Experiment #8. LeChatelier s Principle

Size: px
Start display at page:

Download "Experiment #8. LeChatelier s Principle"

Transcription

1 Experiment #8. LeChatelier s Principle Aim: To study the effect of concentration and temperature on chemical equilibrium When the rate of the forward reaction becomes equal to the rate of the reverse reaction, we say that the reaction is at equilibrium. We can disturb a reaction at equilibrium by changing the concentration, pressure/ volume or temperature. According to LeChatelier s Principle, when a system at equilibrium is disturbed by a change in temperature, pressure or concentration, the system s equilibrium will shift so as to counteract the effect of the disturbance. Consider the general equilibrium a A + b B c C + d D (1) If we add a reactant, the equilibrium will shift towards the product side. This is because a portion of the added reactant will be used up to form more products, until the equilibrium is re- established. If we remove a product, then to compensate for the loss of the products, more product will be formed from the reactants and the equilibrium will shift towards the products. If we remove a reactant, then to compensate for the loss of the reactants, the product will decompose to form reactants and therefore the equilibrium will shift towards the reactants. If we add a product, then the equilibrium will shift to the reactants in order to consume the excess product. We can also change the concentration of the reactants/products by carrying out a side reaction. For example, to the equilibrium reaction in equation 1, we could add some compound F so that F reacts with C c C + f F x X () Due to reaction, the amount of C will decrease (because C is being used up in reaction ) which means that the equilibrium in reaction 1 will shift towards the product side to form more C. Pressure changes can affect an equilibrium involving gases. If the pressure on the system increases (or the volume decreases), then the equilibrium will shift towards the side with fewer total gas moles to decrease the pressure. The opposite effect is observed when the pressure is decreased (or volume is increased). The system shifts in the direction of the side with more gas moles to increase the pressure. Pressure can also be changed by adding an inert gas (gas not participating in the equilibrium). However, this does not affect the equilibrium. If the pressure is increased/decreased by adding/removing one of the gases participating in the equilibrium, then the effect will be the same as adding /removing reactants/products. Temperature also affects an equilibrium. An endothermic process will be favored (shifting towards the formation of products) by an increase in temperature. An exothermic process will be favored (shifting towards the formation of products) by a decrease in temperature. Concentration, Pressure and Volume changes shift the equilibrium but do not change the value of the equilibrium constant. Temperature changes, by contrast, not only shift the equilibrium but also change the value of the equilibrium constant

2 Equipment 1 small test tube 1 large test tube Chemicals 0.10 M CuSO 4 (aq) 0.10 M CaCl (aq) Concentrated NH 3 (aq) (ammonia solution) 0.10 M Na CO 3 (aq) 1 M HCl (aq) (hydrochloric acid) 6 M HCl (aq) (hydrochloric acid) 6 M NaOH (aq) (sodium hydroxide) Procedure Part I: Change in concentration 1. Place 1 ml (about 10 drops) of 0.1 M CuSO 4 in a test tube and note its initial color. To this, add 15 M NH 3 (concentrated NH 3 ) dropwise until the solution changes color and is not cloudy. Note the final color of the solution.. To the solution from step 1, add 1 M HCl dropwise until there is a color change. Note down the color change. DISPOSAL: Dispose the contents of the test tube from Part I in the appropriately labeled waste container. Part II Sparingly soluble salt 1. Take 10 drops 0.1 M Na CO 3 in a big test tube and add to it 10 drops of 0.1 M CaCl. Note down your observations in the data sheet.. Add 6 M HCl dropwise to the solution from step 1 until a change is observed. Note down your observations. 3. To this solution (in step ), add 6 M NaOH solution dropwise till you see a change. Note your observations in the data sheet. 4. Add 6 M HCl dropwise to the solution from step 3 till a change is observed. Note down your observations. DISPOSAL: The contents of the test tube from Part II can be disposed of in the sink. Part III Temperature change 1. Collect a sealed test tube containing cobalt ions as mentioned by your instructor.. Note down the color of the solution in the test tube. 3. Now place the test tube in a beaker containing boiling water. Continue keeping the test tube in the hot water until you observe a color change. Note down this new color of the solution. 4. Remove the test tube from the hot water, cool it for a minute or so, and now place the test tube in a beaker containing ice water. Continue keeping the test tube in the cold water until you observe a color change. Note down this new color of the solution. 5. Return the test tube to its original location.

