C. Incorrect! This number is too large for moles. Divide the given number with Avogadro s

Size: px
Start display at page:

Download "C. Incorrect! This number is too large for moles. Divide the given number with Avogadro s"

Transcription

1 AP Chemistry - Problem Drill 09: The Mole No. 1 of Avogadro s number is defined as a number equal to the number of atoms in 12 grams of the carbon-12. This number is 6.02x This is one of the most important numbers in chemistry. It is used to count atoms or molecules in any substance. How many moles are equal to molecules? (A) mole (B) 473 mole (C) mole (D) mole You divided the numbers the wrong way. Check your set-up and recalculate the division. It is a one-step process. B. Correct! Good job! Take the given number of molecules and divide by the Avogadro s number. The mole number is usually within a few orders of magnitude of 1. You converted molecules to moles correctly. This number is too large for moles. Divide the given number with Avogadro s number needs. Use the exponent key (EE or EXP) when calculating with scientific notation. D. Incorrect! This number is too large for moles. Divide the given number with Avogadro s number needs. Use the exponent key (EE or EXP) when calculating with scientific notation. 1 mole = molecules. Set up the dimensional analysis and cancel the unit. Run the calculation molecules 1 mole molecules = _473 mole There are total of 473 moles in 2.85 x molecules, whatever the molecule is. The correct answer is (B).

2 No. 2 of The molar mass is defined as the mass of an element or compound divided by its moles, typically in the unit of g/mol. The molar mass of a compound is equal to the sum of the atomic masses of the atoms in a molecule. Find the molar mass of Fe 2 (SO 4 ) 3. (A) g/mol (B) g/mol (C) g/mol (D) g/mol You multiply the subscripts outside and inside the parenthesis, not add them. There are two iron atoms, not just one. The sum is miscalculated. Add the atomic masses of all atoms together. Multiply the subscript outside the parenthesis by the subscripts inside the parenthesis to get the total atom count. You need to multiply the subscript outside the parenthesis by the subscripts inside the parenthesis to get the total atom count. Good job! You correctly calculated the molar mass of the compound. Add the atomic masses of all atoms together. Multiply the subscript outside the parenthesis by the subscripts inside the parenthesis to get the total atom count. Molar mass is the sum of all atomic masses. Add the atomic masses of all atoms together. Multiply the subscript outside the parenthesis by the subscripts inside the parenthesis to get the total atom count. Fe = S = O = g/mol

3 No. 3 of The most common conversion in chemistry is mass-to-mole. The mole is defined as the ratio of the mass (g) and molar mass (g/mol). How many molecules are in g of H 2 O? (A) molecules (B) molecules (C) molecules (D) molecules You converted grams to moles, but you need to take it one step farther to get to molecules. This is a two-step conversion. Check your calculations again. Convert the mass to mole and apply the Avogadro s number to calculate the number of molecules. C. Correct! Good job! You successfully converted grams to molecules. It is a two-step process. Convert the mass to mole and apply the Avogadro s number to calculate the number of molecules. D. Incorrect! There are two hydrogen atoms in a water molecule. Convert the mass to mole and apply the Avogadro s number to calculate the number of molecules. This takes two steps. Convert the mass to mole and apply the Avogadro s number to calculate the number of molecules. Molar mass = grams for 1 mole 1 mole = molecules Hydrogen 2 molecules 1.01 g/mole H = 2.02 g/mole of H 2 Oxygen 1 molecule g/mole = g/mole g/mole g H 2 O 1 mole H 2 O g H 2 O molecules H 2 O 1 mole H 2 O = molecules H 2 O The correct answer is (C).

4 No. 4 of The percent composition of a component in a compound is the percent of the total mass of the compound that is due to that component. Find the percent composition, by mass, of copper in Cu(CH 3 COO) 2? (A) % (B) % (C) % (D) % Check the calculation carefully. To find percent by mass, divide the mass of copper by the mass of the entire compound. Check the calculation carefully. To find percent by mass, divide the mass of copper by the mass of the entire compound. Check the calculation carefully. You need to distribute the subscript outside the parenthesis to the atoms inside the parenthesis when finding the whole molar mass. You correctly calculated the percent copper by mass. To find percent by mass, divide the mass of copper by the mass of the entire compound. % = (part whole) 100% The part is the mass of Cu in the compound. The whole is the molar mass of the whole compound Cu = C = H = 6.06 O = g/mole % Cu = ( ) 100% = 34.98%

