Supplementary Material

Size: px
Start display at page:

Download "Supplementary Material"

Transcription

1 Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 014 Supplementary Material Effect of local chain deformability on the temperature-induced morphological transitions of polystyrene-b-poly(n-isopropylacrylamide) micelles in aqueous solution Xi-Xian Ke 1, Lian Wang, Jun-Ting Xu 1,* Bin-Yang Du 1, Ying-Feng Tu 3, Zhi-Qiang Fan 1 1 MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 31007, China College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou , China 3 Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 1513, P. R. China. 1

2 Synthesis and characterization of PS-b-PNIPAM block copolymers RAFT-terminated PS (PS-containing macro-raft agent) was first synthesized. Styrene (30 ml, mol), DDAT (0.385 g, mmol) and AIBN ( g, mmol) were added into a Schlenk flask. The mixture was degassed by thrice freeze-pump-thaw cycles and sealed in vacuum. The sealed flask was immersed into an oil bath preheated to 80 C. After a desired reaction time, the reaction flask was quenched into liquid nitrogen, then the reactant was diluted with small amount of tetrahydrofuran (THF), and precipitated in excess methanol. This dissolution and precipitation cycle was repeated for three times. The precipitates was collected by filtration and dried under vacuum at 40 C for 48 h. The chemical shifts of the H- NMR peaks are following: 0.90 (m, 3H, -CH 3 ), (m, -CH -CH-), 3.5 (t, H, -CH S), (m, C 6 H 5 of styrene). A typical PS-b-PNIPAM diblock copolymer was synthesized as follows. PScontaining macro-raft agent, AIBN and NIPAM were introduced into a 10 ml Schlenk flask. The mixture was degassed by three freeze-pump-thaw cycles, and finally filled with N, then the reaction flask was sealed and immersed into an oil bath pre-heated to 70 C. After a preset time, the reaction was quenched into liquid nitrogen, then the mixture was diluted with dioxane and precipitated in cold Et O, the product was collected by filtration and dried under vacuum at 40 C for 48 h. 1 H- NMR (500 MHz, CDCl 3 ), (TMS, ppm): 0.88 (m, 3H, -CH 3 ), (m, - CH(CH 3 ) and -CH -CH- on the polymer s main chain ), 4.0 (s, -NHCH(CH 3 ) ), (m, C 6 H 5 of styrene and -NHCH(CH 3 ) ). Molecular weights of the PS-b-

3 PNIPAM diblock copolymers were calculated from the intensities of the characteristic peaks in the 1 H-NMR spectra based on the molecular weight of PS block measured by 1 H-NMR. For PS 65 -b-pnipam 108 containing 65 styrene units and 108 NIPAM units, M w /M n = For PS 65 -b-pnipam 360 with a longer PNIPAM block, M w /M n = 1.6. PS-containing macro-raft agent and the PS-b-PNIPAM diblock copolymers were characterized with 1 H-NMR and GPC. 1 H-NMR spectra were measured on a Bruker DMX-500 NMR spectrometer using chloroform-d (CDCl 3 ) as the solvent and tetramethylsilane (TMS) as the internal standard. Gel permeation chromatography (GPC) was conducted at 5 C in DMF containing 0.5 wt% potassium bromide with a flow rate of 1 ml/min, using a Waters 510 HPLC pump, Waters Styragel columns, and a Waters 410 differential refractometer (Millipore Corp., Bedford, MA). PMMA was used as a calibration standard. The polymerization conditions and characterization results of the PS-b-PNIPAM diblock copolymers are summarized in Table S1. Table S1. Polymerization conditions and results of the PS-b-PNIPAM diblock copolymers. a Sample 1 Time (h) 4 1 M n b PDI c Chemical composition d ƒ PS e PS 65 -b-pnipam % PS 65 -b-pnipam % a Polymerization was carried out at 70 C with 1,4-dioxane as the solvent. [1] :[PScontaining macro-raft agent]:[aibn]=3000:10:. b M n was determined by 1 H-NMR based on the equation: M n = (M n of PS) + (M n of PNIPAM) {I 4.0 /[(I I 4.0 )/5]} + 364, where I and I 4.0 represents the intensities of the characteristic resonances in range of ppm and at 4.0 ppm, respectively. c PDI = M w /M n, determined by GPC. d Calculated from the 1 H-NMR. e Volume fraction of the PS block in the block copolymers. [] 3

