Criticality analysis of ALLEGRO Fuel Assemblies Configurations

Size: px
Start display at page:

Download "Criticality analysis of ALLEGRO Fuel Assemblies Configurations"

Transcription

1 Criticality analysis of ALLEGRO Fuel Assemblies Configurations Radoslav ZAJAC Vladimír CHRAPČIAK October th International Serpent User Group Meeting at Knoxville, Tennessee

2 ALLEGRO Core - Fuel Cross Section of MOX Starting Sub-Assembly Materials: Cladding/ Wrapper Tube: Ti Steel Coolant: He-4 Fuel: PuO 2 (MOX) 24 % Pu Number of Pins: 169 The Distance Wire was Integrated into the Cladding 2

3 ALLEGRO Core - Fuel Ceramic Pin Sub-Assembly Materials: Cladding/Wrapper Tube: SiC Coolant: He-4 Fuel: UPuC 27.5 % Pu Model: Sub-Assembly in Infinite Lattice Number of Fuel Pins: 90 3

4 k inf - infinite lattice ALLEGRO Core - Fuel 1.55 Maximum reserve of reactivity UPuC - SERPENT MOX - SERPENT UPuC - SCALE MOX - SCALE Burnup [MWd/kg hm ] 4

5 Assurance criteria of sub-criticality Assurance criteria of sub-criticality Regulation 57/2006 Coll. of Slovak Republic from 12. January, This regulation modifies the requirements details regarding to radioactive materials transport Regulation of the Slovak regulatory body 30/2012 Coll. from 30 January 2012 specifies the requirements shipment of nuclear materials, nuclear waste and spent fuel Multiplication coefficient k eff is equivalent to this requirement: k eff < 0.95 routine states k eff < 0.98 accident events The international requirements are listed in IAEA documents: SSG-15, SSG-27 a SSR-6. These documents recommends sub-criticality 5 % with note that national rules are binding. 5

6 Assurance criteria of sub-criticality The final value of multiplication coefficient is summary of conservative corrective positive factors, so the final equation: cal k eff = k eff tol + 2σ MC + 2σ + k eff where: cal k eff - calculated value of multiplication - standard deviation of Monte Carlo method (listed in output) - standard deviation between calculation and experiment tol k eff - maximum impact of manufactured tolerances, = 0.0 6

7 Calculated k eff for chosen experiments in fast spectrum Computer Code SCALE 6.1.2, Module KENO VI SERPENT XS Library v7-238 ce_v7_endf CE, ENDF/B-VII.0 Critical experiment k eff dev. k eff dev. k eff dev. pu-met-fast % % % pu-met-fast % % % pu-met-fast % % % pu-met-fast % % % pu-met-fast % % % pu-met-fast-044, case 1 = molybdenum % % % pu-met-fast-044, case 2 = iron % % % pu-met-fast-044, case 3 = beryllium % % % pu-met-fast-044, case 4 = aluminum % % % pu-met-fast-044, case 5 = graphite % % % Conservative element 2σ Determination of Conservative Element 2σ XS Library v7-238 (SCALE 6) CE (SCALE 6) CE (SERPENT ) Conservative element 2σ

8 Calculation Method KENO VI (SCALE 6.1.2) library of physical constants: used libraries v7-238 and ce_v7_endf, which are based on ENDF/B-VII.0 LIBRARY. v7-238 and ce_v7_endf libraries include cross sections and others physical parameters (concentration, density, albedos,...) for various materials (mixtures, nuclides, compounds, alloys,...). SERPENT CE continuous energy libraries of cross sections was used evaluated from the ENDF/B-VII.0 library existing ACE files were performed in SERPENT, 300K for materials Neutron Population - number of neutrons per cycle: number of non-active cycles: number of active cycles: 750 8

9 Sub-Criticality Configurations of 7 UPuC assemblies in water 72 UPuC assemblies in air 9

10 Sub-Criticality Configurations of Critical Calculation of UPuC Configurations in Water k eff assemblies_v assemblies_v assemblies_ce-scale 8 assemblies_ce-scale 7 assemblies_ce-serpent 8 assemblies_ce-serpent limit Pitch [cm] 10

11 Sub-Criticality Configurations of Critical Calculation of UPuC Configurations in Water Code SCALE SERPENT v7-238 vs. CE Library v7-238 CE CE (SCALE 6.1.2) [%] k eff v7-238 (SCALE) vs. CE (SERPENT) [%] CE (SCALE) vs. CE (SERPENT) [%] Pitch [cm] 7 assm. 8 assm. 7 assm. 8 assm. 7assm. 8 assm. 7 assm. 8 assm. 7 assm. 8 assm. 7 assm. 8 assm v7-238 library of SCALE was taken as reference limit 11

12 Sub-Criticality Configurations of 1.00 Critical Calculation of UPuC Configurations in Air k eff assemblies_v assemblies_v assemblies_ce-scale 73 assemblies_ce-scale 72 assemblies_ce-serpent 73 assemblies_ce-serpent limit Pitch [cm] 12

13 Sub-Criticality Configurations of Critical Calculation of UPuC Configurations in Air Code SCALE SERPENT v7-238 vs. CE Library v7-238 CE CE (SCALE 6.1.2) [%] k eff v7-238 (SCALE) vs. CE (SERPENT) [%] CE (SCALE) vs. CE (SERPENT) [%] Pitch [cm] 72assm. 73assm. 72assm. 73assm. 72assm. 73assm. 72assm. 73assm. 72assm. 73assm. 72assm. 73assm v7-238 library of SCALE was taken as reference limit 13