5 No. 5 of The empirical formula is the simplest formula of a compound. The molecular formula is the same as or a multiple of the empirical formula. Find the empirical formula and molecular formula if the sample is composed only of nitrogen and oxygen. There is 30.4% of nitrogen. The sample molecule has a molar mass of 92 g/mole? (A) NO 2, N 2 O 4 (B) NO 2, NO 2 (C) NO 2, N 3 O 6 (D) N 2 O 4, NO 2 A. Correct! Good job! Calculate the moles of each element and take the simplest ratio for the empirical formula. Divide the molar mass of the two formulas to get the multiple. You correctly determined the empirical formula, but the molecular formula's mass is double that, not the same. You correctly determined the empirical formula, but the molecular formula's mass is double that, not triple. D. Incorrect! You have the empirical and molecular formulas flipped. Empirical formula is the lowest whole number ratio of the moles of each atom If percent composition is given, use the percents as grams. The molecular formula is the actual ratio of atoms found by finding the ratio of the empirical formula s molar mass to the molecular formula s molar mass g N 1 mole N g N 69.6 g O 1 mole g O = 2.17 mole N = 4.35 mole O 2.17 mole N 2.17 mole 4.35 mole N 2.17 mole = 1 N = 2 O Empirical formula = NO 2 Empirical formula s molar mass: N = O = g/mole 92 g/mole = 2 46 g/mole Molecular formula = NO 2 2 = N 2 O 4 The correct answer is (A).

6 No. 6 of Oxygen constitutes most of the mass of living organisms, because it is their major constituent. Oxygen, by mass, is the third most abundant element in the universe, after hydrogen and helium. How many moles of oxygen atoms are in 4 moles of O 2? (A) 2 (B) 4 (C) 6 (D) 8 There are 2 moles of oxygen atoms in each mole of O 2, but this problem is asking about 4 moles of O 2. There are 2 moles of oxygen atoms in each mole of O 2. There are 2 moles of oxygen atoms in each mole of O 2. Good job! There are 2 moles of oxygen atoms in each mole of O 2 and this problem asked about 4 moles of O 2 (2*4 = 8). There are 2 moles of oxygen atoms in each mole of O 2 and this problem asked about 4 moles of O 2, which would have 8 oxygen atoms.

7 No. 7 of Dinitrogen pentaoxide is a white crystalline oxide of nitrogen and regarded as the anhydride (removal of water from an acid) of nitric acid, 2HNO 3 N 2 O 5 + H 2 O. Calculate the number of moles of oxygen atoms in 1.20 x10 25 N 2 O 5 molecules? (A) 19.9 mol (B) 39.8 mol (C) 6.0 x mol (D) 99.5 mol This is the number of moles for the molecule, not O atom. It is a two-step calculation. Convert the molecular moles to atomic moles. Almost there! You multiplied the molecular moles by 2. This in fact is the number of moles for N atoms, not O atoms. Read the question carefully. This is the number of N atoms, not the moles. Check the reasonableness of the answer from the order of magnitude. Good job! This is a two-step process. Convert the number of molecules into the number of moles for the molecules. Multiply by 5 to get the number of O atoms. This is a two-step process. First, you need to calculate the mole number of the molecule N 2 O 5 using the Avogadro s number. #Mole (N 2 O 5 ) = 1.20x10 25 /6.02x10 23 = 19.9 moles Secondly, using the molecular formula given, you can relate the moles of the molecule N 2 O 5 to the moles of the atom O. There are 5 O atoms in every molecule, i.e. for one mole of N 2 O 5, there is 5 moles of O atoms. #Mole O = 5 x #Mole (N 2 O 5 ) = 5 x 19.9 = 99.5 moles Note that the number of significant figures (3) of the result is the same in the original data.

8 No. 8 of An empirical formula is a chemical formula that represents the relative proportions of the elements in a molecule, rather than the actual number of atoms of the elements. Which of the following is a possible molecular formula with the empirical formula CH 2 O? (A) C 2 H 5 OH (B) CH 3 CHO (C) C 6 H 5 COOH (D) C 6 H 12 O 6 The empirical formula s atomic ratio is 1:2:1 for C:O:H. However, the ethanol C 2 H 5 OH has 2:6:1 ratio instead. The empirical formula s atomic ratio is 1:2:1 for C:O:H. However, the acetaldehyde CH 3 CHO has 2:4:1 ratio instead. The empirical formula s atomic ratio is 1:2:1 for C:O:H. However, the benzoic acid C 6 H 5 COOH has 7:6:2 ratio instead. Good job! This is a molecular formula of glucose. The empirical formula s atomic ratio given is 1:2:1 for C:O:H. The glucose C 6 H 12 O 6 has 6:12:6 ratio, i.e. 1:2:1. This matches the multiple of the empirical formula. Therefore glucose is the molecular formula with the empirical formula of CH 2 O. Empirical formula is the lowest possible ratio of atoms in a molecule. The C:H:O ratio is 1:2:1. The molecular formula that is possible would have the same ratio as 1:2:1. Sum up the total of each of three elements. Exam each option, C 6 H 12 O 6 is the only one with 1:2:1 ratio for C:H:O. The rest of the molecules listed do not fit the empirical formula of CH 2 O.