4 PS B-1 B LogM W Figure S1. GPC curves of PS-containing macro-raft agent and PS-b-PNIPAM block copolymers. B-1: PS 65 -b-pnipam 108 ; B-: PS 65 -b-pnipam 360. a b c S d e CH 3 CH 3 C 10 H 0 CH S C S CH CH C COOH n CH 3 h g+i g h c f i b+d e f a S CH a b d e d' e' 3 CH 3 C 10 H 0 CH S C S CH CH CH CH CH COOH n m C O CH 3 g,i h g' h g i h' g' h' NH CH CH 3 CH 3 i' b,d,d' e,e' i' a (ppm) (ppm) Figure S. 1 H-NMR spectra of PS-containing macro-raft agent (left) and PS 65 -b- PNIPAM 108 block copolymer (right). (a) 460 PS 65 -b-pnipam 108 (b) 600 PS 65 -b-pnipam 360 Intensity (kcps) heating cooling T ( C ) Intensity (kcps) heating cooling T ( C ) Figure S3. Variation of the scattering light intensity of the PS-b-PNIPAM micellar solutions with temperature. (a) PS 65 -b-pnipam 108 ; (b) PS 65 -b-pnipam 360 4

5 Figure S4. TEM images of PS 65 -b-pnipam 108 micelles at 40 C (a) and PS 65 -b- PNIPAM 360 at 50 C (b). Figure S5. TEM images of PS 65 -b-pnipam 108 micelles (a) and PS 65 -b-pnipam 360 micelles (b) after being cooled back to 5 C from elevated temperature. 5

6 g () ( ) PS 65 -b-pnipam 108 (5 C) g () ( ) PS 65 -b-pnipam 108 (60 C) t(ms) t(ms) g () ( ) PS 65 -b-pnipam 360 (5 C) g () ( ) PS 65 -b-pnipam 360 (40 C) t(ms) t(ms) Figure S6. Electric-field autocorrelation function g (1) (t) of PS-b-PNIPAM micelles in aqueous solution measured by DLS at different scattering angles. The symbols represent the experimental data and the solid lines are the best fits with Eq. 1 (in the main manuscript) with fit quality of R = Figure S7. TEM images of PS 65 -b-pnipam 108 micelles prepared by slow addition of water into DMF solution followed by dialysis. (a) at 5 C; (b) at 60 C. (c) cooling back to 5 C. 6

7 Calculations of micellar free energy at 5 C. The driving force for micelle formation and morphological transformations is the tendency to minimize the overall micelle free energy under a specific set of experimental conditions. The overall micelle free energy can be expressed as [3] F F core F interface F corona (1) Where the term F core is the free energy of the core that involves deformation of the core block conformations such as stretching or compressing, leading to deviation from its random coil conformation. In this case, this corresponds to the PS block. The term F interface is determined by the surface tension between the core and solvent at the interface. The term F corona relates to the steric and electrostatic (if ionic block exists, however that is not the case here) interactions between corona blocks and solvent. Here, it is the PNIPAM block. F core can be correlated to the degree of stretching or compression (Sc) of the PS blocks in the core and calculated as [4] S c R core / R 0 () Where R core is the radius of the PS core in the spherical and cylindrical micelles. In the case of vesicles, half of the wall thickness was utilized as R core. The quantity R 0 is the unperturbed end-to-end distance of the PS chain which can be calculated from the equation [5] R M 0.5 (3) Where M is the number-average molecular weight of the PS blocks. The value of R 0 is calculated to be 5.55 nm when the PS block s molecular weight is 6.76 kg/mol. 7

