A601. Milwaukie HS Chemistry Linman. Period Date / / In each of the following chemicals, determine the oxidation states of each element:

Size: px
Start display at page:

Download "A601. Milwaukie HS Chemistry Linman. Period Date / / In each of the following chemicals, determine the oxidation states of each element:"

Transcription

1 A601 Assigning Oxidation Numbers In each of the following chemicals, determine the oxidation states of each element: Example: sodium nitrate NaNO 3 12) N 2 O ) ammonia 13) H 2 SO 4 3) zinc oxide 14) SO 2 4) water 5) sulfate anion 15) MnO 2 6) calcium hydride 16) KMnO 4 7) carbon dioxide 17) K 2 Cr 2 O 7 8) nitrogen 18) ClO 4-9) sodium sulfate 19) ClO 2-10) aluminum hydroxide 20) NO 3-11) magnesium phosphate

2 In each of the following reactions, determine what was oxidized and what was reduced. 21) Ca + H 2 O CaO + H 2 Element oxidized: from to Reducing Agent: Element reduced: from to Oxidizing Agent: 22) H 2 + O 2 H 2 O Element oxidized: from to Reducing Agent: Element reduced: from to Oxidizing Agent: 23) PbO 2 + HI I 2 + PbI 2 + H 2 O Element oxidized: from to Reducing Agent: Element reduced: from to Oxidizing Agent: 24) Br 2 + S 2 O H 2 O Br - + SO H + Element oxidized: from to Reducing Agent: Element reduced: from to Oxidizing Agent: 25) Al + NaOH + H 2 O NaAl(OH) 4 + H 2 Element oxidized: from to Reducing Agent: Element reduced: from to Oxidizing Agent:

3 A602 Balancing by Assigning Oxidation Numbers Fe + HCl FeCl 3 + H 2 CaCr 2 O 7 + HCl CaCl 2 + CrCl 3 + H 2 O + Cl 2 HNO 3 (aq) + H 3 PO 3 (aq) NO(g) + H 3 PO 4 (aq) + H 2 O(l)

4 CA601 Balancing by Redox

5 A603 Half Reactions 1. Predict the half-reactions for each of the following chemical or solutions: KF(aq) KNO 3 (aq) K 2 SO 4 (aq) KF(s) An acid solution containing KMnO 4 (aq) 2. Balance the following reaction by the oxidation reduction method. NF3(g) + AlCl3(s)-----> N2(g) + Cl2(g) + AlF3(s)

6 L601 EQUIPMENT: power supply plastic Petri dish Carbon electrodes. MATERIALS : Electrolysis Lab phenolphthalein indicator copper (II) sulfate (0.5 M) potassium iodide (0.1 M) sodium sulfate (0.2M) electrolysis apparatus diagram PROCEDURE: 1. Assemble the electrolysis apparatus as in the above diagram. Place a white piece of paper under the petri dish. 2. Pour 2 ml of the first solution into the Petri dish, add three drops of phenolphthalein, stir the solution and plug in the transformer. 3. Record the first solution's name: Record your electrode observations: 4. Unplug the transformer. Repeat the process for the second solution. 5. Record the second solution's name: Record your electrode observations: 6. Unplug the transformer. Repeat the process for the third solution. 7. Record the third solution's name: Record your electrode observations: CALCULATIONS: 1. Determine the half-reactions for the first solution. 2. Determine the half-reactions for the second solution. 3. Determine the half-reactions for the third solution.

7 QUESTIONS: 1. What are the products of the electrolysis of sodium chloride solution? 2. What are the products of the electrolysis of molten sodium chloride. 3. Using your half-reaction sheet, predict the products of the electrolysis ofa calcium sulfate solution. 3. Using your half-reaction sheet, predict the products of the electrolysis ofa copper(ii) chloride solution.

8 L602 EQUIPMENT: d. c. power source balance two copper strips 100-ml beaker ammeter Faraday s Law Lab MATERIALS: copper(ii) nitrate solution PROCEDURE: 1. Select two copper strips and clean each using a small piece of steel wool. Do not touch the freshly cleaned surfaces. Label one as A and the other as B. 2. Dry the copper strips completely, mass each to the nearest 100th of a gram and enter the mass of each in the mass data table. 3. Pour 50 ml of copper(ii) nitrate in your smallest beaker, and assemble the equipment as in figure A. 4. Plug-in the transformer and check the ammeter to see if it is registering a positive reading. If the ammeter is registering a negative reading, thenreverse the electrical connections on the back of the ammeter. 5. Read and record in the amperes data table the ammeter reading at the end of each minute for twenty minutes. 6. After the last reading gently rinse the copper strips in a beaker of tap water, blot each dry using paper towels followed by hot air drying. 7. After the copper strips are thoroughly dry, remass each and record the mass of each in the mass data table. 8. Return the equipment to the equipment table in a neat and orderly manner. 9. RETURN the copper(ii) nitrate solution to the bottle: It is reusable. COPPER STRIP STRIP A STRIP B MASS DATA TABLE BEFORE REACTION AFTER REACTION AMPERES DATA TABLE figure A