14 Sub-Criticality Configurations of Design of storage can for fresh and spent fuel assembly UPuC Fuel Assembly ATABOR Steel (Boron 1%) Aluminium 14

15 Sub-Criticality Configurations of Conservative storage can filled by water or air Code SCALE SERPENT Library v7-238 CE CE k eff limit Pitch [cm] water air water air water air v7-238 vs. v7-238 (SCALE) CE (SCALE) vs. CE (SCALE 6.1.2) vs. CE (SERPENT) 19.0 CE (SERPENT) [%] [%] [%] water air water air water air v7-238 library of SCALE was taken as reference 15

16 Sub-Criticality Configurations of Storage can filled by gas Gas N 2 Code KENO VI (SCALE 6.1.2) 16 SERPENT XS library v7-238 CE CE k eff Density [g/cm 3 ] limit 5.0x x x x Deviation [%] Density [g/cm 3 ] v7-238 vs. CE (SCALE 6.1.2) [%] v7-238 (SCALE) vs. CE (SERPENT) [%] CE (SCALE) vs. CE (SERPENT) [%] 5.0x x x x v7-238 library of SCALE was taken as reference

17 k eff, conservative assembly Sub-Criticality Configurations of Change of water density in the storage can CE - SERPENT v7-238, KENO VI CE - KENO VI limit Density of water [g/cm 3 ] 17

18 Sub-Criticality Configurations of Proposal of arrangements for criticality analyses of fuel assemblies configuration: With regard to the conclusions of the results and the differences in calculations of criticality configurations between KENO VI (SCALE 6.1.2) code and SERPENT code is necessary: - to obtain critical experiments documentation of existing fast reactors Phénix and SUPERPHENIX fast reactor, or any other fast reactor - to design and implement critical experiment for potential MOX fuel and UPuC of ALLEGRO reactor Proposal of arrangements for storage of fresh and spent fuel in the can: Addition the termohydraulical analyses to the can design Addition the shielding analyses and analyses of influence on environment to the can design. General arrangement: Recalculation of criticality analyses of fuel assemblies configurations and design of storage can by new version of SCALE 6.2 which will be available next year. 18

19 Thank you for your attention VUJE, a.s. Okružná Trnava Slovenská Republika Radoslav.Zajac@vuje.sk 19 VUJE, a. s. Okružná 5, Trnava

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE Jakub Lüley 1, Ján Haščík 1, Vladimír Slugeň 1, Vladimír Nečas 1 1 Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava,

More information

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 E. Fridman 1, R. Rachamin 1, C. Wemple 2 1 Helmholtz Zentrum Dresden Rossendorf 2 Studsvik Scandpower Inc. Text optional: Institutsname Prof. Dr.

More information

Technical Meeting on Priorities in Modeling and Simulation for Fast Neutron Systems 1

Technical Meeting on Priorities in Modeling and Simulation for Fast Neutron Systems 1 Technical Meeting on Priorities in Modeling and Simulation for Fast Neutron Systems 1 Technical Meeting on Priorities in Modeling and Simulation for Fast Neutron Systems 2 Established in 1937, Bachelor,

More information

NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS

NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS Peter Vertes Hungarian Academy of Sciences, Centre for Energy Research ABSTRACT Numerous fast reactor constructions have been appeared world-wide

More information

CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS ABSTRACT

CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS ABSTRACT CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS D J Powney AEA Technology, Nuclear Science, Winfrith Technology Centre, Dorchester, Dorset DT2 8DH United Kingdom

More information

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Journal of Nuclear and Particle Physics 2016, 6(3): 61-71 DOI: 10.5923/j.jnpp.20160603.03 The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Heba K. Louis

More information

THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA

THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA Radoslav ZAJAC, Petr DARILEK VUJE, Inc. Okruzna 5, SK-91864 Trnava, Slovakia Tel: +421 33 599 1316, Fax: +421 33 599 1191, Email: zajacr@vuje.sk,

More information

Sensitivity Analysis of Gas-cooled Fast Reactor

Sensitivity Analysis of Gas-cooled Fast Reactor Sensitivity Analysis of Gas-cooled Fast Reactor Jakub Lüley, Štefan Čerba, Branislav Vrban, Ján Haščík Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava Ilkovičova

More information

CASMO-5/5M Code and Library Status. J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008

CASMO-5/5M Code and Library Status. J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008 CASMO-5/5M Code and Library Status J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008 CASMO Methodolgy Evolution CASMO-3 Homo. transmission probability/external Gd depletion CASMO-4 up to

More information

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel S. Caruso, A. Shama, M. M. Gutierrez National Cooperative for the Disposal of Radioactive

More information

Estimation of Control Rods Worth for WWR-S Research Reactor Using WIMS-D4 and CITATION Codes

Estimation of Control Rods Worth for WWR-S Research Reactor Using WIMS-D4 and CITATION Codes Estimation of Control Rods Worth for WWR-S Research Reactor Using WIMS-D4 and CITATION Codes M. S. El-Nagdy 1, M. S. El-Koliel 2, D. H. Daher 1,2 )1( Department of Physics, Faculty of Science, Halwan University,