8 Therefore, the free energy of PS blocks in the micellar core can be calculated based on the following equation: [6] core / kt k jsc F ( 1) S c (4) Here, k j is the numerical coefficients of a dense PS core: j =1for lamella, k 1 = π /8; j = for cylinder, k = π /16; and j = 3 for sphere, k 3 = 3π /80. The second term, F interface, relates to the interfacial free energy between the core (PS) blocks at the interface and the solvents. Therefore Finterface s (5) Where s is the interfacial area per chain, and γ is surface tension, which is related to core solvent by the following expression: [7] ( kt / a PS )( PS solvent / 6) 0.5 (6) Where a is the PS monomer length. The term in this study is the PS-water PS solvent interaction parameter. Quantitatively, these parameters can be estimated using the van Laar-Hildebrand equation if we neglect the entropic contribution: [6] P S [ VS P S /( RT )]( ) (7) Where V S is the molar volume of the solvent and δ P and δ S are solubility parameters of the polymer and selective solvent, respectively. Since the solubility parameter of PS is 9.04 (cal/cm 3 ) 0.5, while that of water is 3.4 (cal/cm 3 ) 0.5, the P S can be calculated as ps water 6.7. [6] The third term, F corona, is based on the expression proposed by Zhulina et al. in their theory of diblock copolymer micelles. The corona could be treated as chains tethered on a planar substrate when the corona is much shorter than the core block. 8

9 This free energy is expressed by: F corona / kt Cˆ H Cˆ F N PNIPAM ( sa 1/ PNIPAM ) (8) Where Ĉ H and Ĉ F are numerical coefficients, N is the polymerization degree of the PNIPAM block, s is the area occupied by per PNIPAM chain at the interface between the corona and core of the micelles, a PNIPAM is the length of a NIPAM unit, and is the scaling exponent with a value of 3/5 in the good solvent or 1/ in the solvent. In the good solvent, Ĉ H and Ĉ F can be expressed as: Cˆ C Cˆ H H F C F ( l PNIPAM / a PNIPAM ) 1/3 1/3 (9) (10) Where C H and C F are constants with values of 0.68 and 1.83, respectively, l PNIPAM is the Kuhn length of PNIPAM and is the excluded volume of PNIPAM in a specific solvent. The values of l PNIPAM and a PNIPAM are 0.68 nm and 0.5 nm, [7] respectively. The excluded volume parameter υ is related to the second virial coefficient A : [8] 3 0 /( a N PNIPAM A A M ) (11) Where M 0 is the molecular weight of the PNIPAM monomer and N A is Avogadro s number. The values of A in the literature for our specific molecular weight and/or scaling laws have enabled us to determine the values of A for different length of PNIPAM in water. [9] 9

10 Table S. Physical parameters for PS-b-PNIPAM micelles at 5 C Sample A a (cm 3 mol/g ) υ b (nm 3 ) ĈH morphology R c core (nm) S c d s e (nm ) PS 65 -b PNIPAM 108 Vesicle Sphere PS 65 -b PNIPAM 360 Cylinder Sphere a A is related to molecular weight: [9] A = M b υ is the excluded volume parameter of PNIPAM in water. c R core is the radius of spherical and cylindrical micelles and half of wall thickness for vesicles. d S c is the degree of stretching of PS blocks in the micellar core. e s is the interfacial area per chain. Table S3. Free energy calculations for PS-b-PNIPAM micelles at 5 C Sample morphology F core /kt F interface /kt F corona /kt F total /kt PS 65 -b-pnipam 108 Vesicle Sphere PS 65 -b-pnipam 360 Cylinder Sphere References [1] J. Adelsberger, A. Meier-Koll, A. M. Bivigou-Koumba, P. Busch, O. Holderer, T. Hellweg, A. Laschewsky, P. Müller-Buschbaum, C. M. Papadakis, The collapse transition and the segmental dynamics in concentrated micellar solutions of P(Sb-NIPAM) diblock copolymers, Colloid and Polymer Science, 011, 89(5-6), [] F. Cheng, E. M. Bonder, A. Doshi, F. Jäkle, Organoboron star polymers via armfirst RAFT polymerization: synthesis, luminescent behavior, and aqueous selfassembly, Polymer Chemistry, 01, 3(3), 596. [3] Zhang. L, Eisenberg. A, Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution.polymers for Advanced Technologies, (10-11),