9 CALCULATIONS: 1. Write the half-reaction for the anode reaction. 2. Write the half-reaction for the cathode reaction. 3. Calculate the mass of copper transferred using Faraday's law equation. Answer: 4. How well does the calculated mass change compare with the actual mass change? 5. Calculate the experimental error. Answer: 6. Why can the copper(ii) nitrate solution be used year after year? 7. A current of 4.0 amperes was allowed to flow for 1 hour and twenty minutes. If the current deposited tin metal from a solution of tin(iv) nitrate, how much tin was deposited on the cathode? Answer:

10 L603 EQUIPMENT: volt meter small jar one hole stopper to fit jar Battery Lab MATERIALS: Solution One: copper(ii) sulfate (0.5 M) Solution Two: sodium sulfate (0.5M)/ Hydrochloric acid (0.1 M) copper foil magnesium strip steel wool or other cleaning pad figure A PROCEDURE: 1. Clean a strip of copper and a strip of magnesium using steel wool. 2. Obtain a 25cm strip of dialysis tubing, soak it until it is soft and tie a knot in one end. 3. Fill the jar almost full with sodium sulfate solution. 4. Pour enough copper(ii) sulfate solution in the dialysis tubing to make it full, insert the copper strip in the bag and place the prepared bag in the jar. 5. Put the magnesium strip in the jar. 6. Insert the stopper in the jar so that it holds the bag and magnesium strip as in the figure a. 7. Observe the voltage of the cell using the volt meter. volts: 8. Connect your cell to one of the electric motors supplied by your teacher. 9. See if you can operate the 9-volt radio using your cell. CALCULATIONS: 1. Write the whole-cell reaction and predicted voltage for the cell that you have assembled. whole-reaction: 2. How many cells were in the battery used to operate the Radio? 3. Tell which element is being oxidized 4. Tell which element is being reduced. OVER

11 5. To which half-cell did the negative spectator ions travel? 6. To which electrode did the electrons flow? 7. Which electrode lost mass? 8. Draw and label an electrochemical cell. Use the labels anode, cathode, ion bridge, cation, anion, electric current direction, and spectator ion. 9. What are the factors that affect the E. M. F. of an electrochemical cell. 10. What is a half-reaction? 11. For the following cells, find the half-reaction, the whole-reaction, and calculate the voltage potential. A. Al +3 /Al//Hg2 +2 /Hg whole-reaction: B. Mn +2 /Mn//H +1 /H2 whole-reaction: C. Fe +2 /Fe//Cr +3 /Cr whole-reaction:

12 1. If AgBr(s) undergoes electrolysis, how many grams of material will be produced at the cathode by a current of 19.3 amps flowing for 2.33hours? 2. Balance each reaction using the ion-electron method. a) UO I 2 => U IO 3 - (acidic) b) MnO 2 + I - => MnO I 2 (acidic) 3. Predict the half-reactions for each of the following chemical or solutions: CuF(s) KNO 3 (aq)

To determine relative oxidizing and reducing strengths of a series of metals and ions.

To determine relative oxidizing and reducing strengths of a series of metals and ions. Redox Reactions PURPOSE To determine relative oxidizing and reducing strengths of a series of metals and ions. GOALS 1 To explore the relative oxidizing and reducing strengths of different metals. 2 To

More information

Page 1 Name: 2Al 3+ (aq) + 3Mg(s) 3Mg 2+ (aq) + 2Al(s) Fe 2 O 3 + 2Al Al 2 O 3 + 2Fe

Page 1 Name: 2Al 3+ (aq) + 3Mg(s) 3Mg 2+ (aq) + 2Al(s) Fe 2 O 3 + 2Al Al 2 O 3 + 2Fe 9666-1 - Page 1 Name: 1) What is the oxidation number of chromium in the chromate ion, CrO 2-4? A) +8 B) +3 C) +2 D) +6 2) What is the oxidation number of sulfur in Na 2 S 2 O 3? A) +6 B) +4 C) +2 D) -1