More information

On the Use of Serpent for SMR Modeling and Cross Section Generation

On the Use of Serpent for SMR Modeling and Cross Section Generation On the Use of Serpent for SMR Modeling and Cross Section Generation Yousef Alzaben, Victor. H. Sánchez-Espinoza, Robert Stieglitz INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR) KIT The Research

More information

PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS

PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS Radoslav ZAJAC 1,2), Petr DARILEK 1), Vladimir NECAS 2) 1 VUJE, Inc., Okruzna 5, 918 64 Trnava, Slovakia; zajacr@vuje.sk, darilek@vuje.sk 2 Slovak University

More information

Fuel BurnupCalculations and Uncertainties

Fuel BurnupCalculations and Uncertainties Fuel BurnupCalculations and Uncertainties Outline Review lattice physics methods Different approaches to burnup predictions Linkage to fuel safety criteria Sources of uncertainty Survey of available codes

More information

MOx Benchmark Calculations by Deterministic and Monte Carlo Codes

MOx Benchmark Calculations by Deterministic and Monte Carlo Codes MOx Benchmark Calculations by Deterministic and Monte Carlo Codes G.Kotev, M. Pecchia C. Parisi, F. D Auria San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa via Diotisalvi 2, 56122

More information

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR Proceedings of HTR2008 4 th International Topical Meeting on High Temperature Reactors September 28-October 1, 2008, Washington, D.C, USA HTR2008-58155 NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL

More information

REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG-TERM DISPOSAL

REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG-TERM DISPOSAL REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG-TERM DISPOSAL Georgeta Radulescu John Wagner (presenter) Oak Ridge National Laboratory International Workshop

More information

Neutronics of MAX phase materials

Neutronics of MAX phase materials Neutronics of MAX phase materials Christopher Grove, Daniel Shepherd, Mike Thomas, Paul Little National Nuclear Laboratory, Preston Laboratory, Springfields, UK Abstract This paper examines the neutron

More information

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BRN-P CALCLATIONS O. Cabellos, D. Piedra, Carlos J. Diez Department of Nuclear Engineering, niversidad Politécnica de Madrid, Spain E-mail: oscar.cabellos@upm.es

More information

DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK CALCULATIONS FOR DIFFERENT ENRICHMENTS OF UO 2

DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK CALCULATIONS FOR DIFFERENT ENRICHMENTS OF UO 2 Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK

More information

Research Article Uncertainty and Sensitivity Analysis of Void Reactivity Feedback for 3D BWR Assembly Model

Research Article Uncertainty and Sensitivity Analysis of Void Reactivity Feedback for 3D BWR Assembly Model Hindawi Science and Technology of Nuclear Installations Volume 2017, Article ID 989727, 9 pages https://doi.org/10.1155/2017/989727 Research Article Uncertainty and Sensitivity Analysis of Void Reactivity

More information

USE OF LATTICE CODE DRAGON IN REACTOR CALUCLATIONS

USE OF LATTICE CODE DRAGON IN REACTOR CALUCLATIONS USE OF LATTICE CODE DRAGON IN REACTOR CALUCLATIONS ABSTRACT Dušan Ćalić ZEL-EN razvojni center Hočevarjev trg 1 Slovenia-SI8270, Krško, Slovenia dusan.calic@zel-en.si Andrej Trkov, Marjan Kromar J. Stefan

More information

On-the-fly Doppler Broadening in Serpent

On-the-fly Doppler Broadening in Serpent On-the-fly Doppler Broadening in Serpent 1st International Serpent User Group Meeting 16.9.2011, Dresden Tuomas Viitanen VTT Technical Research Centre of Finland Outline Fuel temperatures in neutronics

More information

VERIFICATION OFENDF/B-VII.0, ENDF/B-VII.1 AND JENDL-4.0 NUCLEAR DATA LIBRARIES FOR CRITICALITY CALCULATIONS USING NEA/NSC BENCHMARKS

VERIFICATION OFENDF/B-VII.0, ENDF/B-VII.1 AND JENDL-4.0 NUCLEAR DATA LIBRARIES FOR CRITICALITY CALCULATIONS USING NEA/NSC BENCHMARKS VERIFICATION OFENDF/B-VII.0, ENDF/B-VII.1 AND JENDL-4.0 NUCLEAR DATA LIBRARIES FOR CRITICALITY CALCULATIONS USING NEA/NSC BENCHMARKS Amine Bouhaddane 1, Gabriel Farkas 1, Ján Haščík 1, Vladimír Slugeň

More information

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN s Present address: J.L. Kloosterman Interfaculty Reactor Institute Delft University of Technology Mekelweg 15, NL-2629 JB Delft, the Netherlands Fax: ++31

More information

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A. Aures 1,2, A. Pautz 2, K. Velkov 1, W. Zwermann 1 1 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh Boltzmannstraße

More information

Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses

Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses 35281 NCSD Conference Paper #2 7/17/01 3:58:06 PM Computational Physics and Engineering Division (10) Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses Charlotta

More information

Comparison of PWR burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results. Abstract

Comparison of PWR burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results. Abstract Comparison of PWR burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results Ph.Oberle, C.H.M.Broeders, R.Dagan Forschungszentrum Karlsruhe, Institut for Reactor Safety Hermann-von-Helmholtz-Platz-1,