9 No. 9 of Carbon monoxide is a colorless, odorless and tasteless gas, but it is toxic to human and animals. What is the volume of grams of carbon monoxide? (A) 200 L (B) 160 L (C) 714 L (D) 22.4 ml Check your calculation. This needs two-step process. Convert the mass to moles and then moles to volume using the molar volume at STP for gases. B. Correct! Good job! There are two steps to calculate this. Convert the mass to moles and then moles to volume using the molar volume at STP for gases. Check your calculation. This needs two-step process. Convert the mass to moles and then moles to volume using the molar volume at STP for gases. D. Incorrect! Check your calculation. This needs two-step process. Convert the mass to moles and then moles to volume using the molar volume at STP for gases. This is a two-step process. #moles (CO) = Mass/MolecularWeight = (200.0 g)/(28.00g/mol) = 7.14 mol Molar volume Vm is 22.4 L/mol at STP. V(CO) = #Moles x Vm = 7.14 mol x 22.4 L/mol = 160 L. The correct answer is (B).

10 No. 10 of 10 Instruction: (1) Read the problem and answer choices carefully (2) Work the problems on paper as 10. Dinitrogen monoxide or nitrous oxide, is better known as laughing gas. It is used as an anesthetic agent in dentistry. What is the mass of 300. liters of dinitrogen monoxide? (A) 300 g (B) g (C) g (D) 589 g Check your calculation. Use two steps to calculate the mass. Convert the number of moles and then convert it to the mass using molecular mass. Check your calculation. Use two steps to calculate the mass. Convert the number of moles and then convert it to the mass using molecular mass. Check your calculation. Use two steps to calculate the mass. Convert the number of moles and then convert it to the mass using molecular mass. Good job! Use two steps to calculate the mass. Convert the number of moles and then convert it to the mass using molecular mass. Notice the number of significant figures in 300. L. This requires two steps. Be aware of the significant figures in calculation. The molar volume is 22.4 L/mol at STP. With 300 liters of N 2 O, the total number of moles = (300. L)/(22.4 L/mol) = 13.4 mol Mass (N 2 O) = Moles x (Molecular Mass) = 13.4 mol x 44.0 g/mol = 589 g There are three significant figures in the original data. Therefore, the answer should have in three significant figures too.

(A) mole (B) 473 mole (C) mole (D) mole (E) The chemical formula is needed to complete this problem.

(A) mole (B) 473 mole (C) mole (D) mole (E) The chemical formula is needed to complete this problem. College Chemistry - Problem Drill 09: The Mole No. 1 of 10 1. Avogadro s number is defined as a number equal to the number of atoms in 12 grams of the carbon-12. This number is 6.02x10 23. This is one

More information

Finding Formulas. using mass information about a compound to find its formula

Finding Formulas. using mass information about a compound to find its formula Finding Formulas using mass information about a compound to find its formula Molecular Formula Molecular formula is the actual formula of compounds which form molecules. For example, the molecular formula

More information

NOTES: 10.3 Empirical and Molecular Formulas

NOTES: 10.3 Empirical and Molecular Formulas NOTES: 10.3 Empirical and Molecular Formulas What Could It Be? Empirical Formulas Indicate the lowest whole number ratio of the atoms in a compound: 1) Determine moles of each element present in the compound

More information

CHAPTER 9 AVOGADRO S NUMBER

CHAPTER 9 AVOGADRO S NUMBER CHAPTER 9 AVOGADRO S NUMBER Just like we count in dozens, gross or ream, we count atoms in groups because of their minute sizes. Like in finding the number of atoms in12.01g of C, Experiments have shown

More information

90.14 g/mol x g/mol. Molecular formula: molecular formula 2 empirical formula 2 C OH C O H

90.14 g/mol x g/mol. Molecular formula: molecular formula 2 empirical formula 2 C OH C O H Whole-number multiple: M x M actual compound C2OH5 90.14 g/mol x 45.07 g/mol 90.14 g/mol x 45.07 g/mol 2 Molecular formula: molecular formula 2 empirical formula 2 C OH 2 5 C O H 4 2 10 Check Your Solution

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

Chapter 8. Chemical Composition

Chapter 8. Chemical Composition Chapter 8 Chemical Composition Section 8.1 Counting by Weighing Objects do not need to have identical masses to be counted by weighing. All we need to know is the average mass of the objects. To count

More information

MOLECULAR FORMULA AND EMPIRICAL FORMULA

MOLECULAR FORMULA AND EMPIRICAL FORMULA MOLECULAR FORMULA AND EMPIRICAL FORMULA Molecular Formula is a formula indicating the actual number of atoms of each element making up a molecule. The molecular formula must accurately state the exact

More information

3/22/2017. Chapter 8. Chemical Composition. Counting by Weighing. Section 8.1

3/22/2017. Chapter 8. Chemical Composition. Counting by Weighing. Section 8.1 Chapter 8 Chemical Composition Section 8.1 Counting by Weighing 2 1 Section 8.1 Counting by Weighing A pile of marbles weigh 394.80 g. 10 marbles weigh 37.60 g. How many marbles are in the pile? 37.60

More information

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet Do Now Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet All the math Molar Mass the mass of one mole of any substance, reported in grams (gram atomic mass)

More information

THE MOLE (a counting unit)

THE MOLE (a counting unit) MOLE AND MATH THE MOLE (a counting unit) A mole represents a set or group, much in the same way that a dozen represents a set of twelve. 1 dozen eggs = 12 eggs; 1 mole eggs = 6.022 x 10 23 eggs 1 dozen