More information

Name AP CHEM / / Collected Essays Chapter 17

Name AP CHEM / / Collected Essays Chapter 17 Name AP CHEM / / Collected Essays Chapter 17 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the reaction

More information

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO CHAPTER 5 REVIEW 1. The following represents the process used to produce iron from iron III oxide: Fe 2 O 3 + 3CO 2Fe + 3CO 2 What is the reducing agent in this process? A. Fe B. CO C. CO 2 D. Fe 2 O 3

More information

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 SCHOOL YEAR 2017-18 NAME: CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 TEST A Choose the best answer from the options that follow each question. 1. During oxidation, one or more electrons

More information

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox Electrochemistry Applications of Redox Review Oxidation reduction reactions involve a transfer of electrons. OIL- RIG Oxidation Involves Loss Reduction Involves Gain LEO-GER Lose Electrons Oxidation Gain

More information

General Medicine 2016/17

General Medicine 2016/17 ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Buffers, buffer capacity. Oxidoreduction, electrode processes Practical lesson on medical biochemistry General Medicine Martin Vejražka, Tomáš

More information

Unit 13 Redox Reactions & Electrochemistry Ch. 19 & 20 of your book.

Unit 13 Redox Reactions & Electrochemistry Ch. 19 & 20 of your book. Unit 13 Redox Reactions & Electrochemistry Ch. 19 & 20 of your book. Early Booklet E.C.: + 2 Unit 13 Hwk. Pts.: / 32 Unit 13 Lab Pts.: / 32 Late, Incomplete, No Work, No Units Fees? Y / N Learning Targets

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number General Chemistry II Exam 4 Practice Problems 1 1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number a. K 2 Cr 2 O 7 +6 b. NaAl(OH) 4 +3 c.

More information

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework Name Period Date Ch. 19: OxidationReduction Reactions Homework Answer each of the following questions in as much detail as you can. Be sure to show all your work for any calculations and follow all rules

More information

Chemistry 1B Experiment 14 65

Chemistry 1B Experiment 14 65 Chemistry 1B Experiment 14 65 14 Electrochemistry Introduction In this experiment you will observe some spontaneous and non-spontaneous oxidation-reduction reactions, and see how the spontaneous reactions

More information

Lab #14: Electrochemical Cells

Lab #14: Electrochemical Cells Lab #14: Electrochemical Cells Objectives: 1. To understand the nature of electrochemical cells. 2. To construct a table listing the reduction potentials of a series of metal ions, in order of ease of

More information

Electrochemistry. 1. Determine the oxidation states of each element in the following compounds. (Reference: Ex. 4:16) a. N 2 N: b.

Electrochemistry. 1. Determine the oxidation states of each element in the following compounds. (Reference: Ex. 4:16) a. N 2 N: b. Name: Electrochemistry Two of the most common types of chemical reactions are acid-base reactions in which protons are transferred between two reactants and oxidation-reduction reactions in which electrons

More information

Oxidation-Reduction Reactions and Introduction to Electrochemistry

Oxidation-Reduction Reactions and Introduction to Electrochemistry ADVANCED PLACEMENT CHEMISTRY Oxidation-Reduction Reactions and Introduction to Electrochemistry Students will be able to: identify oxidation and reduction of chemical species; identify oxidants and reductants

More information

A voltaic cell using the following reaction is in operation: 2 Ag + (lm) + Cd(s) 2 Ag(s) + Cd 2+ (l M)

A voltaic cell using the following reaction is in operation: 2 Ag + (lm) + Cd(s) 2 Ag(s) + Cd 2+ (l M) 0. Cu (s) + 2Ag + Cu 2+ + 2Ag (s) If the equilibrium constant for the reaction above is 3.7x10 15, which of the following correctly describes the standard voltage, E o and the standard free energy change,

More information

Conductivity of Electrolytes in Solution

Conductivity of Electrolytes in Solution Conductivity of Electrolytes in Solution Introduction: Electrical current can be thought of as the movement of electrons or ionic charges from an area of high potential to an area of low potential. Materials

More information

I pledge, on my honor, that I have neither given nor received inappropriate aid on this examination

I pledge, on my honor, that I have neither given nor received inappropriate aid on this examination Chemistry 102b General Chemistry Exam #2 Name (Printed) I pledge, on my honor, that I have neither given nor received inappropriate aid on this examination Signature Circle the section in which you are

More information

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS INSERT STUDENT I.D. NUMBER (PEN) STICKER IN THIS SPACE APRIL 1996 PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS 1. Insert the stickers with your Student I.D. Number (PEN)

More information

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas.