3 Name: CHM11 Lab LeChatelier s Principle Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste disposal procedures observed Followed procedure correctly without depending too much on instructor or lab partner 3 Work space and glassware was cleaned up 1 Lab Report Part I: Observations correctly recorded 1 Part I: Analysis (1 pt each question), (shift direction correctly identified, reason for shift clearly explained) Part II: Observations correctly recorded 1 Part II: Reactions (balanced with correct formulas, phases, and charges) Part II: Analysis (1 pt each question), (shift direction correctly identified, reason for shift clearly explained) Part III: Observations correctly recorded 1 Part III: Analysis (1 pt each question), (shift direction and endo/exo correctly identified, reason for shift clearly explained) Total 0 Subject to additional penalties at the discretion of the instructor.

4

5 LeChatelier s Principle: Observations and Discussion Name Part I: Change in concentration Procedure Observation Initial color of the CuSO 4 solution Color of the solution after NH 3 is added Color of the solution after adding HCl When CuSO 4 is mixed with NH 3, the following equilibrium is established (3) Cu + (aq) + 4NH 3 (aq) [Cu(NH 3 ) 4 ] + (aq) [Cu(NH 3 ) 4 ] + (aq) is dark blue in color a) Which direction did the equilibrium shift when NH 3 was added to CuSO 4? Describe the type of stress this applied to the equilibrium in equation (3) and how the observed shift relieves that stress. Be specific in your answer. When HCl is added it reacts according the following equation: (4) H + (aq) + NH 3 (aq) à NH 4 + (aq) b) Which direction did the equilibrium in equation (3) shift when HCl was added? Describe the type of stress this applied to the equilibrium in equation (3) and how the observed shift relieves that stress. Be specific in your answer.

6 Part II: Sparingly Soluble Salt Step Procedure Observation 1 Mixing 0.1 M Na CO 3 and 0.1 M CaCl a) Write the balanced chemical reaction taking place when Na CO 3 is mixed with CaCl (this is a double replacement reaction). Include all phases and write correct product formulas. b) Write the net ionic equation taking place for the reaction in a). (This is your equilibrium reaction) Step Procedure Observation Adding 6 M HCl The added HCl reacts according to the following equations: (5) H + (aq) + CO 3 - H CO 3 (aq) H O (l) + CO (g) c) Which direction did the equilibrium in b) shift when HCl was added? Describe the type of stress this applied to the equilibrium you wrote for b) and how the observed shift relieves that stress. Be specific in your answer.

7 Step Procedure Observation 3 Adding 6M NaOH 4 Adding 6 M HCl d) Explain your observations for steps 3 & 4 in terms of LeChatelier s principle and your equilibrium from b). Part III: Change in Temperature Initial color of solution in the sealed test tube Color of the solution on heating in hot water bath Color of the solution on cooling in ice water The equilibrium reaction taking place in the sealed test tube is (6) [Co(H O) 6 ] + (aq) + 4 Cl - (aq) [CoCl 4 ] - (aq) + 6 H O (l) [Co(H O) 6 ] + (aq) is pink in color [CoCl 4 ] - (aq) is blue in color a) Which direction did the equilibrium in (6) shift when added to hot water? Which direction did the equilibrium in (6) shift when added to cold water? b) Based on your observations, is reaction (6) endothermic or exothermic? (hint try writing in heat as a product or reactant and see which fits) Describe how the observed shift in a) relieves the stress (heat) applied to equilibrium (6).

#11. Chemical Equilibrium

#11. Chemical Equilibrium #11. Chemical Equilibrium Goal To observe and explain equilibrium shifts based on Le Chatelier s Principle. Introduction In any chemical reaction, reactants are converted to products. In some cases, some

More information

Experiment #12. Enthalpy of Neutralization

Experiment #12. Enthalpy of Neutralization Experiment #12. Enthalpy of Neutralization Introduction In the course of most physical processes and chemical reactions there is a change in energy. In chemistry what is normally measured is ΔH (enthalpy

More information

CHM112 Lab Hydrolysis and Buffers Grading Rubric

CHM112 Lab Hydrolysis and Buffers Grading Rubric Name Team Name CHM112 Lab Hydrolysis and Buffers Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial calculations completed

More information

A general statement governing all systems in a state of dynamic equilibrium follows:

A general statement governing all systems in a state of dynamic equilibrium follows: Chapter 20 Experiment: LeChâtelier s Principle: Buffers OBJECTIVES: Study the effects of concentration and temperature changes on the position of equilibrium in a chemical system. Study the effect of strong

More information

CHM101 Lab Chemical Reactions Grading Rubric

CHM101 Lab Chemical Reactions Grading Rubric Name Team Name CHM101 Lab Chemical Reactions Grading Rubric To participate in this lab you must have splash- proof goggles, proper shoes and attire. Criteria Points possible Points earned Lab Performance

More information

Experiment #7. Chemical Reactions.