More information

6.02 x 1023 CHAPTER 10. Mole. Avogadro s Number. Chemical Quantities The Mole: A Measurement of Matter Matter is measured in one of three ways:

6.02 x 1023 CHAPTER 10. Mole. Avogadro s Number. Chemical Quantities The Mole: A Measurement of Matter Matter is measured in one of three ways: Chapter 10 Notes CHAPTER 10 10.1 The Mole: A Measurement of Matter Matter is measured in one of three ways: Chemical Quantities Mole SI unit that measures the amount of a substance A mole of a substance

More information

Chapter 10. How you measure how much? Moles. Representative particles. Conversion factors. Chemical Quantities or

Chapter 10. How you measure how much? Moles. Representative particles. Conversion factors. Chemical Quantities or Chapter 10 Chemical Quantities or 1 2 How you measure how much? You can measure mass, or volume, or you can count pieces. We measure mass in grams. We measure volume in liters. We count pieces in MOLES.

More information

How do you measure matter?

How do you measure matter? How do you measure matter? You may count how many you have. Determine a substances mass and weight. Determine a substances volume. But how can you relate these three types of measurements to one another?

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Unit 5. Chemical Composition

Unit 5. Chemical Composition Unit 5 Chemical Composition Counting by Mass Individually mass a few Calculate the average mass of one Can count large numbers of by mass Atomic Mass Unit (amu) 1 amu = 1.66 x 10-24 g Subatomic particles

More information

Molar Mass. The total of the atomic masses of all the atoms in a molecule:

Molar Mass. The total of the atomic masses of all the atoms in a molecule: Molar Mass The total of the atomic masses of all the atoms in a molecule: Ex: H 2 O H (1.0079) x 2 atoms = 2.0158 grams O (15.999) x 1 atom = 15.999 grams 18.0148 grams (18.0 grams) Ex: Cu(NO 3 ) 2 Cu

More information

Atoms, Ions and Molecules Calculations

Atoms, Ions and Molecules Calculations Atoms, Ions and Molecules Calculations 1. How do you calculate the atomic mass of an element? Atomic Mass = (% abundance of isotope 1)(mass of isotope 1) + (% abundance of isotope2)(mass of isotope 2)

More information

Unit 6: Mole Assignment Packet Period:

Unit 6: Mole Assignment Packet Period: Unit 6: Mole Assignment Packet Name: Period: A1: Mole Conversions 1. Identify the representative particle in each of the following: (atom, molecule, formula unit) a. CuSO 4 b. H 2 O c. NaCl d. Zn e. Cu

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles Unit 8: Quantification of Chemical Reactions Chapter 10: The mole Chapter 12: Stoichiometry Counting by mass: The Mole Chemists can t count individual atoms Use moles to determine amounts instead mole

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry The study of quantities of materials consumed and produced in chemical reactions. Since atoms are so small, we must use the average

More information

Chapter 10 Chemical Quantities

Chapter 10 Chemical Quantities Chapter 10 Chemical Quantities 10.1 The Mole: A Measurement of Matter OBJECTIVES: Describe methods of measuring the amount of something. Define Avogadro s number as it relates to a mole of a substance.

More information

Formula Mass. not all compounds are molecular formula mass calculated exactly the same way as molecular mass. Solid structure of NaCl

Formula Mass. not all compounds are molecular formula mass calculated exactly the same way as molecular mass. Solid structure of NaCl Molecular Mass Molecular Mass synonymous with molar mass and molecular weight is the sum of the atomic masses of all the atoms in a molecule the mass in grams of one mole of a compound Formula Mass not

More information

Chemical Reactions. Chapter 17

Chemical Reactions. Chapter 17 Chemical Reactions Chapter 17 Chemical Equations C+O 2 CO 2 C (s) +O 2 (g) CO 2 (g) Reactants on left, products on right Each are balanced because same number of atoms of reactants as products Some equations

More information

Description Mole Activity. Late Lab Stamp (this stamp means you are not qualified to do lab and test corrections)

Description Mole Activity. Late Lab Stamp (this stamp means you are not qualified to do lab and test corrections) Unit 5 Notepack: Chapters 10 Chemical Quantities NAME Unit 5 Chemical Names, and Formulas & Moles Unit Goals- As you work through this unit, you should be able to: 1. Distinguish between ionic and molecular

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

1. Mole Definition & Background

1. Mole Definition & Background Unit 5: THE MOLE 1. Mole Definition & Background 2. Molar Mass 3. Mole Calculations 4. Percent Composition 5. Empirical Formulas 6. Molecular Formulas 1 1. Mole Definition & Background The mole was developed

More information

23 carbon atoms The number is known as Avogadro s d Number.

23 carbon atoms The number is known as Avogadro s d Number. THE MOLE (a counting unit).again! i A mole represents a set or group, much in the same way that a dozen represents a set of twelve. 1 dozen eggs = 12 eggs; 1 mol eggs = 6.022 10 23 eggs 1 dozen carbon

More information

A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH

A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH Chapter Outline Section 10.1 Measuring Matter Key Concepts The mole is a unit used to count particles of matter indirectly.