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. Oxidation Numbers #00 Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

More information

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18 Chemistry 1011 Slot 5 1 18.5 Electrolytic Cells YOU ARE EXPECTED TO BE ABLE TO: Construct a labelled diagram to show

More information

REDOX AND ELECTROCHEMISTRY

REDOX AND ELECTROCHEMISTRY SOUTH HIGH SCHOOL REDOX AND ELECTROCHEMISTRY Regents Chemistry Dr. Lombardo NAME Content Objectives REDOX & ELECTROCHEMISTRY What will students know and be able to do by the end of this instructional unit?

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information

AP Chemistry: Electrochemistry Multiple Choice Answers

AP Chemistry: Electrochemistry Multiple Choice Answers AP Chemistry: Electrochemistry Multiple Choice Answers 14. Questions 14-17 The spontaneous reaction that occurs when the cell in the picture operates is as follows: 2Ag + + Cd (s) à 2 Ag (s) + Cd 2+ (A)

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

AP Questions: Electrochemistry

AP Questions: Electrochemistry AP Questions: Electrochemistry I 2 + 2 S 2O 2-3 2 I - + S 4O 2-6 How many moles of I 2 was produced during the electrolysis? The hydrogen gas produced at the cathode during the electrolysis was collected

More information

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0 Electrochemistry 1. Element M reacts with oxygen to from an oxide with the formula MO. When MO is dissolved in water, the resulting solution is basic. Element M is most likely: A. Na B. Ba C. S D. N E.

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

IB Topics 9 & 19 Multiple Choice Practice

IB Topics 9 & 19 Multiple Choice Practice IB Topics 9 & 19 Multiple Choice Practice 1. What are the oxidation states of chromium in (NH 4) 2Cr 2O 7 (s) and Cr 2O 3 (s)? 2. Which of the following is a redox reaction? 3Mg (s) + 2AlCl 3 (aq) 2Al

More information

Experiment 6. Investigating Chemical Reactions

Experiment 6. Investigating Chemical Reactions In this experiment you will: Experiment 6. Investigating Chemical Reactions Perform and observe the results of a variety of chemical reactions. Become familiar with the observable signs of chemical reactions.

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. chem10b 20.4-3 In a voltaic cell electrons flow from the anode to the cathode. Value 2. chem10b 20.1-35 How many grams

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

UNIT 6 REDOX REACTIONS Answers

UNIT 6 REDOX REACTIONS Answers UNIT 6 REDOX REACTIONS Answers Lesson 1 What is oxidation, what is reduction and what are oxidation numbers? Thinkabout Activity 1.1: What is oxidation and what is reduction? 2Mg + O 2 2MgO Mg loses its

More information

What Do You Think? Investigate GOALS. Part A: Solutions That Conduct Electricity

What Do You Think? Investigate GOALS. Part A: Solutions That Conduct Electricity Chemical Dominoes Activity 6 Electrochemical Cells GALS In this activity you will: Determine if a substance will conduct electricity when dissolved in water. Construct a galvanic cell and explain the function

More information

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Lesson Topics Covered Homework Questions and Assignments 1 Introduction to Electrochemistry definitions 1. Read pages 462 467 2. On page

More information

Electrochem: It s Got Potential!

Electrochem: It s Got Potential! Electrochem: It s Got Potential! Presented by: Denise DeMartino Westlake High School, Eanes ISD Pre-AP, AP, and Advanced Placement are registered trademarks of the College Board, which was not involved

More information

G = 96.5nE cell ( G in kj) log K = ne /0.0592

G = 96.5nE cell ( G in kj) log K = ne /0.0592 1 General Chemistry II Jasperse Electrochemistry. Extra Practice Problems Oxidation Numbers p1 Free Energy and Equilibrium p10 Balancing Redox; Electrons ransferred; Oxidizing p2 K Values and Voltage p11

More information

Chemical Reactions: Introduction to Reaction Types

Chemical Reactions: Introduction to Reaction Types Chemical Reactions: Introduction to Reaction Types **Lab Notebook** Record observations for all of the chemical reactions carried out during the lab in your lab book. These observations should include:

More information

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES 5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES LEARNING OUTCOMES a) Be able to write formulae of simple compounds b) Be able to write