Experiment #7. Chemical Reactions. Experiment #7. Chemical Reactions. Goals To observe chemical reactions and balance chemical equations. Background Chemical and Physical Changes Changes in matter are often classified as either physical

More information

Equilibrium and LeChatelier s Principle

Equilibrium and LeChatelier s Principle 1 Equilibrium and LeChatelier s Principle Purpose: To examine LeChatelier s Principle by studying disturbances applied to several equilibrium systems. Introduction Many chemical reactions reach a state

More information

EXPERIMENT 4. Le Chatelier s Principle INTRODUCTION

EXPERIMENT 4. Le Chatelier s Principle INTRODUCTION EXPERIMENT 4 Le Chatelier s Principle INTRODUCTION Le Chatelier s Principle states: When a stress is applied to a chemical system at equilibrium, the equilibrium concentrations will shift in a direction

More information

Lab Section. Observations and evidence for a chemical reaction:

Lab Section. Observations and evidence for a chemical reaction: Experiment #3: Shifting Reactions (Adapted from Exp. I-4 from Inquiries in Chemistry, 3 rd edition) Problem Statement: How can we shift reactions forward and backward? I. Data Collections and Analysis

More information

CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric

CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric Name Team Name CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations completed

More information

Experiment #13. Enthalpy of Hydration of Sodium Acetate.

Experiment #13. Enthalpy of Hydration of Sodium Acetate. Experiment #13 Enthalpy of Hydration of Sodium Acetate Goal To determine the enthalpy (ΔH) for the following process: NaC 2 H 3 O 2 (s) + 3 H 2 O(l) à NaC 2 H 3 O 2 3H 2 O(s) Introduction Most chemical

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

Experiment #7. Titration of Vinegar

Experiment #7. Titration of Vinegar Experiment #7. Titration of Vinegar Goals 1. To determine the mass percent of acetic acid in a solution via titration. 2. To master the technique of titration. Introduction Vinegar is a common household

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

#12. Acids and Bases.

#12. Acids and Bases. #12. Acids and Bases. Goals: To determine the ph of common substances and observe buffer behavior. Background Acids and bases are very common in chemistry and biology. Understanding acids and bases is

More information

Experiment #5. Iodine Clock Reaction Part 1

Experiment #5. Iodine Clock Reaction Part 1 Experiment #5. Iodine Clock Reaction Part 1 Introduction In this experiment you will determine the Rate Law for the following oxidation- reduction reaction: 2 H + (aq) + 2 I (aq) + H 2 O 2 (aq) I 2 (aq)

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

CHM112 Lab Iodine Clock Reaction Part 1 Grading Rubric

CHM112 Lab Iodine Clock Reaction Part 1 Grading Rubric Name Team Name CHM112 Lab Iodine Clock Reaction Part 1 Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations completed

More information

CHM111 Lab Titration of Vinegar Grading Rubric

CHM111 Lab Titration of Vinegar Grading Rubric Name Team Name CHM111 Lab Titration of Vinegar Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste disposal

More information

Exploring Equilibria

Exploring Equilibria Exploring Equilibria Name: Chem 112 This experiment explores a variety of equilibrium systems. A reference Table of Reactions is attached to aid in your explanations. In this qualitative lab, your observations,

More information

Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle

Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle Introduction Whenever a chemical reaction occurs, the reverse reaction can also occur. As the original reactants, on the left side of the equation,

More information

Shifts in Equilibrium: Le Châtelier s Principle

Shifts in Equilibrium: Le Châtelier s Principle 6 Shifts in Equilibrium: Le Châtelier s Principle Introduction Whenever a chemical reaction occurs, the reverse reaction can also occur. As the original reactants, on the left side of the equation, react