More information

Reactor-physical calculations using an MCAM based MCNP model of the Training Reactor of Budapest University of Technology and Economics

Reactor-physical calculations using an MCAM based MCNP model of the Training Reactor of Budapest University of Technology and Economics Nukleon 016. december IX. évf. (016) 00 Reactor-physical calculations using an MCAM based MCNP model of the Training Reactor of Budapest University of Technology and Economics Tran Thuy Duong 1, Nguyễn

More information

Consistent Code-to-Code Comparison of Pin-cell Depletion Benchmark Suite

Consistent Code-to-Code Comparison of Pin-cell Depletion Benchmark Suite Consistent Code-to-Code Comparison of Pin-cell Depletion Benchmark Suite September 27, 26 Jinsu Park, Deokjung Lee * COmputational Reactor Physics & Experiment lab Contents VERA depletion benchmark suite

More information

Serpent Monte Carlo Neutron Transport Code

Serpent Monte Carlo Neutron Transport Code Serpent Monte Carlo Neutron Transport Code NEA Expert Group on Advanced Monte Carlo Techniques, Meeting September 17 2012 Jaakko Leppänen / Tuomas Viitanen VTT Technical Research Centre of Finland Outline

More information

Assessment of the MCNP-ACAB code system for burnup credit analyses

Assessment of the MCNP-ACAB code system for burnup credit analyses Assessment of the MCNP-ACAB code system for burnup credit analyses N. García-Herranz, O. Cabellos, J. Sanz UPM - UNED International Workshop on Advances in Applications of Burnup Credit for Spent Fuel

More information

Recent Developments of the

Recent Developments of the emeinschaft der Helmholtz-Ge Mitglied d Recent Developments of the HTR Code Package (HCP) Forschungszentrum Jülich, Germany Technical Meeting on Re-evaluation of Maximum Operating Temperatures g p g p

More information

A TEMPERATURE DEPENDENT ENDF/B-VI.8 ACE LIBRARY FOR UO2, THO2, ZIRC4, SS AISI-348, H2O, B4C AND AG-IN-CD

A TEMPERATURE DEPENDENT ENDF/B-VI.8 ACE LIBRARY FOR UO2, THO2, ZIRC4, SS AISI-348, H2O, B4C AND AG-IN-CD 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 A TEMPERATURE

More information

Simulating the Behaviour of the Fast Reactor JOYO

Simulating the Behaviour of the Fast Reactor JOYO IYNC 2008 Interlaken, Switzerland, 20 26 September 2008 Paper No. 163 Simulating the Behaviour of the Fast Reactor JOYO ABSTRACT Pauli Juutilainen VTT Technical Research Centre of Finland, P.O. Box 1000,

More information

Demonstration of Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulations Using Serpent 2/ SUBCHANFLOW

Demonstration of Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulations Using Serpent 2/ SUBCHANFLOW Demonstration of Full PWR Core Coupled Monte Carlo Neutron Transport and Thermal-Hydraulic Simulations Using Serpent 2/ SUBCHANFLOW M. Daeubler Institute for Neutron Physics and Reactor Technology (INR)

More information

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments DOI: 10.15669/pnst.4.303 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 303-307 ARTICLE Reactor radiation skyshine calculations with code for Baikal-1 experiments Yi-Kang Lee * Commissariat

More information

Cold Critical Pre-Experiment Simulations of KRUSTy

Cold Critical Pre-Experiment Simulations of KRUSTy Cold Critical Pre-Experiment Simulations of KRUSTy Kristin Smith * Rene Sanchez, Ph.D. * University of Florida, Nuclear Engineering Program Los Alamos National Lab, Advanced Nuclear Technology LA-UR-17-27250

More information

Safety analyses of criticality control systems for transportation packages include an assumption

Safety analyses of criticality control systems for transportation packages include an assumption Isotopic Validation for PWR Actinide-OD-!y Burnup Credit Using Yankee Rowe Data INTRODUCTION Safety analyses of criticality control systems for transportation packages include an assumption that the spent

More information

COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES

COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES S. Bznuni, A. Amirjanyan, N. Baghdasaryan Nuclear and Radiation Safety Center Yerevan, Armenia Email: s.bznuni@nrsc.am

More information

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program Study of Burnup Reactivity and Isotopic Inventories in REBUS Program T. Yamamoto 1, Y. Ando 1, K. Sakurada 2, Y. Hayashi 2, and K. Azekura 3 1 Japan Nuclear Energy Safety Organization (JNES) 2 Toshiba

More information

Document ID Author Harri Junéll. Version 1.0. Approved by Ulrika Broman Comment Reviewed according to SKBdoc

Document ID Author Harri Junéll. Version 1.0. Approved by Ulrika Broman Comment Reviewed according to SKBdoc Public Report Document ID 1433410 Author Harri Junéll Reviewed by Version 1.0 Status Approved Reg no Date 2014-08-27 Reviewed date Page 1 (28) Approved by Ulrika Broman Comment Reviewed according to SKBdoc

More information

SUB-CHAPTER D.1. SUMMARY DESCRIPTION

SUB-CHAPTER D.1. SUMMARY DESCRIPTION PAGE : 1 / 12 CHAPTER D. REACTOR AND CORE SUB-CHAPTER D.1. SUMMARY DESCRIPTION Chapter D describes the nuclear, hydraulic and thermal characteristics of the reactor, the proposals made at the present stage