More information

CHAPTER 12. Practice exercises

CHAPTER 12. Practice exercises CHAPTER 12 Practice exercises 12.1 2Al(s) + 3Cl 2 (g) 2AlCl 3 (aq) Aluminium is oxidised and is therefore the reducing agent. Chlorine is reduced and is therefore the oxidising agent. 12.3 First the oxidation

More information

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which

More information

Electrochemistry. Pre-Lab Assignment. Purpose. Background. Experiment 12

Electrochemistry. Pre-Lab Assignment. Purpose. Background. Experiment 12 Experiment 12 Electrochemistry Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. The questions should be answered

More information

Name AP Chemistry September 30, 2013

Name AP Chemistry September 30, 2013 Name AP Chemistry September 30, 2013 AP Chemistry Exam Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on the blue side of your scantron for each of the

More information

Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part

Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part In oxidation-reduction (or redox) reactions, the key chemical event is the net movement of electrons from one reactant to the

More information

26. N 2 + H 2 NH N 2 + O 2 N 2 O 28. CO 2 + H 2 O C 6 H 12 O 6 + O SiCl 4 + H 2 O H 4 SiO 4 + HCl 30. H 3 PO 4 H 4 P 2 O 7 + H 2 O

26. N 2 + H 2 NH N 2 + O 2 N 2 O 28. CO 2 + H 2 O C 6 H 12 O 6 + O SiCl 4 + H 2 O H 4 SiO 4 + HCl 30. H 3 PO 4 H 4 P 2 O 7 + H 2 O Balance the following chemical equations: (Some may already be balanced.) 1. H 2 + O 2 H 2 O 2. S 8 + O 2 SO 3 3. HgO Hg + O 2 4. Zn + HCl ZnCl 2 + H 2 5. Na + H 2 O NaOH + H 2 6. C 10 H 16 + Cl 2 C +

More information

Ch 4-5 Practice Problems - KEY

Ch 4-5 Practice Problems - KEY Ch 4-5 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

Determination of an Electrochemical Series

Determination of an Electrochemical Series In electrochemistry, a voltaic cell is a specially prepared system in which an oxidation-reduction reaction occurs spontaneously. This spontaneous reaction produces an easily measured electrical potential

More information

Reaction Writing Sheet #1 Key

Reaction Writing Sheet #1 Key Reaction Writing Sheet #1 Key Write and balance each of the following reactions and indicate the reaction type(s) present: 1. zinc + sulfur zinc sulfide 8 Zn (s) + S 8 (s) 8 ZnS (s) synthesis 2. potassium

More information

Nihal İKİZOĞLU 1. TYPE of CHEMICAL REACTIONS. Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2

Nihal İKİZOĞLU 1. TYPE of CHEMICAL REACTIONS. Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2 TYPE of CHEMICAL REACTIONS Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2 2. C 2 H 6 + O 2 H 2 O + CO 2 3. KOH + H 3 PO 4 K 3 PO 4 + H 2 O 4. SnO 2 + H 2 Sn + H 2 O 5.

More information

Reactions Crystal Gambino & Renee Y. Becker Manatee Community College

Reactions Crystal Gambino & Renee Y. Becker Manatee Community College Reactions Crystal Gambino & Renee Y. Becker Manatee Community College Purpose: To observe chemical reactions and write chemical equations based on laboratory observations. Introduction: The heart of chemistry

More information

http://redoxanswers.weebly.com REDOX LESSON LEARNING GOALS http://redoxanswers.weebly.com Lesson 1: Introduction to Redox Relate to examples of oxidation-reduction reactions in the real-world. Understand

More information

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions:

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions: ELECTROCHEMISTRY A. INTRODUCTION 1. Electrochemistry is the branch of chemistry which is concerned with the conversion of chemical energy to electrical energy, and vice versa. Electrochemical reactions

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Chapter 4 Reactions in Aqueous Solutions Some typical kinds of chemical reactions: 1. Precipitation reactions: the formation of a salt of lower solubility causes the precipitation to occur. precipr 2.