More information

Experimental Procedure. Lab 406

Experimental Procedure. Lab 406 Experimental Procedure Lab 406 Overview A large number of qualitative tests and observations are performed. The effects that concentration changes and temperature changes have on a system at equilibrium

More information

Equilibrium/ Le Chatelier s Principle

Equilibrium/ Le Chatelier s Principle Equilibrium/ Le Chatelier s Principle Modified from an activity originally created by participating teachers 2008 Summer Green Chemistry workshop View video as demonstration guide: https://www.youtube.com/watch?v=fbdyl3hlbui#t=379

More information

1-50 ml beaker stirring rod 1-10 ml beaker 0.10 M NaOH (1 ml) calibrated plastic dropper (1 ml) 50 ml dispensing burette (for Crystal Violet)

1-50 ml beaker stirring rod 1-10 ml beaker 0.10 M NaOH (1 ml) calibrated plastic dropper (1 ml) 50 ml dispensing burette (for Crystal Violet) Exercise 2 Page 1 Illinois Central College CHEMISTRY 132 Name: Kinetics, Part II. Equipment Objectives. 1-50 ml beaker stirring rod 1-10 ml beaker 0.10 M NaOH (1 ml) calibrated plastic dropper (1 ml) 1.5x10-5

More information

Experiment 7: SIMULTANEOUS EQUILIBRIA

Experiment 7: SIMULTANEOUS EQUILIBRIA Experiment 7: SIMULTANEOUS EQUILIBRIA Purpose: A qualitative view of chemical equilibrium is explored based on the reaction of iron(iii) ion and thiocyanate ion to form the iron(iii) thiocyanate complex

More information

INVESTIGATING CHEMICAL EQUILIBRIUM

INVESTIGATING CHEMICAL EQUILIBRIUM INVESTIGATING CHEMICAL EQUILIBRIUM INTRODUCTUON This lab investigation is concerned with observing the effect on various equilibria when a reactant or product is added or removed or the temperature is

More information

Chemical Equilibrium and Le Chatlier s Principle

Chemical Equilibrium and Le Chatlier s Principle MiraCosta College Introductory Chemistry Laboratory Chemical Equilibrium and Le Chatlier s Principle EXPERIMENTAL TASK Examine a number of chemical reaction systems at equilibrium, predict the shifts they

More information

CHM101 Lab - Solutions Grading Rubric

CHM101 Lab - Solutions Grading Rubric Spring 2017 Name Team Name CHM101 Lab - Solutions Grading Rubric To participate in this lab you must have splash- proof goggles, proper shoes and attire. Criteria Points possible Points earned Lab Performance

More information

CHM112 Lab Determination of an Equilibrium Constant Grading Rubric

CHM112 Lab Determination of an Equilibrium Constant Grading Rubric Name Team Name CHM112 Lab Determination of an Equilibrium Constant Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium 1 Equilibrium We ve already used the phrase equilibrium when talking about reactions. In principle, every chemical reaction is reversible... capable of moving in the forward or backward

More information

AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry

AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry Aim To investigate Le Chatelier's Principle Apparatus Test tubes, 100. ml beaker, stirring rod, test tube

More information

EXPERIMENT 7 Precipitation and Complex Formation

EXPERIMENT 7 Precipitation and Complex Formation EXPERIMENT 7 Precipitation and Complex Formation Introduction Precipitation is the formation of a solid in a solution as the result of either a chemical reaction, or supersaturating a solution with a salt

More information

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test:

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Final Project: VOCABULARY: 1 Chemical equilibrium 2 equilibrium

More information

EXPERIMENT 17 CHEMICAL EQUILIBRIUM

EXPERIMENT 17 CHEMICAL EQUILIBRIUM EXPERIMENT 17 CHEMICAL EQUILIBRIUM INTRODUCTION Complete conversion of reactants into products is not characteristic of all chemical changes. It is more common for a reaction to reach a state in which

More information

Lab Q: Chemical Equilibrium: Le Chatelier s Principle

Lab Q: Chemical Equilibrium: Le Chatelier s Principle Lab Q: Chemical Equilibrium: Le Chatelier s Principle Poppy Quinlan Partner: Katie Frese February 11, 2014 CHEM 123 L10 TA: Katie Nguyen Lab Performed: January 28, 2014 Introduction: Chemical equilibrium