More information

Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime. (Report under CRDF Project RX0-1333)

Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime. (Report under CRDF Project RX0-1333) Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime (Report under CRDF Project RX0-1333) 2 Abstract This study addresses a number of issues related to low-grade fissile materials

More information

Research Article Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell Code Serpent v.1.1.7

Research Article Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell Code Serpent v.1.1.7 Science and Technology of Nuclear Installations Volume 2, Article ID 65946, 4 pages doi:.55/2/65946 Research Article Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell

More information

Resonance self-shielding methodology of new neutron transport code STREAM

Resonance self-shielding methodology of new neutron transport code STREAM Journal of Nuclear Science and Technology ISSN: 0022-3131 (Print) 1881-1248 (Online) Journal homepage: https://www.tandfonline.com/loi/tnst20 Resonance self-shielding methodology of new neutron transport

More information

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment Axel Hoefer, Oliver Buss AREVA GmbH Erlangen Radiology, Radiation Protection & Criticality Safety Analysis ANS Winter Meeting,

More information

CONTROL ROD WORTH EVALUATION OF TRIGA MARK II REACTOR

CONTROL ROD WORTH EVALUATION OF TRIGA MARK II REACTOR International Conference Nuclear Energy in Central Europe 2001 Hoteli Bernardin, Portorož, Slovenia, September 10-13, 2001 www: http://www.drustvo-js.si/port2001/ e-mail: PORT2001@ijs.si tel.:+ 386 1 588

More information

MCNP CALCULATION OF NEUTRON SHIELDING FOR RBMK-1500 SPENT NUCLEAR FUEL CONTAINERS SAFETY ASSESMENT

MCNP CALCULATION OF NEUTRON SHIELDING FOR RBMK-1500 SPENT NUCLEAR FUEL CONTAINERS SAFETY ASSESMENT MCNP CALCULATION OF NEUTRON SHIELDING FOR RBMK-15 SPENT NUCLEAR FUEL CONTAINERS SAFETY ASSESMENT R. Plukienė 1), A. Plukis 1), V. Remeikis 1) and D. Ridikas 2) 1) Institute of Physics, Savanorių 231, LT-23

More information

Scope and Objectives. Codes and Relevance. Topics. Which is better? Project Supervisor(s)

Scope and Objectives. Codes and Relevance. Topics. Which is better? Project Supervisor(s) Development of BFBT benchmark models for sub-channel code COBRA-TF versus System Code TRACE MSc Proposal 1 Fuel Assembly Thermal-Hydraulics Comparative Assessment of COBRA-TF and TRACE for CHF Analyses

More information

Neutronic Issues and Ways to Resolve Them. P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM,

Neutronic Issues and Ways to Resolve Them. P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM, GT-MHR Project High-Temperature Reactor Neutronic Issues and Ways to Resolve Them P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM, GT-MHR PROJECT MISSION

More information

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE Unclassified NEA/NSC/DOC(2007)9 NEA/NSC/DOC(2007)9 Unclassified Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 14-Dec-2007 English text

More information

Status of J-PARC Transmutation Experimental Facility

Status of J-PARC Transmutation Experimental Facility Status of J-PARC Transmutation Experimental Facility 10 th OECD/NEA Information Exchange Meeting for Actinide and Fission Product Partitioning and Transmutation 2008.10.9 Japan Atomic Energy Agency Toshinobu

More information

SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 5 & Anna Unit 1 Cycle 5

SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 5 & Anna Unit 1 Cycle 5 North ORNL/TM-12294/V5 SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 5 & Anna Unit 1 Cycle 5 S. M. Bowman T. Suto This report has been reproduced directly from the best

More information

Use of Monte Carlo and Deterministic Codes for Calculation of Plutonium Radial Distribution in a Fuel Cell

Use of Monte Carlo and Deterministic Codes for Calculation of Plutonium Radial Distribution in a Fuel Cell Use of Monte Carlo and Deterministic Codes for Calculation of Plutonium Radial Distribution in a Fuel Cell Dušan Ćalić, Marjan Kromar, Andrej Trkov Jožef Stefan Institute Jamova 39, SI-1000 Ljubljana,

More information

Study of Predictor-corrector methods. for Monte Carlo Burnup Codes. Dan Kotlyar Dr. Eugene Shwageraus. Supervisor

Study of Predictor-corrector methods. for Monte Carlo Burnup Codes. Dan Kotlyar Dr. Eugene Shwageraus. Supervisor Serpent International Users Group Meeting Madrid, Spain, September 19-21, 2012 Study of Predictor-corrector methods for Monte Carlo Burnup Codes By Supervisor Dan Kotlyar Dr. Eugene Shwageraus Introduction

More information

Improved time integration methods for burnup calculations with Monte Carlo neutronics

Improved time integration methods for burnup calculations with Monte Carlo neutronics Improved time integration methods for burnup calculations with Monte Carlo neutronics Aarno Isotalo 13.4.2010 Burnup calculations Solving time development of reactor core parameters Nuclide inventory,

More information

Benchmark Experiment for Fast Neutron Spectrum Potassium Worth Validation in Space Power Reactor Design