More information

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses 9/14/1 Chemistry Second Edition Julia Burdge Stoichiometry: Ratios of Combination Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Stoichiometry: Ratios

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

4) Tetrasulfur trioxide. 5) barium fluoride. 6) nitric acid. 7) ammonia

4) Tetrasulfur trioxide. 5) barium fluoride. 6) nitric acid. 7) ammonia Unit 9: The Mole- Funsheets Part A: Molar Mass Write the formula AND determine the molar mass for each of the following. Be sure to include units and round you answer to 2 decimal places. 1) calcium carbonate

More information

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules) Stoichiometry Introduction Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Or Avogadros Number: (number of Molecules) Or Moles (amount of a substance containing avogadros number

More information

Chemistry 101 Chapter 8 Chemical Composition

Chemistry 101 Chapter 8 Chemical Composition Chemistry 101 Chapter 8 Chemical Composition Atomic mass unit (amu): a unit of the scale relative masses of atoms (1 amu = 1.66 10-24 g). Atomic weight (Atomic mass): the atomic weight of an element given

More information

What is a Mole? An Animal or What?

What is a Mole? An Animal or What? Unit 7: (Chapter 9) Chemical Quantities What is a Mole? An Animal or What? Section 9.1 The Mole: A Measurement of Matter Describe how Avogadro s number is related to a mole of any substance. Calculate

More information

Chapter 8. The Mole Concept

Chapter 8. The Mole Concept Chapter 8 The Mole Concept Chapter 9 2 Avogadro s Number Avogadro s number (symbol N) is the number of atoms in 12.01 grams of carbon. Its numerical value is 6.02 10 23. Therefore, a 12.01 g sample of

More information

Using the Mole to Calculate % Composition, Empirical Formulas and Molecular Formulas

Using the Mole to Calculate % Composition, Empirical Formulas and Molecular Formulas Using the Mole to Calculate % Composition, Empirical Formulas and Molecular Formulas Law of Definite Proportions Compounds have constant composition This means that the ratios by mass of the elements chemically

More information

What is a Representative Particle

What is a Representative Particle Chapter 7 Moles What is a Representative Particle The smallest unit into which a substance can be broken down without changing the composition of the substance. Atoms, molecules, and formula units What

More information

Name Class Date = + 1 S atom 32.1 amu +

Name Class Date = + 1 S atom 32.1 amu + Molar Mass 10. What is the atomic mass of an element? 11. Circle the letter of the phrase that completes this sentence correctly. The atomic masses of all elements a. are the same. b. are based on the

More information

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole Chem 103, Section F0F Unit IV - Stoichiometry of Formulas and Equations Lecture 11 The concept of a mole, which is a very large group of atoms or molecules Determining the formulas for a compound Stoichiometry

More information

Unit Two Worksheet WS DC U2

Unit Two Worksheet WS DC U2 Unit Two Worksheet WS DC U2 Name Period Short Answer [Writing]. Write skeleton equations representing the following reactions and then balance them. Then identify the reaction type. Include all needed

More information

Part 01 - Notes: The Mole and Its Calculations

Part 01 - Notes: The Mole and Its Calculations Part 01 - Notes: The Mole and Its Calculations Objectives: Identify, define, and explain: mole, Avogadro s number, representative particle, gram atomic mass, gram molecular mass, gram formula mass, molar

More information

UNIT 3 Quantities in Chemical Reactions THE MOLE!

UNIT 3 Quantities in Chemical Reactions THE MOLE! UNIT 3 Quantities in Chemical Reactions THE MOLE! In chemistry as in other aspects of life it is sometimes more convenient to count in groups of items rather than count items individually. Quantity Amount

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Lesson 01: Atomic Masses and Avogadro s Hypothesis. 01 Counting Atoms and Molecules

Lesson 01: Atomic Masses and Avogadro s Hypothesis. 01 Counting Atoms and Molecules Chemistry 11, Mole Concept, Unit 04 1 Lesson 01: Atomic Masses and Avogadro s Hypothesis 01 Counting Atoms and Molecules The chemical changes we observe always involve a certain number of atoms that rearrange

More information

Videos 1. Crash course Partial pressures: YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion:

Videos 1. Crash course Partial pressures:   YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion: Videos 1. Crash course Partial pressures: https://youtu.be/jbqtqcunyza?list=pl8dpuualjxtphzz YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion: https://youtu.be/tlrzafu_9kg?list=pl8dpuualjxtph zzyuwy6fyeax9mqq8ogr

More information

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017 General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 3 Mass Relationships in Chemical Reactions 1 In this chapter, Chemical structure and formulas in studying

More information

Chapter 5. Mole Concept. Table of Contents

Chapter 5. Mole Concept. Table of Contents Mole Concept Table of Contents 1. Mole 2. Avagadro s Number 3. Molar Mass 4. Molar Volume of Gases 5. The Mole Concept Calculations 6. Several Types of Problems Mole Concept Warm up List common units used

More information

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages )

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages ) 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches you how to calculate

More information

THE MOLE. Chapter 10 Who is that Little Guy with Squinty Eyes?