More information

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction Oxidation-Reduction Oxidation numbers are charges on each atom. 1 2 Electrochemical Reactions Oxidation Numbers In electrochemical reactions, electrons are transferred from one species to another. In order

More information

EXPERIMENT 16 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion

EXPERIMENT 16 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion EXPERIMENT 16 Electrochemical Cells: A Discovery Exercise 1 Introduction This lab is designed for you to discover the properties of electrochemical cells. It requires little previous knowledge of electrochemical

More information

Single Replacement Reactions

Single Replacement Reactions Single Replacement Reactions Name: Period: PURPOSE: To observe and practice writing down molecular, complete ionic, and net ionic equations for single replacement reactions. THEORY: Most reactions in chemistry

More information

#13 Electrochemical Cells

#13 Electrochemical Cells #13 Electrochemical Cells If a copper strip is placed in a solution of copper ions, one of the following reactions may occur: Cu 2+ + 2e - Cu Cu Cu 2+ + 2e - The electrical potential that would be developed

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

A Study of Electrochemistry Prelab

A Study of Electrochemistry Prelab 1. What is the purpose of this experiment? A Study of Electrochemistry Prelab 2. a. Calculate the standard cell potential of a cell constructed from Mg 2+ /Mg and Ni 2+ /Ni (Table I). Which is the anode

More information

Electrochemistry Worksheets

Electrochemistry Worksheets Electrochemistry Worksheets Donald Calbreath, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

1.11 Electrochemistry

1.11 Electrochemistry 1.11 Electrochemistry Recap from 1.7: Oxidation and Reduction: Oxidation and Reduction: Oxidation and reduction reactions can be identified by looking at the reaction in terms of electron transfer: Definitions:

More information

C2.6 Quantitative Chemistry Foundation

C2.6 Quantitative Chemistry Foundation C2.6 Quantitative Chemistry Foundation 1. Relative masses Use the periodic table to find the relative masses of the elements below. (Hint: The top number in each element box) Hydrogen Carbon Nitrogen Oxygen

More information

YEAR 10 CHEMISTRY TIME: 1h 30min

YEAR 10 CHEMISTRY TIME: 1h 30min YEAR 10 CHEMISTRY TIME: 1h 30min NAME: CLASS: Useful data: Q = It. Faraday Constant = 96,500 C mol -1. Use the Periodic table, given below, where necessary. Marks Grid [For Examiners use only] Question

More information

Electrochemistry. Part I: Electrochemical Activity from Chemical Reactions. Part II. Electrochemical activity from cell potentials.

Electrochemistry. Part I: Electrochemical Activity from Chemical Reactions. Part II. Electrochemical activity from cell potentials. Electrochemistry Introduction: Redox (oxidation-reduction) reactions will be used to determine the relative electrochemical reactivity of 5 metals. In Part I of the experiment, you will determine the activity

More information

AP Chemistry Laboratory #21: Voltaic Cells. Lab day: Monday, April 21, 2014 Lab due: Wednesday, April 23, 2014

AP Chemistry Laboratory #21: Voltaic Cells. Lab day: Monday, April 21, 2014 Lab due: Wednesday, April 23, 2014 AP Chemistry Laboratory #21: Voltaic Cells Lab day: Monday, April 21, 2014 Lab due: Wednesday, April 23, 2014 Goal (list in your lab book): The goal of this lab is to determine what factors affect the

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry Sample Exercise 20.1 (p. 845) The nickelcadmium (nicad) battery, a rechargeable dry cell used in batteryoperated devices, uses the following redox reaction to generate electricity:

More information

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry:

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: Water as a solvent Strong and Weak Electrolytes Solution Concentrations How to Make up a solution Types of Reactions Introduction

More information

Practice Packet Unit 13: Electrochemistry (RedOx)

Practice Packet Unit 13: Electrochemistry (RedOx) Regents Chemistry: Mr. Palermo Practice Packet Unit 13: Electrochemistry (RedOx) Redox and Batteries? Ain t nobody got time for that!!! 1 Lesson 1: Oxidation States Oxidation numbers are very important

More information

REDOX test practice. 2 Cr(s) + 3 Sn 2+ (aq) 2 Cr 3+ (aq) + 3 Sn(s)

REDOX test practice. 2 Cr(s) + 3 Sn 2+ (aq) 2 Cr 3+ (aq) + 3 Sn(s) 1. Which polyatomic ion has a charge of 3? A) chromate ion B) oxalate ion C) phosphate ion D) thiocyanate ion 2. What is the oxidation state of nitrogen in NaNO2? A) +1 B) +2 C) +3 D) +4 3. What are the

More information

Unit 12 Redox and Electrochemistry

Unit 12 Redox and Electrochemistry Unit 12 Redox and Electrochemistry Review of Terminology for Redox Reactions OXIDATION loss of electron(s) by a species; increase in oxidation number. REDUCTION gain of electron(s); decrease in oxidation

More information

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS Review: OXIDATION-REDUCTION REACTIONS the changes that occur when electrons are transferred between reactants (also known as a redox reaction)