More information

Date: Names: Section: To investigate various chemical equilibria and explain them using Le Chatelier s Principle. Equilibrium I

Date: Names: Section: To investigate various chemical equilibria and explain them using Le Chatelier s Principle. Equilibrium I Chem 1105 EQUILIBRIUM Date: Names: Section: OBJECTIVE: PROCEDURE: To investigate various chemical equilibria and explain them using Le Chatelier s Principle. As in Chem. 1105 lab manual, pp. Equilibrium

More information

Stresses Applied to Chemical Equilibrium

Stresses Applied to Chemical Equilibrium Stresses Applied to Chemical Equilibrium Objective Many chemical reactions do not go to completion. Rather, they come to a point of chemical equilibrium before the reactants are fully converted to products.

More information

HONORS LAB 11a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry

HONORS LAB 11a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry HONORS LAB 11a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry Aim To investigate Le Chatelier's Principle Apparatus Test tubes, 100. ml beaker, stirring rod, test

More information

Experiment #7. Determination of an Equilibrium Constant

Experiment #7. Determination of an Equilibrium Constant Experiment #7. Determination of an Equilibrium Constant Introduction It is frequently assumed that reactions go to completion, that all of the reactants are converted into products. Most chemical reactions

More information

Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria

Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria E6 Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria Objective! Observe several interesting and colorful chemical reactions that are examples of chemical systems at equilibrium.!

More information

Measuring Enthalpy Changes

Measuring Enthalpy Changes Measuring Enthalpy Changes PURPOSE To observe changes in enthalpy in chemical processes. GOALS To identify exothermic and endothermic processes. To relate enthalpy changes and entropy changes to changes

More information

Gas Phase Equilibrium

Gas Phase Equilibrium Gas Phase Equilibrium Chemical Equilibrium Equilibrium Constant K eq Equilibrium constant expression Relationship between K p and K c Heterogeneous Equilibria Meaning of K eq Calculations of K c Solving

More information

CHM-201 General Chemistry and Laboratory I Laboratory 4. Introduction to Chemical Reactions (based in part on Small Scale Chemistry methodology as

CHM-201 General Chemistry and Laboratory I Laboratory 4. Introduction to Chemical Reactions (based in part on Small Scale Chemistry methodology as CHM-201 General Chemistry and Laboratory I Laboratory 4. Introduction to Chemical Reactions (based in part on Small Scale Chemistry methodology as described in Chemtrek by Stephen Thompson at Colorado

More information

Lab #5 - Limiting Reagent

Lab #5 - Limiting Reagent Objective Chesapeake Campus Chemistry 111 Laboratory Lab #5 - Limiting Reagent Use stoichiometry to determine the limiting reactant. Calculate the theoretical yield. Calculate the percent yield of a reaction.

More information

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure Section 2 Main Ideas Equilibrium shifts to relieve stress on the system. Some ionic reactions seem to go to completion. Common ions often produce precipitates. > Virginia standards CH.3.f The student will

More information

Solubility Product Constants

Solubility Product Constants Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS To measure the molar solubility of a sparingly soluble salt in water. To

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

1 A. That the reaction is endothermic when proceeding in the left to right direction as written.

1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 1 Q. If Δ r H is positive, what can you say about the reaction? 1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 2 Q If Δ r H is negative, what can you say

More information

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Pre-lab Assignment: Reading: 1. Chapter sections 3.3, 3.4, 3.7 and 4.2 in your course text. 2. This lab handout. Questions:

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction 1 EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT Learning Outcomes Upon completion of this lab, the student will be able to: 1) Demonstrate the formation of a precipitate in a chemical

More information

Titration Curves. What is in the beaker at each stage of a titration? Beaker A Beaker B Beaker C Beaker D. 20 ml NaOH Added

Titration Curves. What is in the beaker at each stage of a titration? Beaker A Beaker B Beaker C Beaker D. 20 ml NaOH Added Why? Titration Curves What is in the beaker at each stage of a titration? Titration is a very useful technique for determining the properties of an unknown solution. The unknown is reacted with a known

More information

Exploring Equilibrium

Exploring Equilibrium Page 7 - It Works Both Ways Introduction The word equilibrium has two roots: mqui, meaning equal, and libra, meaning weight or balance. Our physical sense of equilibrium-in the motion of a seesaw or the