THE MOLE. Chapter 10 Who is that Little Guy with Squinty Eyes? THE MOLE Chapter 10 Who is that Little Guy with Squinty Eyes? THE MOLE NO, Not this mole, this guy has nothing to do with Chemistry! THINGS YOU SHOULD KNOW Chapter 10 Section 1 and 2 Know what a mole is.

More information

Composition and formulae. Of moles and men

Composition and formulae. Of moles and men Composition and formulae Of moles and men Learning objectives Count atoms in formula Define the mole Determine numbers of atoms or molecules in molar quantities Determine molar mass from chemical formula

More information

UNIT 3 Chemical Quantities Chapter 5 Counting Atoms and Molecules The Mole

UNIT 3 Chemical Quantities Chapter 5 Counting Atoms and Molecules The Mole UNIT 3 Chemical Quantities Chapter 5 Counting Atoms and Molecules The Mole How does the mass of a substance relate to the number of atoms in the substance? Recall: Atomic mass units. Atomic mass units

More information

10.2 Mole-Mass and Mole- Volume Relationships. Chapter 10 Chemical Quantities. Volume Relationships The Mole: A Measurement of Matter

10.2 Mole-Mass and Mole- Volume Relationships. Chapter 10 Chemical Quantities. Volume Relationships The Mole: A Measurement of Matter Chapter 10 Chemical Quantities 101 The Mole: A Measurement of Matter 102 Mole-Mass and Mole- 103 Percent Composition and Chemical Formulas 1 http://wwwbrightstormcom/science/chem istry/chemical-reactions/molar-mass/

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

From Greek: stoicheion (= element) metron (= measure)

From Greek: stoicheion (= element) metron (= measure) Stoichiometry Chapter 12 the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers. Origin From Greek: stoicheion

More information

Chemical Calculations: The Mole concept and Chemical Formula. Law of Definite Proportions (John Dalton) Chapter 9

Chemical Calculations: The Mole concept and Chemical Formula. Law of Definite Proportions (John Dalton) Chapter 9 Chapter 9 Chemical Calculations: The Mole concept and Chemical Formula This material is not included in Midterm 1 1 Law of Definite Proportions (John Dalton) Chapter 9 A given compound always contains

More information

Chemistry. Chapter 17

Chemistry. Chapter 17 Chemistry Chapter 17 Chemical Equations C+O 2 CO 2 C (s) +O 2 (g) CO 2 (g) Reactants on left, products on right Each are balanced because same number of atoms of reactants as products Balancing Chemical

More information

Unit 6: Chemical Quantities. Understanding The Mole

Unit 6: Chemical Quantities. Understanding The Mole Unit 6: Chemical Quantities Understanding The Mole 1 How do We Typically Measure Matter? You can measure mass, or volume, or you can count pieces. We measure mass in grams. We measure volume in liters.

More information

ب 3 18 قسم الكيمياء مصطفي عيد

ب 3 18 قسم الكيمياء مصطفي عيد memxtd@yahoo.com m.moustapha@sau.edu.sa 0115888078 ب 3 18 قسم الكيمياء مصطفي عيد The Atom Nucleus Electron Shell or Orbit The Atom. What are the 3 major parts of an atom? Proton Neutron Electron Stoichiometry

More information

Examples: Al2(SO4)3 Al 2 x 27.0 = S 3 x 32.1 = O 12 x 16.0 = NiSO3 6H2O Ni 1 x 58.7 = S 1 x 32.1 = O 3 x 16.0 = H2O 6 x 18.0 =

Examples: Al2(SO4)3 Al 2 x 27.0 = S 3 x 32.1 = O 12 x 16.0 = NiSO3 6H2O Ni 1 x 58.7 = S 1 x 32.1 = O 3 x 16.0 = H2O 6 x 18.0 = Moles Conversion factor: a fraction, equal to one, used to change one unit into another. A conversion factor is formed from an equality! Example: 12 inches = 1 foot 12 in or 1 ft 1 ft 12 in Dimensional

More information

1/7/14. Measuring Matter. How can you convert among the count, mass, and volume of something? Apples can be measured in three different ways.

1/7/14. Measuring Matter. How can you convert among the count, mass, and volume of something? Apples can be measured in three different ways. Chapter 10 Chemical Quantities 102 Mole-Mass and Mole-Volume Relationships 103 Percent Composition and Chemical Formulas 1 Measuring Matter Measuring Matter How can you convert among the count, mass, and

More information

6 atomic # C symbol Carbon name of element atomic mass. o Examples: # 1 mol C = g # 1 mol O = g # 1 mol H = 1.