More information

Electrochemical cells. Section 21.1

Electrochemical cells. Section 21.1 Electrochemical cells Section 21.1 Electrochemical processes Chemical process either release energy or absorb energy This does not have to be solely heat or light - sometimes it can be in the form of electricity

More information

11.1. Galvanic Cells. The Galvanic Cell

11.1. Galvanic Cells. The Galvanic Cell Galvanic Cells 11.1 You know that redox reactions involve the transfer of electrons from one reactant to another. You may also recall that an electric current is a flow of electrons in a circuit. These

More information

Unit 8 Redox 8-1. At the end of this unit, you ll be able to

Unit 8 Redox 8-1. At the end of this unit, you ll be able to 8-1 Unit 8 Redox At the end of this unit, you ll be able to Define and identify oxidation reactions Define and identify reduction reactions Assign oxidation numbers to elements in a compound Write and

More information

Electrochemistry C020. Electrochemistry is the study of the interconversion of electrical and chemical energy

Electrochemistry C020. Electrochemistry is the study of the interconversion of electrical and chemical energy Electrochemistry C020 Electrochemistry is the study of the interconversion of electrical and chemical energy Using chemistry to generate electricity involves using a Voltaic Cell or Galvanic Cell (battery)

More information

Reducing Agent = a substance which "gives" electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized.

Reducing Agent = a substance which gives electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized. Oxidation = a loss of electrons; an element which loses electrons is said to be oxidized. Reduction = a gain of electrons; an element which gains electrons is said to be reduced. Oxidizing Agent = a substance

More information

1.7 REDOX. Convert these to ionic and half equations and you can see clearly how the electrons are transferred:

1.7 REDOX. Convert these to ionic and half equations and you can see clearly how the electrons are transferred: 1.7 REDOX Oxidation and Reduction: Oxidation and reduction reactions can be identified by looking at the reaction in terms of electron transfer: Our understanding of oxidation and reduction was limited

More information

Chapter 19 ElectroChemistry

Chapter 19 ElectroChemistry Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 11July2009 Chapter 19 ElectroChemistry These Notes are to SUPPLIMENT the Text,

More information

Guide to Chapter 18. Electrochemistry

Guide to Chapter 18. Electrochemistry Guide to Chapter 18. Electrochemistry We will spend three lecture days on this chapter. During the first class meeting we will review oxidation and reduction. We will introduce balancing redox equations

More information

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Table of Contents 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition

More information

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM Chemical Reactions Chapter 4 Notes Oct 21 8:44 AM Oct 22 10:14 AM 1 There are several things to keep in mind writing reactions and predicting products: 1. States of matter of elements/compounds 2. Diatomics

More information

SCH4U: EXAM REVIEW. 2. Which of the following has a standard enthalpy of formation of 0 kj mol -1 at 25ºC and 1.00 atm?

SCH4U: EXAM REVIEW. 2. Which of the following has a standard enthalpy of formation of 0 kj mol -1 at 25ºC and 1.00 atm? SCH4U_08-09 SCH4U: EXAM REVIEW 1. The heat of a reaction is equal to: a. enthalpy (products) + enthalpy (reactants) b. enthalpy (reactants) enthalpy (products) c. enthalpy (products) enthalpy (reactants)

More information

Study Guide for Module 17 Oxidation-Reduction Reactions and Electrochemistry

Study Guide for Module 17 Oxidation-Reduction Reactions and Electrochemistry Chemistry 1020, Module 17 Name Study Guide for Module 17 Oxidation-Reduction Reactions and Electrochemistry Reading Assignment: Chapter 17 in Chemistry, 6th Edition by Zumdahl. Guide for Your Lecturer:

More information

Chemistry 12. Resource Exam B. Exam Booklet

Chemistry 12. Resource Exam B. Exam Booklet Chemistry 12 Resource Exam B Exam Booklet Contents: 21 pages Examination: 2 hours 50 multiple-choice questions in the Exam Booklet Additional Time Permitted: 60 minutes Province of British Columbia PART

More information

Chapter 8 Chemical Reactions

Chapter 8 Chemical Reactions Chemistry/ PEP Name: Date: Chapter 8 Chemical Reactions Chapter 8: 1 7, 9 18, 20, 21, 24 26, 29 31, 46, 55, 69 Practice Problems 1. Write a skeleton equation for each chemical reaction. Include the appropriate