More information

Kinetics of an Iodine Clock Reaction

Kinetics of an Iodine Clock Reaction Kinetics of an Iodine Clock Reaction Introduction: In this experiment, you will determine the rate law for a reaction and the effect of concentration on the rate of the reaction by studying the initial

More information

Just a reminder that everything you do related to lab should be entered directly into your lab notebook. Calorimetry

Just a reminder that everything you do related to lab should be entered directly into your lab notebook. Calorimetry Just a reminder that everything you do related to lab should be entered directly into your lab notebook. Objectives: Calorimetry After completing this lab, you should be able to: - Assemble items of common

More information

Separation and Identification of Metal Ions

Separation and Identification of Metal Ions Vivek Kumar, Ph.D. OBJECTIVES: In this experiment, you will analyze an aqueous solution for the presence of Ag +, Pb 2+ and Hg2 2+ ions LEARNING GOALS 1. To understand and apply chemistry of metal ions

More information

1. Describe the changes in reactant and product concentration as equilibrium is approached.

1. Describe the changes in reactant and product concentration as equilibrium is approached. Web Review 1. Describe the changes in reactant and product concentration as equilibrium is approached. 2. Describe the changes in the forward and the reverse rates as equilibrium is approached. 3. State

More information

Recovery of Copper Renee Y. Becker Manatee Community College

Recovery of Copper Renee Y. Becker Manatee Community College Recovery of Copper Renee Y. Becker Manatee Community College Introduction In this lab we are going to start with a sample of copper wire. We will then use a sequence of reactions to chemically transform

More information

Experiment Eight Acids and Bases

Experiment Eight Acids and Bases Name: Lab Section: Experiment Eight Acids and Bases Objective Identifying and understanding the nature of acids and bases is an important part of the laboratory toolbox, the purpose of this lab is to help

More information

Honors Chemistry Unit 4 Exam Study Guide Solutions, Equilibrium & Reaction Rates

Honors Chemistry Unit 4 Exam Study Guide Solutions, Equilibrium & Reaction Rates Honors Chemistry Unit 4 Exam Study Guide Solutions, Equilibrium & Reaction Rates Define the following vocabulary terms. Solute Solvent Solution Molarity Molality Colligative property Electrolyte Non-electrolyte

More information

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements.

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements. Calorimetry PURPOSE To determine if a Styrofoam cup calorimeter provides adequate insulation for heat transfer measurements, to identify an unknown metal by means of its heat capacity and to determine

More information

AP Chapter 14: Chemical Equilibrium & Ksp

AP Chapter 14: Chemical Equilibrium & Ksp AP Chapter 14: Chemical Equilibrium & Ksp Warm-Ups (Show your work for credit) Name Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 14: Chemical Equilibrium & Ksp 2 Warm-Ups

More information

Chem 1B Saddleback College Dr. White 1. Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2

Chem 1B Saddleback College Dr. White 1. Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2 Chem 1B Saddleback College Dr. White 1 Experiment 5: Separation and Identification of Group I Cations (The Chloride Group: Ag +, Pb 2+, and Hg 2 2+) Objective To understand the chemical reactions involved

More information

Le Chatelier's principle

Le Chatelier's principle Le Chatelier's principle Any factor that can affect the rate of either the forward or reverse reaction relative to the other can potentially affect the equilibrium position. The following factors can change

More information

Experiment #4. Molar Mass by Freezing Point Depression

Experiment #4. Molar Mass by Freezing Point Depression Experiment #4. Molar Mass by Freezing Point Depression Introduction When a nonvolatile solute is dissolved in a solvent, the freezing point of the solution is lowered. This process is called Freezing Point

More information

Chemistry 151 Last Updated Dec Lab 10: The Neutralizing Ability of an Antacid (Titrations, Pt II)

Chemistry 151 Last Updated Dec Lab 10: The Neutralizing Ability of an Antacid (Titrations, Pt II) Chemistry 151 Last Updated Dec. 2013 Lab 10: The Neutralizing Ability of an Antacid (Titrations, Pt II) Introduction The active ingredient of many antacids is a base that neutralizes excess stomach acid,

More information

Applications of LeChâtelier s Principle AP* Chemistry Big Idea 6, Investigation 13 An Advanced Inquiry Lab