6 atomic # C symbol Carbon name of element atomic mass. o Examples: # 1 mol C = g # 1 mol O = g # 1 mol H = 1. 7.1 AVOGADRO S NUMBER AND MOLAR CONVERSIONS CHEMISTRY NOTES Identify the mole as the unit used to count particles, whether atoms, ions, or molecules. Use Avogadro s number to convert between amount in

More information

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard Chapter 1 IB Chemistry Warm Ups Stoichiometry Mrs. Hilliard Vocabulary 1. Atomic theory 2. Kelvin 3. Mole 4. Relative abundance 5. Molar Mass 6. Empirical formula 7. Molecular formula 8. Stoichiometry

More information

Unit III: Quantitative Composition of Compounds

Unit III: Quantitative Composition of Compounds Unit III: Quantitative Composition of Compounds A. Atoms and Isotopes B. Atomic Composition of Chemical Compounds C. Formula and Molecular Mass D. Calculations using Moles of Atoms E. Calculations using

More information

1) Write the reaction for Calcium and nitrogen reacting. 3) What element on the periodic table is the largest? 3)Name these. a) H2S (aq) b) HNO 3 (aq)

1) Write the reaction for Calcium and nitrogen reacting. 3) What element on the periodic table is the largest? 3)Name these. a) H2S (aq) b) HNO 3 (aq) 1) Write the reaction for Calcium and nitrogen reacting 3) What element on the periodic table is the largest? 3)Name these a) H2S (aq) b) HNO 3 (aq) Stoichiometry: mathematical relationships in formulas

More information

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number?

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? Honors Chemistry Unit 6 Moles and Stoichiometry Notes Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? 3. What does it mean? 4. How is a mole like a dozen doughnuts? Formula

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

AP Chemistry: Chapter 3 Notes Outline

AP Chemistry: Chapter 3 Notes Outline AP Chemistry: Chapter 3 Notes Outline Objectives: Balance chemical equations Use dimensional analysis to solve stoichiometric problems Use dimensional analysis to do limiting reactant problems Use dimensional

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Unit 3 Chemical Quantities THE MOLE

Unit 3 Chemical Quantities THE MOLE Chemistry NAME Date Hour Unit 3 Chemical Quantities THE MOLE Practice Test Form C Second Half of Chapter 7 Objective 7 Use the mole to convert among measurements of mass, volume, and number of particles.

More information

CHEMICAL QUANTITIES. Chapter Six

CHEMICAL QUANTITIES. Chapter Six CHEMICAL QUANTITIES Chapter Six Introducing the Mole The dozen is a unit of quantity If I have a dozen atoms, I have 12 atoms by definition. The mole(mol) is a very important unit of quantity in chemistry.

More information

Chemistry I Chapter 9 Stoichiometry Objective Sheet. Equation 1. Objectives: 1. Define stoichiometry

Chemistry I Chapter 9 Stoichiometry Objective Sheet. Equation 1. Objectives: 1. Define stoichiometry Chemistry I Chapter 9 Stoichiometry Objective Sheet Equation 1 2 C 2 H 2 (g) + 5 O 2 (g) 4 CO 2 (g) + 2 H 2 O (g), at STP C 2 H 2 (acetylene) 26 g/mol O 2 32 g/mol CO 2 44 g/mol H 2 O 18 g/mol Objectives:

More information

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units CHAPTER 11 The Mole 11.1 The Mole: Measurement of Matter Matter is measured in one of three ways: (How many?) Mole SI unit that measures the amount of a substance 6.02 x 10 particles of that substance.

More information

Unit 1 SOME BASIC CONCEPTS OF CHEMISTRY I. Multiple Choice Questions (Type-I) 1. Two students performed the same experiment separately and each one of them recorded two readings of mass which are given

More information

(Q5) How many moles of cobalt (Co) atoms are there in 6.00 x 10 9 (6 billion) Co atoms? 9.96 x mol Co

(Q5) How many moles of cobalt (Co) atoms are there in 6.00 x 10 9 (6 billion) Co atoms? 9.96 x mol Co (Q1) The atomic masses of Cl (75.53 percent) and Cl (24.47 percent) are 34.968 amu and 36.956 amu, respectively. Calculate the average atomic mass of chlorine. The percentages in parentheses denote the

More information

Unit 4 ~ Learning Guide Name:

Unit 4 ~ Learning Guide Name: Unit 4 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is eplained in the lessons. You are required to have this

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 8 Chemical Composition

More information

Percent Composition and Empirical Formulas

Percent Composition and Empirical Formulas Percent Composition and Empirical Formulas Content Objectives SWBAT calculate the percent composition by mass of each element in a compound. SWBAT calculate the empirical formula of a compound based on

More information

Chemistry Chapter 3. Stoichiometry. (three sections for this chapter)

Chemistry Chapter 3. Stoichiometry. (three sections for this chapter) Chemistry Chapter 3 Stoichiometry (three sections for this chapter) Chemistry Chapter 3 Stoichiometry Section 1 3.1-3.4 Average Atomic Mass The Mole Molar Mass Average Atomic Mass Average mass of objects

More information

1. Mole Definition & Background

1. Mole Definition & Background Unit 5: THE MOLE 1. Mole Definition & Background 2. Molar Mass 3. Mole Calculations 4. Percent Composition 5. Empirical Formulas 6. Molecular Formulas 1 1. Mole Definition & Background The mole was developed

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

Chemists need a convenient method for counting accurately the number of atoms, molecules, or formula units in a sample of a substance.