More information

2. Balance the following reaction. How many electrons would be transferred?

2. Balance the following reaction. How many electrons would be transferred? JASPERSE CHEM 210 Ch. 19 Electrochemistry PRACTICE TEST 4 VERSION 3 Ch. 20 Nuclear Chemistry 1 Formulas: E cell =E reduction + E oxidation G = nfe cell (for kj, use F = 96.5) E cell = E [0.0592/n]log Q

More information

Regents review Electrochemistry(redox)

Regents review Electrochemistry(redox) 2011-2012 1. Chlorine has an oxidation state of +3 in the compound A) HClO B) HClO2 C) HClO3 D) HClO4 2. What is the oxidation number of iodine in KIO4? A) +1 B) 1 C) +7 D) 7 3. What is the oxidation number

More information

Electrochemistry. To use principles of electrochemistry to understand the properties of electrochemical cells and electrolysis.

Electrochemistry. To use principles of electrochemistry to understand the properties of electrochemical cells and electrolysis. Electrochemistry Objectives: To use principles of electrochemistry to understand the properties of electrochemical cells and electrolysis. Background: Part I: Galvanic Cells: A Galvanic cell is a device

More information

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Water, the Common Solvent One of the most important substances on Earth. Can dissolve many different substances. A polar molecule because

More information

Provide oxidation numbers to complete the following table. Species Cu Zn ion Zinc ion Sulfate ion. Oxidation # S=

Provide oxidation numbers to complete the following table. Species Cu Zn ion Zinc ion Sulfate ion. Oxidation # S= Name (Attach data copies) Section A Describe your observations of any reactions between zinc and cupric sulfate or between copper and zinc sulfate. Write half-reactions describing any chemical changes

More information

Redox and Electrochemistry

Redox and Electrochemistry Redox and Electrochemistry 1 Electrochemistry in Action! 2 Rules for Assigning Oxidation Numbers The oxidation number of any uncombined element is 0. The oxidation number of a monatomic ion equals the

More information

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals.

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals. Chapter 17 Oxidation-Reduction Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) copper wire colorless solution silver crystals pale blue solution Introduction to General, Organic, and Biochemistry 10e John

More information

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction Given an amount of a substance involved in a chemical reaction, we can figure out the amount

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Honors Chemistry / / Redox Reactions Rules for Assigning Oxidation Numbers Oxidation state of: Charge Examples Neutral monoatomic or molecular elements 0 Na(s), Cl 2 (g), S 8 (s), O 2 (g), Hg(l) Fluorine

More information

A201. Milwaukie HS Chemistry Herrington/Linman. Period Date / / Balance the following Chemical Reactions 1. H 2 + O 2 H 2 O

A201. Milwaukie HS Chemistry Herrington/Linman. Period Date / / Balance the following Chemical Reactions 1. H 2 + O 2 H 2 O A201 Balance the following Chemical Reactions 1. H 2 + O 2 H 2 O 2. Ca 3 (PO 4 ) 2 + H 2 SO 4 CaSO 4 + Ca(H 2 PO 4 ) 2 3. HgO Hg + O 2 4. Zn + HCl ZnCl 2 + H 2 5. Na + H 2 O NaOH + H 2 6. C 10 H 16 + Cl

More information

Research tells us fourteen out of any ten individuals like chocolate. Happy Halloween!

Research tells us fourteen out of any ten individuals like chocolate. Happy Halloween! CHEMISTRY 101 Hour Exam II October 31, 2006 Adams/Le Name KEY Signature T.A./Section Research tells us fourteen out of any ten individuals like chocolate. Happy Halloween! This exam contains 17 questions

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS EXPERIMENT 11 (2 Weeks) Chemistry 110 Laboratory TYPES OF CHEMICAL REACTIONS PURPOSE: The purpose of this experiment is perform, balance and classify chemical reactions based on observations. Students

More information

4. Using the data from Handout 5, what is the standard enthalpy of formation of N 2 O (g)? What does this mean?

4. Using the data from Handout 5, what is the standard enthalpy of formation of N 2 O (g)? What does this mean? EXTRA HOMEWORK 3A 1. In each of the following pairs, tell which has the higher entropy. (a) One mole of ice or one mole of liquid water (b) One mole of liquid propane or one mole of gaseous propane (c)

More information

Describe the structure and bonding in a metallic element. You should include a labelled diagram in your answer. ... [3] ...

Describe the structure and bonding in a metallic element. You should include a labelled diagram in your answer. ... [3] ... 3 Gallium is a metallic element in Group III. It has similar properties to aluminium. (a) (i) Describe the structure and bonding in a metallic element. You should include a labelled diagram in your answer.

More information