Applications of LeChâtelier s Principle AP* Chemistry Big Idea 6, Investigation 13 An Advanced Inquiry Lab Introduction Catalog No. AP7659 Publication No. 7659 Applications of LeChâtelier s Principle AP* Chemistry Big Idea 6, Investigation 13 An Advanced Inquiry Lab Not all chemical reactions proceed to completion,

More information

Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility

Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility Purpose Determine the solubility product constant (K sp ) for a sparingly soluble salt. Study

More information

Chemistry 1B Experiment 17 89

Chemistry 1B Experiment 17 89 Chemistry 1B Experiment 17 89 17 Thermodynamics of Borax Solubility Introduction In this experiment, you will determine the values of H and S for the reaction which occurs when borax (sodium tetraborate

More information

1301 Dynamic Equilibrium, Keq,

1301 Dynamic Equilibrium, Keq, 1301 Dynamic Equilibrium, Keq, and the Mass Action Expression The Equilibrium Process Dr. Fred Omega Garces Chemistry 111 Miramar College 1 Equilibrium Concept of Equilibrium & Mass Action Expression Extent

More information

Experiment #5. Empirical Formula

Experiment #5. Empirical Formula Experiment #5. Empirical Formula Goal To experimentally determine the empirical formula of magnesium oxide based on reaction stoichiometry. Introduction The molecular formula (usually shortened to simply

More information

Common Ion Effect on Solubility

Common Ion Effect on Solubility Common Ion Effect on Solubility How is the solubility of a solid affected by other ion species in solution? Why? The solubility product (K sp ) for a salt allows chemists to predict the concentration of

More information

CHEMICAL EQUILIBRIUM. I. Multiple Choice 15 marks. 1. Reactions that can proceed in both the forward and reverse directions are said to be:

CHEMICAL EQUILIBRIUM. I. Multiple Choice 15 marks. 1. Reactions that can proceed in both the forward and reverse directions are said to be: Name: Unit Test CHEMICAL EQUILIBRIUM Date: _ 50 marks total I. Multiple Choice 15 marks 1. Reactions that can proceed in both the forward and reverse directions are said to be: A. complete B. reversible

More information

Test Booklet. Subject: SC, Grade: HS CST High School Chemistry Part 2. Student name:

Test Booklet. Subject: SC, Grade: HS CST High School Chemistry Part 2. Student name: Test Booklet Subject: SC, Grade: HS Student name: Author: California District: California Released Tests Printed: Thursday January 16, 2014 1 Theoretically, when an ideal gas in a closed container cools,

More information

Dynamic Equilibrium. going back and forth at the same rate

Dynamic Equilibrium. going back and forth at the same rate Dynamic Equilibrium going back and forth at the same time at the same rate LeChatelier s Principle If a system at equilibrium is disturbed it will respond in the direction that counteracts the disturbance

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6.2 The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

"It s not that I m so smart, it s just that I stay with problems longer." --Albert Einstein--

It s not that I m so smart, it s just that I stay with problems longer. --Albert Einstein-- CHEMISTRY 101 Hour Exam II October 29, 2013 Adams/Lindquist Name Signature Section "It s not that I m so smart, it s just that I stay with problems longer." --Albert Einstein-- This exam contains 17 questions

More information

Qualitative Analysis I - Cations

Qualitative Analysis I - Cations 1 Qualitative Analysis I - Cations Purpose: To separate and identify several metal cations from a mixture of cations, and to analyze an unknown sample of cations Introduction Qualitative analysis is the

More information

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction How can I use an acid-base reaction to separate an acid-base-neutral mixture? Objectives 1. use

More information

Project: Chemical Equilibrium Lab

Project: Chemical Equilibrium Lab Project: Chemical Equilibrium Lab Potential Credits: /20 Name: Goal and Instructions: To observe the macroscopic properties of chemical systems at equilibrium and to explain the observations obtained by

More information

Experiment Nine Acids and Bases

Experiment Nine Acids and Bases Name: Lab Section: Experiment Nine Acids and Bases Objective Identifying and understanding the nature of acids and bases is an important part of the laboratory toolbox, the purpose of this lab is to help

More information

Chem 2115 Experiment #10. Acids, Bases, Salts, and Buffers

Chem 2115 Experiment #10. Acids, Bases, Salts, and Buffers Chem 2115 Experiment #10 Acids, Bases, Salts, and Buffers OBJECTIVE: The goal of this series of experiments is to investigate the characteristics of acidic and basic solutions. We will explore the neutralization