Chemists need a convenient method for counting accurately the number of atoms, molecules, or formula units in a sample of a substance. I. Measuring Matter Chemists need a convenient method for counting accurately the number of atoms, molecules, or formula units in a sample of a substance. As you know, atoms and molecules are extremely

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

THE MOLE (a counting unit).again!

THE MOLE (a counting unit).again! Name: Period: Date: THE MOLE (a counting unit).again! A mole represents a, much in the same way that a dozen represents a set of twelve. 1 dozen eggs = 12 eggs; 1 mol eggs = 6.022 10 23 eggs 1 dozen carbon

More information

1. Mole Definition & Background

1. Mole Definition & Background Unit 5: THE MOLE 1. Mole Definition & Background 2. Molar Mass 3. Mole Calculations 4. Percent Composition 5. Empirical Formulas 6. Molecular Formulas 1. Mole Definition & Background The mole was developed

More information

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a catalyst. CO (g) + H 2 (g) CH 3 OH (l) If 75.0 g of CO reacts

More information

6.02 X Memorize this Number

6.02 X Memorize this Number Honors Chemistry - Unit 6 Chapters 3 & 7 The Mole Math with Chemical Formulas Voc. Assignment Due: Quiz Date(s): TBA Problem Set (UT Quest) Due: Test Date: Unit 6 Packet - Page 1 of 14 **VOCABULARY Assignment**

More information

Average Atomic Mass. A new unit called the atomic mass unit (amu) was developed to deal with the very small units of mass for particles like the atom.

Average Atomic Mass. A new unit called the atomic mass unit (amu) was developed to deal with the very small units of mass for particles like the atom. Average Atomic Mass Since atoms are so small and the mass of individual atoms is also very small, it is not useful to use the units of grams or kilogram. A new unit called the atomic mass unit (amu) was

More information

Calculations with Chemical Formulas and Equations

Calculations with Chemical Formulas and Equations Calculations with Chemical Formulas and Equations Mass and Moles of a Substance Chemistry requires a method for determining the numbers of molecules in a given mass of a substance. This allows the chemist

More information

CHAPTER 6 CHEMICAL COMPOSITION

CHAPTER 6 CHEMICAL COMPOSITION Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 6 CHEMICAL COMPOSITION Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

Molecular vs. Empirical Formula Chemistry H 2 O H 2 O 2. NaCl

Molecular vs. Empirical Formula Chemistry H 2 O H 2 O 2. NaCl Molecular vs Empirical Formula Chemistry Name Block Read the information below and then answer the questions that follow Definitions: Molecular formula the total number of atoms of each element in a compound

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Unit III: Quantitative Composition of Compounds

Unit III: Quantitative Composition of Compounds Unit III: Quantitative Composition of Compounds A. Atoms and Isotopes B. Atomic Composition of Chemical Compounds C. Formula and Molecular Mass D. Calculations using Moles of Atoms E. Calculations using

More information

SIC CONCEPTS TS OF CHEMISTRY. Unit. I. Multiple Choice Questions (Type-I)

SIC CONCEPTS TS OF CHEMISTRY. Unit. I. Multiple Choice Questions (Type-I) Unit 1 SOME BASIC B SIC CONCEPTS CONCEP TS OF CHEMISTRY CHEMIS I. Multiple Choice Questions (Type-I) 1. Two students performed the same experiment separately and each one of them recorded two readings

More information

Test Review Unit 3_1_Amount of substance Mole, molar mass and Avogadro s number test

Test Review Unit 3_1_Amount of substance Mole, molar mass and Avogadro s number test Test Review Unit 3_1_Amount of substance Mole, molar mass and Avogadro s number test (Information extracted from file FQ3eso_t3_1_Amount of substance ) The Mole Read and then answer the Multiple choice

More information

1.3: Empirical and Molecular Formulas. Ms. Kiely Coral Gables Senior High IB Chemistry SL

1.3: Empirical and Molecular Formulas. Ms. Kiely Coral Gables Senior High IB Chemistry SL 1.3: Empirical and Molecular Formulas Ms. Kiely Coral Gables Senior High IB Chemistry SL Practice How heavy are 1.20 x 10²⁵ atoms of potassium? ANSWER How many grams in 1.20 x 10²⁵ atoms of potassium?

More information

Unit 5 COUNTING PARTICLES

Unit 5 COUNTING PARTICLES Unit 5 COUNTING PARTICLES Counting By Weighing We can weigh a large number of the objects and find the average mass. Once we know the average mass we can equate that to any number of the objects. EXAMPLE:

More information

Chemical Equations. Chemical Reaction: Interaction between substances that results in one or more new substances being produced

Chemical Equations. Chemical Reaction: Interaction between substances that results in one or more new substances being produced Chemical Equations Chemical Reaction: Interaction between substances that results in one or more new substances being produced Example: hydrogen + oxygen water Reactants of a Reaction: Starting materials

More information