Benchmark Experiment for Fast Neutron Spectrum Potassium Worth Validation in Space Power Reactor Design Benchmark Experiment for Fast Neutron Spectrum Potassium Worth Validation in Space Power Reactor Design John D. Bess Idaho National Laboratory NETS 2015 Albuquerque, NM February 23-26, 2015 This paper

More information

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland Fundamentals of Nuclear Power Original slides provided by Dr. Daniel Holland Nuclear Fission We convert mass into energy by breaking large atoms (usually Uranium) into smaller atoms. Note the increases

More information

THE NEXT GENERATION WIMS LATTICE CODE : WIMS9

THE NEXT GENERATION WIMS LATTICE CODE : WIMS9 THE NEXT GENERATION WIMS LATTICE CODE : WIMS9 T D Newton and J L Hutton Serco Assurance Winfrith Technology Centre Dorchester Dorset DT2 8ZE United Kingdom tim.newton@sercoassurance.com ABSTRACT The WIMS8

More information

WHY A CRITICALITY EXCURSION WAS POSSIBLE IN THE FUKUSHIMA SPENT FUEL POOLS

WHY A CRITICALITY EXCURSION WAS POSSIBLE IN THE FUKUSHIMA SPENT FUEL POOLS PHYSOR 014 The Role of Reactor Physics Toward a Sustainable Future The Westin Miyako, Kyoto, Japan, September 8 October 3, 014, on CD-ROM (014) WHY CRITICLITY EXCURSION WS POSSIBLE IN THE FUKUSHIM SPENT

More information

FHR Neutronics Benchmarking White Paper. April, UC Berkeley Nuclear Engineering Department

FHR Neutronics Benchmarking White Paper. April, UC Berkeley Nuclear Engineering Department FHR Neutronics Benchmarking White Paper April, 2016 UC Berkeley Nuclear Engineering Department Contents Contents... 1 List of Figures... 3 List of Tables... 4 1 Introduction... 5 1.1 White paper outline...

More information

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors M. Halász, M. Szieberth, S. Fehér Budapest University of Technology and Economics, Institute of Nuclear Techniques Contents

More information

CROSS SECTION WEIGHTING SPECTRUM FOR FAST REACTOR ANALYSIS

CROSS SECTION WEIGHTING SPECTRUM FOR FAST REACTOR ANALYSIS 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 CROSS SECTION

More information

Upcoming features in Serpent photon transport mode

Upcoming features in Serpent photon transport mode Upcoming features in Serpent photon transport mode Toni Kaltiaisenaho VTT Technical Research Centre of Finland Serpent User Group Meeting 2018 1/20 Outline Current photoatomic physics in Serpent Photonuclear

More information

Benchmark Calculation of KRITZ-2 by DRAGON/PARCS. M. Choi, H. Choi, R. Hon

Benchmark Calculation of KRITZ-2 by DRAGON/PARCS. M. Choi, H. Choi, R. Hon Benchmark Calculation of KRITZ-2 by DRAGON/PARCS M. Choi, H. Choi, R. Hon General Atomics: 3550 General Atomics Court, San Diego, CA 92121, USA, Hangbok.Choi@ga.com Abstract - Benchmark calculations have

More information

Dose Rates Modeling of Pressurized Water Reactor Primary Loop Components with SCALE6.0

Dose Rates Modeling of Pressurized Water Reactor Primary Loop Components with SCALE6.0 ABSTRACT Dose Rates Modeling of Pressurized Water Reactor Primary Loop Components with SCALE6.0 Mario Matijević, Dubravko Pevec, Krešimir Trontl University of Zagreb, Faculty of Electrical Engineering

More information

Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage

Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage SESSION 7: Research and Development Required to Deliver an Integrated Approach Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage A. Šmaižys,

More information

Observables of interest for the characterisation of Spent Nuclear Fuel

Observables of interest for the characterisation of Spent Nuclear Fuel Observables of interest for the characterisation of Spent Nuclear Fuel Gašper Žerovnik Peter Schillebeeckx Kevin Govers Alessandro Borella Dušan Ćalić Luca Fiorito Bor Kos Alexey Stankovskiy Gert Van den

More information

SENSITIVITY AND PERTURBATION THEORY IN FAST REACTOR CORE DESIGN

SENSITIVITY AND PERTURBATION THEORY IN FAST REACTOR CORE DESIGN Journal of ELECTRICAL ENGINEERING, VOL. 65, NO. 7s, 214, 25 29 SENSITIVITY AND PERTURBATION THEORY IN FAST REACTOR CORE DESIGN Jakub Lüley Branislav Vrban Štefan Čerba Ján Haščík Vladimír Nečas Sang-Ji

More information

Investigation of Nuclear Data Accuracy for the Accelerator- Driven System with Minor Actinide Fuel

Investigation of Nuclear Data Accuracy for the Accelerator- Driven System with Minor Actinide Fuel Investigation of Nuclear Data Accuracy for the Accelerator- Driven System with Minor Actinide Fuel Kenji Nishihara, Takanori Sugawara, Hiroki Iwamoto JAEA, Japan Francisco Alvarez Velarde CIEMAT, Spain