More information

Reaction Stoichiometry

Reaction Stoichiometry Reaction Stoichiometry PURPOSE To determine the stoichiometry of acid-base reactions by measuring temperature changes which accompany them. GOALS To learn to use the MicroLab Interface. To practice generating

More information

CIE Chemistry A-Level Practicals for Papers 3 and 5

CIE Chemistry A-Level Practicals for Papers 3 and 5 CIE Chemistry A-Level Practicals for Papers 3 and 5 Ion Identification Group 2 Ions Identification Example -3 1. Place 10 drops of 0.1 mol dm barium chloride in a clean test tube. Must be clean to ensure

More information

Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY

Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY 1 Name: Unit!!: Kinetics and Equilibrium Collision theory states that a reaction is most likely to occur if reactant particles collide with the

More information

CHM 152 Lab 5: Qualitative Analysis updated May, 2011

CHM 152 Lab 5: Qualitative Analysis updated May, 2011 CHM 152 Lab 5: Qualitative Analysis updated May, 2011 Introduction In this lab you will see how it s possible to separate a mixture using many of the common reactions you ve learned in General Chemistry

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Forward Rxn: A + B C + D Reverse Rxn: A + B C + D Written as: A + B C + D OR A + B C + D A reversible reaction has both an endothermic rxn and an exothermic rxn Reactants Exothermic

More information

Kinetics of an Iodine Clock Reaction

Kinetics of an Iodine Clock Reaction Kinetics of an Iodine Clock Reaction Introduction: In this experiment, you will determine the rate law for a reaction and the effect of concentration on the rate of the reaction by studying the initial

More information

EXPERIMENT 9 BUFFERS PURPOSE: To understand the properties of a buffer solution

EXPERIMENT 9 BUFFERS PURPOSE: To understand the properties of a buffer solution PURPOSE: To understand the properties a buffer PRINCIPLES: A buffered is an aqueous that resists changes in ph upon the addition small amounts acids and bases. In order for the to resist changes in ph,

More information

THE IRON(III) THIOCYANATE REACTION SYSTEM

THE IRON(III) THIOCYANATE REACTION SYSTEM Experiment 7 THE IRON(III) THIOCYANATE REACTION SYSTEM Prepared by Ross S. Nord, Chemistry Department, Eastern Michigan University PURPOSE To investigate a novel reaction system by utilizing a spectrophotometer.

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Physical Changes and Chemical Reactions

Physical Changes and Chemical Reactions Physical Changes and Chemical Reactions Gezahegn Chaka, Ph.D., and Sudha Madhugiri, Ph.D., Collin College Department of Chemistry Objectives Introduction To observe physical and chemical changes. To identify

More information

CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar

CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar INTRODUCTION One of the most important techniques for chemical analysis is titration to an equivalence point. To illustrate this procedure,

More information

Quiz I: Thermodynamics

Quiz I: Thermodynamics Quiz I: Thermodynamics SCH4U_2018-2019_V2 NAME: (Total Score: / 30) Multiple Choice (12) 1. What can be deduced from the following reaction profile? A. The reactants are less stable than the products and

More information

Identification of an Unknown Compound through Mass Correlations

Identification of an Unknown Compound through Mass Correlations EXPERIMENT Identification of an Unknown Compound through Mass Correlations PURPOSE To carry out a series of decomposition reactions for five different unknown, and use stoichiometry in order to identify

More information

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES Experiment 3 Name: INTRODUCTION TO MATTER: 9 4 CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL e PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES In this experiment, you will encounter various classification

More information

11 Equilibrium. S T A T I O N 1 K e q E X P R E S S I O N S S T A T I O N 2 G R A P H S. South Pasadena Honors Chemistry 11 Equilibrium Period Date

11 Equilibrium. S T A T I O N 1 K e q E X P R E S S I O N S S T A T I O N 2 G R A P H S. South Pasadena Honors Chemistry 11 Equilibrium Period Date South Pasadena Honors Chemistry Name 11 Equilibrium Period Date S T A T I O N 1 K e q E X P R E S S I O N S Write the expression for the equilibrium constant for the reaction: Fe 3+ (aq) + SCN (aq) FeSCN

More information