11 [4] Zhang. L, Eisenberg. A, Multiple morphologies and characteristics of crew-cut micelle-like aggregates of polystyrene-b-poly (acrylic acid) diblock copolymers in aqueous solutions. Journal of the American Chemical Society, 1996, 118(13), [5] Rubinstein. M, Colby. R. H, Polymer Physics, 1st ed.; Oxford University Press: London, 003. [6] Bhargava. P, Zheng. J. X., Li. P, Quirk. R. P., Harris. F. W, Cheng. S. Z, Self- Assembled Polystyrene-block-poly (ethylene oxide) Micelle Morphologies in Solution. Macromolecules, 006, 39(14), [7] Zhang. W, Zou. S, Wang. C, Zhang. X, Single polymer chain elongation of poly (N-isopropylacrylamide) and poly (acrylamide) by atomic force microscopy. The Journal of Physical Chemistry B, 000, 104(44), [8] Rubinstein. M, Colby. R. H, Polymer Physics; Oxford University Press: Oxford, UK, 003. [9] Kubota. K, Hamano. K, Kuwahara. N, Fujishige. S, Ando. I, Characterization of poly (N-isopropylmethacrylamide) in water. Polymer Journal, 1990,,

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Nanoparticle-to-vesicle and nanoparticle-to-toroid transitions of ph-sensitive

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of Poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Polymerization-induced Self-Assembly of Homopolymer and Diblock copolymer: A Facile Approach for preparing Polymer Nano-objects with Higher Order Morphologies Jianbo Tan *a,b, Chundong

More information

Self-Assembly and Multi-Stimuli Responsive. Behavior of PAA-b-PAzoMA-b-PNIPAM Triblock. Copolymers

Self-Assembly and Multi-Stimuli Responsive. Behavior of PAA-b-PAzoMA-b-PNIPAM Triblock. Copolymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Self-Assembly and Multi-Stimuli Responsive Behavior of PAA-b-PAzoMA-b-PNIPAM

More information

Supplementary Information. "On-demand" control of thermoresponsive properties of poly(n-isopropylacrylamide) with cucurbit[8]uril host-guest complexes

Supplementary Information. On-demand control of thermoresponsive properties of poly(n-isopropylacrylamide) with cucurbit[8]uril host-guest complexes upplementary Information "n-demand" control of thermoresponsive properties of poly(n-isopropylacrylamide) with cucurbit[8]uril host-guest complexes Urs Rauwald, Jesús del Barrio, Xian Jun Loh, and ren

More information

Supporting Information

Supporting Information Supporting Information Efficient Temperature Sensing Platform Based on Fluorescent Block Copolymer Functionalized Graphene Oxide Hyunseung Yang, Kwanyeol Paek, and Bumjoon J. Kim * : These authors contributed

More information

ELECTRONIC SUPPORTING INFORMATION Pentablock star shaped polymers in less than 90 minutes via

ELECTRONIC SUPPORTING INFORMATION Pentablock star shaped polymers in less than 90 minutes via Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 ELECTRONIC SUPPORTING INFORMATION Pentablock star shaped polymers in less than 90 minutes

More information

Supplementary Information

Supplementary Information Supplementary Information Self-assembly of Metal-Polymer Analogues of Amphiphilic Triblock Copolymers 1 Zhihong Nie, 1 Daniele Fava, 1, 2, 3 Eugenia Kumacheva 1 Department of Chemistry, University of Toronto,