More information

VALIDATION OF VISWAM SQUARE LATTICE MODULE WITH MOX PIN CELL BENCHMARK

VALIDATION OF VISWAM SQUARE LATTICE MODULE WITH MOX PIN CELL BENCHMARK U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 4, 2015 ISSN 2286-3540 VALIDATION OF VISWAM SQUARE LATTICE MODULE WITH MOX PIN CELL BENCHMARK Arvind MATHUR 1, Suhail Ahmad KHAN 2, V. JAGANNATHAN 3, L. THILAGAM

More information

Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors

Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors Evaluation of Neutron Physics Parameters and Reactivity Coefficients for Sodium Cooled Fast Reactors A. Ponomarev, C.H.M. Broeders, R. Dagan, M. Becker Institute for Neutron Physics and Reactor Technology,

More information

Invited. ENDF/B-VII data testing with ICSBEP benchmarks. 1 Introduction. 2 Discussion

Invited. ENDF/B-VII data testing with ICSBEP benchmarks. 1 Introduction. 2 Discussion International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07285 Invited ENDF/B-VII data testing with ICSBEP benchmarks A.C. Kahler and R.E. MacFarlane Los Alamos National

More information

CRITICAL LOADING CONFIGURATIONS OF THE IPEN/MB-01 REACTOR WITH UO 2 GD 2 O 3 BURNABLE POISON RODS

CRITICAL LOADING CONFIGURATIONS OF THE IPEN/MB-01 REACTOR WITH UO 2 GD 2 O 3 BURNABLE POISON RODS CRITICAL LOADING CONFIGURATIONS OF THE IPEN/MB-01 REACTOR WITH UO 2 GD 2 O 3 BURNABLE POISON RODS Alfredo Abe 1, Rinaldo Fuga 1, Adimir dos Santos 2, Graciete S. de Andrade e Silva 2, Leda C. C. B. Fanaro

More information

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Gunter Pretzsch Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbh Radiation and Environmental Protection Division

More information

Study on SiC Components to Improve the Neutron Economy in HTGR

Study on SiC Components to Improve the Neutron Economy in HTGR Study on SiC Components to Improve the Neutron Economy in HTGR Piyatida TRINURUK and Assoc.Prof.Dr. Toru OBARA Department of Nuclear Engineering Research Laboratory for Nuclear Reactors Tokyo Institute

More information

Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR)

Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR) R&D Needs in Nuclear Science 6-8th November, 2002 OECD/NEA, Paris Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR) Hideki Takano Japan Atomic Energy Research Institute, Japan Introduction(1)

More information

Core Physics Second Part How We Calculate LWRs

Core Physics Second Part How We Calculate LWRs Core Physics Second Part How We Calculate LWRs Dr. E. E. Pilat MIT NSED CANES Center for Advanced Nuclear Energy Systems Method of Attack Important nuclides Course of calc Point calc(pd + N) ϕ dn/dt N

More information

Neutronic Analysis of Moroccan TRIGA MARK-II Research Reactor using the DRAGON.v5 and TRIVAC.v5 codes

Neutronic Analysis of Moroccan TRIGA MARK-II Research Reactor using the DRAGON.v5 and TRIVAC.v5 codes Physics AUC, vol. 27, 41-49 (2017) PHYSICS AUC Neutronic Analysis of Moroccan TRIGA MARK-II Research Reactor using the DRAGON.v5 and TRIVAC.v5 codes DARIF Abdelaziz, CHETAINE Abdelouahed, KABACH Ouadie,

More information

Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation

Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation 42 Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation Anne BARREAU 1*, Bénédicte ROQUE 1, Pierre MARIMBEAU 1, Christophe VENARD 1 Philippe BIOUX

More information

Neutronic Calculations of Ghana Research Reactor-1 LEU Core

Neutronic Calculations of Ghana Research Reactor-1 LEU Core Neutronic Calculations of Ghana Research Reactor-1 LEU Core Manowogbor VC*, Odoi HC and Abrefah RG Department of Nuclear Engineering, School of Nuclear Allied Sciences, University of Ghana Commentary Received

More information

3. State each of the four types of inelastic collisions, giving an example of each (zaa type example is acceptable)

3. State each of the four types of inelastic collisions, giving an example of each (zaa type example is acceptable) Nuclear Theory - Course 227 OBJECTIVES to: At the conclusion of this course the trainee will be able 227.00-1 Nuclear Structure 1. Explain and use the ZXA notation. 2. Explain the concept of binding energy.

More information

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT R. KHAN, M. VILLA, H. BÖCK Vienna University of Technology Atominstitute Stadionallee 2, A-1020, Vienna, Austria ABSTRACT The Atominstitute

More information

Hybrid Low-Power Research Reactor with Separable Core Concept

Hybrid Low-Power Research Reactor with Separable Core Concept Hybrid Low-Power Research Reactor with Separable Core Concept S.T. Hong *, I.C.Lim, S.Y.Oh, S.B.Yum, D.H.Kim Korea Atomic Energy Research Institute (KAERI) 111, Daedeok-daero 989 beon-gil, Yuseong-gu,

More information

The Use of Self-Induced XRF to Quantify the Pu Content in PWR Spent Nuclear Fuel

The Use of Self-Induced XRF to Quantify the Pu Content in PWR Spent Nuclear Fuel The Use of Self-Induced XRF to Quantify the Pu Content in PWR Spent Nuclear Fuel William S. Charlton, Daniel Strohmeyer, Alissa Stafford Texas A&M University, College Station, TX 77843-3133 USA Steve Saavedra

