W.A. Milne C571 Lecture Fall 2002 1 JCICS Major Research Areas Chemical Computation

More information

The Case for Use Cases

The Case for Use Cases The Case for Use Cases The integration of internal and external chemical information is a vital and complex activity for the pharmaceutical industry. David Walsh, Grail Entropix Ltd Costs of Integrating

More information

Cross Discipline Analysis made possible with Data Pipelining. J.R. Tozer SciTegic

Cross Discipline Analysis made possible with Data Pipelining. J.R. Tozer SciTegic Cross Discipline Analysis made possible with Data Pipelining J.R. Tozer SciTegic System Genesis Pipelining tool created to automate data processing in cheminformatics Modular system built with generic

More information

Expedite Hit Discovery: Split & Pool in the 21st Century. Dr. Andreas Marzinzik

Expedite Hit Discovery: Split & Pool in the 21st Century. Dr. Andreas Marzinzik Expedite it Discovery: Split & Pool in the 21st Century Dr. Andreas Marzinzik Lead Finding in Drug Discovery Lead Target ID Assay Devel. Screen TS / FBS it to Lead Lead ptimization D0 D1 D2a D2b D3 spc

More information

Supporting Information (Part II) for ACS Combinatorial Science

Supporting Information (Part II) for ACS Combinatorial Science Supporting Information (Part II) for ACS Combinatorial Science Application of 6,7Indole Aryne Cycloaddition and Pd(0)Catalyzed SuzukiMiyaura and BuchwaldHartwig CrossCoupling Reactions for the Preparation

More information

NMR Solutions for drug discovery

NMR Solutions for drug discovery NMR Solutions for drug discovery Dr. Matteo Pennestri London, UK Bruker Users Meeting Innovation with Integrity The principle of Fragment Based Screening from efficient fragments to Drug candidates Fragment

More information

KNIME-based scoring functions in Muse 3.0. KNIME User Group Meeting 2013 Fabian Bös

KNIME-based scoring functions in Muse 3.0. KNIME User Group Meeting 2013 Fabian Bös KIME-based scoring functions in Muse 3.0 KIME User Group Meeting 2013 Fabian Bös Certara Mission: End-to-End Model-Based Drug Development Certara was formed by acquiring and integrating Tripos, Pharsight,

More information

The Schrödinger KNIME extensions

The Schrödinger KNIME extensions The Schrödinger KNIME extensions Computational Chemistry and Cheminformatics in a workflow environment Jean-Christophe Mozziconacci Volker Eyrich Topics What are the Schrödinger extensions? Workflow application

More information

Protein NMR. Bin Huang

Protein NMR. Bin Huang Protein NMR Bin Huang Introduction NMR and X-ray crystallography are the only two techniques for obtain three-dimentional structure information of protein in atomic level. NMR is the only technique for

More information

Learning Organic Chemistry

Learning Organic Chemistry Objective 1 Represent organic molecules with chemical formulas, expanded formulas, Lewis structures, skeletal structures. Determine shape (VSEPR), bond polarity, and molecule polarity. Identify functional

More information

Medicinal Chemist s Relationship with Additivity: Are we Taking the Fundamentals for Granted?

Medicinal Chemist s Relationship with Additivity: Are we Taking the Fundamentals for Granted? Medicinal Chemist s Relationship with Additivity: Are we Taking the Fundamentals for Granted? J. Guy Breitenbucher Streamlining Drug Discovery Conference San Francisco, CA ct. 25, 2018 Additivity as the

More information

LIBRARY DESIGN FOR COLLABORATIVE DRUG DISCOVERY: EXPANDING DRUGGABLE CHEMOGENOMIC SPACE

LIBRARY DESIGN FOR COLLABORATIVE DRUG DISCOVERY: EXPANDING DRUGGABLE CHEMOGENOMIC SPACE 5 th /June/2018@British Embassy in Tokyo LIBRARY DESIGN FOR COLLABORATIVE DRUG DISCOVERY: EXPANDING DRUGGABLE CHEMOGENOMIC SPACE Kazuyoshi Ikeda, Ph.D. Keio University SELF-INTRODUCTION Keio University,

More information

Genetic Mutations. Jing Lu

Genetic Mutations. Jing Lu Data-Driven Insights into Ligands, Proteins, and Genetic Mutations by Jing Lu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics)

More information

BioSolveIT. A Combinatorial Approach for Handling of Protonation and Tautomer Ambiguities in Docking Experiments

BioSolveIT. A Combinatorial Approach for Handling of Protonation and Tautomer Ambiguities in Docking Experiments BioSolveIT Biology Problems Solved using Information Technology A Combinatorial Approach for andling of Protonation and Tautomer Ambiguities in Docking Experiments Ingo Dramburg BioSolve IT Gmb An der

More information

Multi-Parameter Optimization: Identifying high quality compounds with a balance of properties

Multi-Parameter Optimization: Identifying high quality compounds with a balance of properties Multi-Parameter Optimization: Identifying high quality compounds with a balance of properties Matthew D Segall Optibrium Ltd., 7226 Cambridge Research Park, Beach Drive, Cambridge, CB25 9TL, UK Email:

More information

Structure-Activity Modeling - QSAR. Uwe Koch

Structure-Activity Modeling - QSAR. Uwe Koch Structure-Activity Modeling - QSAR Uwe Koch QSAR Assumption: QSAR attempts to quantify the relationship between activity and molecular strcucture by correlating descriptors with properties Biological activity

More information

De Novo molecular design with Deep Reinforcement Learning

De Novo molecular design with Deep Reinforcement Learning De Novo molecular design with Deep Reinforcement Learning @olexandr Olexandr Isayev, Ph.D. University of North Carolina at Chapel Hill olexandr@unc.edu http://olexandrisayev.com About me Ph.D. in Chemistry

More information

Dispensing Processes Profoundly Impact Biological, Computational and Statistical Analyses

Dispensing Processes Profoundly Impact Biological, Computational and Statistical Analyses Dispensing Processes Profoundly Impact Biological, Computational and Statistical Analyses Sean Ekins 1, Joe Olechno 2 Antony J. Williams 3 1 Collaborations in Chemistry, Fuquay Varina, NC. 2 Labcyte Inc,

More information

Rules for drug discovery: can simple property criteria help you to find a drug?

Rules for drug discovery: can simple property criteria help you to find a drug? Rules for drug discovery: can simple property criteria help you to find a drug? The years since the publication of Lipinski s Rule of Five (Ro5) 1 in 1997 have seen the growth of a minor industry, dedicated

More information

PROVIDING CHEMINFORMATICS SOLUTIONS TO SUPPORT DRUG DISCOVERY DECISIONS

PROVIDING CHEMINFORMATICS SOLUTIONS TO SUPPORT DRUG DISCOVERY DECISIONS 179 Molecular Informatics: Confronting Complexity, May 13 th - 16 th 2002, Bozen, Italy PROVIDING CHEMINFORMATICS SOLUTIONS TO SUPPORT DRUG DISCOVERY DECISIONS CARLETON R. SAGE, KEVIN R. HOLME, NIANISH

More information

Hit to Lead Michael Rafferty

Hit to Lead Michael Rafferty it to Lead 1 Ph.D. Department of Medicinal Chemistry University of Kansas raffe01@ku.edu Background Ph.D. Medicinal Chemistry, University of Kansas Postdoctoral Fellowship, I 25+ years experience in drug

More information