More information

Neutronic Analysis of the European Gas-Cooled Fast Reactor Demonstrator ALLEGRO and its Validation via Monte Carlo TRIPOLI Calculations

Neutronic Analysis of the European Gas-Cooled Fast Reactor Demonstrator ALLEGRO and its Validation via Monte Carlo TRIPOLI Calculations Faculté des Sciences de Base Laboratoire de physique des Réacteurs et de comportement des Systèmes Neutronic Analysis of the European Gas-Cooled Fast Reactor Demonstrator ALLEGRO and its Validation via

More information

Improved PWR Simulations by Monte-Carlo Uncertainty Analysis and Bayesian Inference

Improved PWR Simulations by Monte-Carlo Uncertainty Analysis and Bayesian Inference Improved PWR Simulations by Monte-Carlo Uncertainty Analysis and Bayesian Inference E. Castro, O. Buss, A. Hoefer PEPA1-G: Radiology & Criticality, AREVA GmbH, Germany Universidad Politécnica de Madrid

More information

Technical workshop : Dynamic nuclear fuel cycle

Technical workshop : Dynamic nuclear fuel cycle Technical workshop : Dynamic nuclear fuel cycle Reactor description in CLASS Baptiste LENIAU* Institut d Astrophysique de Paris 6-8 July, 2016 Introduction Summary Summary The CLASS package : a brief overview

More information

National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat, Morocco.

National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat, Morocco. Physics AUC, vol. 28, 79-98 (2018) PHYSICS AUC Processing of the ENDF/B-VIII.0β6 Neutron Cross-Section Data Library and Testing with Critical Benchmarks, Oktavian Shielding Benchmarks and the Doppler Reactivity

More information

Users manual of CBZ/FRBurnerRZ: A module for fast reactor core design

Users manual of CBZ/FRBurnerRZ: A module for fast reactor core design Users manual of CBZ/FRBurnerRZ: A module for fast reactor core design Go CHIBA May 25, 2018 Contents 1 Brief summary of FRBurnerRZ 2 2 Preparation of input deck 2 2.1 Preparation of fuel pellet composition

More information

Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data

Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data NUREG/CR-6979 ORNL/TM-2007/083 Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data Office of Nuclear Regulatory Research NUREG/CR-6979 ORNL/TM-2007/083 Evaluation of the French

More information

Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA

Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA Kick off meeting of NEA Expert Group on Uncertainty Analysis for Criticality Safety Assessment IRSN, France

More information

Systems Analysis of the Nuclear Fuel Cycle CASMO-4 1. CASMO-4

Systems Analysis of the Nuclear Fuel Cycle CASMO-4 1. CASMO-4 1. CASMO-4 1.1 INTRODUCTION 1.1.1 General The CASMO-4 code is a multi-group two-dimensional transport code developed by Studsvik, which is entirely written in FORTRAN 77. It is used for burnup calculations

More information

Sensitivity and Uncertainty Analysis of the k eff and b eff for the ICSBEP and IRPhE Benchmarks

Sensitivity and Uncertainty Analysis of the k eff and b eff for the ICSBEP and IRPhE Benchmarks Sensitivity and Uncertainty Analysis of the k eff and b eff for the ICSBEP and IRPhE Benchmarks ANDES Workpackage N : 3, Deliverable D3.3 Ivo Kodeli Jožef Stefan Institute, Slovenia ivan.kodeli@ijs.si

More information

CEA, Cadarache, DEN/DER/SPRC/LEPh, Saint Paul Les Durance, France * Corresponding author. address:

CEA, Cadarache, DEN/DER/SPRC/LEPh, Saint Paul Les Durance, France * Corresponding author.  address: Neutronic Study of UO2-BeO Fuel with Various Claddings Shengli Chen 1,2 and Cenxi Yuan 1, * 1 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082,

More information

SPentfuel characterisation Program for the Implementation of Repositories

SPentfuel characterisation Program for the Implementation of Repositories SPentfuel characterisation Program for the Implementation of Repositories WP2 & WP4 Development of measurement methods and techniques to characterise spent nuclear fuel Henrik Widestrand and Peter Schillebeeckx

More information

SIMPLIFIED BENCHMARK SPECIFICATION BASED ON #2670 ISTC VVER PIE. Ludmila Markova Frantisek Havluj NRI Rez, Czech Republic ABSTRACT

SIMPLIFIED BENCHMARK SPECIFICATION BASED ON #2670 ISTC VVER PIE. Ludmila Markova Frantisek Havluj NRI Rez, Czech Republic ABSTRACT 12 th Meeting of AER Working Group E on 'Physical Problems of Spent Fuel, Radwaste and Nuclear Power Plants Decommissioning' Modra, Slovakia, April 16-18, 2007 SIMPLIFIED BENCHMARK SPECIFICATION BASED

More information

YALINA-Booster Conversion Project

YALINA-Booster Conversion Project 1 ADS/ET-06 YALINA-Booster Conversion Project Y. Gohar 1, I. Bolshinsky 2, G. Aliberti 1, F. Kondev 1, D. Smith 1, A. Talamo 1, Z. Zhong 1, H. Kiyavitskaya 3,V. Bournos 3, Y. Fokov 3, C. Routkovskaya 3,

More information

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 ABSTRACT THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR Boris Bergelson, Alexander Gerasimov Institute

More information