More information

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information A supramolecular approach for fabrication of photo- responsive

More information

Supporting information

Supporting information Supporting information Temperature and ph-dual Responsive AIE-Active Core Crosslinked Polyethylene Poly(methacrylic acid) Multimiktoarm Star Copolymers ` Zhen Zhang,*,, and Nikos Hadjichristidis*, School

More information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via Chiral Transfer of the Conjugated

More information

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting

More information

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2016 Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl

More information

Synthesis and characterization of poly(amino acid methacrylate)-stabilized diblock copolymer nanoobjects

Synthesis and characterization of poly(amino acid methacrylate)-stabilized diblock copolymer nanoobjects Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information for Polymer Chemistry manuscript: Synthesis and characterization

More information

Supplementary Information. Rational Design of Soluble and Clickable Polymers Prepared by. Conventional Free Radical Polymerization of

Supplementary Information. Rational Design of Soluble and Clickable Polymers Prepared by. Conventional Free Radical Polymerization of Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supplementary Information Rational Design of Soluble and Clickable Polymers Prepared by

More information

Supporting information. for. hydrophobic pockets for acylation reactions in water

Supporting information. for. hydrophobic pockets for acylation reactions in water Supporting information for Functionalized organocatalytic nanoreactors: hydrophobic pockets for acylation reactions in water Pepa Cotanda, Annhelen Lu, Joseph P. Patterson, Nikos Petzetakis, Rachel K.

More information

of Polystyrene 4-arm Stars Synthesized by RAFT- Mediated Miniemulsions.

of Polystyrene 4-arm Stars Synthesized by RAFT- Mediated Miniemulsions. Supporting Information to Narrow Molecular Weight and Particle Size Distributions of Polystyrene 4-arm Stars Synthesized by RAFT- Mediated Miniemulsions. Hazit A. Zayas, Nghia P. Truong, David Valade,

More information

Organized polymeric submicron particles via selfassembly. and crosslinking of double hydrophilic. poly(ethylene oxide)-b-poly(n-vinylpyrrolidone) in

Organized polymeric submicron particles via selfassembly. and crosslinking of double hydrophilic. poly(ethylene oxide)-b-poly(n-vinylpyrrolidone) in Supporting Information Organized polymeric submicron particles via selfassembly and crosslinking of double hydrophilic poly(ethylene oxide)-b-poly(n-vinylpyrrolidone) in aqueous solution Jochen Willersinn,

More information

Supracolloidal Polymer Chains of Diblock Copolymer Micelles

Supracolloidal Polymer Chains of Diblock Copolymer Micelles Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2014 Supporting Information Supracolloidal Polymer Chains of Diblock Copolymer Micelles

More information

Polymerization Induced Self-Assembly: Tuning of Nano-Object Morphology by Use of CO 2

Polymerization Induced Self-Assembly: Tuning of Nano-Object Morphology by Use of CO 2 Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Polymerization Induced Self-Assembly: Tuning of Nano-Object Morphology

More information

A novel smart polymer responsive to CO 2

A novel smart polymer responsive to CO 2 A novel smart polymer responsive to CO 2 Zanru Guo, a,b Yujun Feng,* a Yu Wang, a Jiyu Wang, a,b Yufeng Wu, a,b and Yongmin Zhang a,b a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences,

More information

Utilization of star-shaped polymer architecture in the creation of high-density polymer

Utilization of star-shaped polymer architecture in the creation of high-density polymer Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is The Royal Society of Chemistry 2014 Supplementary Information Utilization of star-shaped polymer architecture in the creation

More information

Star-like supramolecular polymers fabricated by a Keplerate cluster. with cationic terminated polymers and their self-assembly into.

Star-like supramolecular polymers fabricated by a Keplerate cluster. with cationic terminated polymers and their self-assembly into. Star-like supramolecular polymers fabricated by a Keplerate cluster with cationic terminated polymers and their self-assembly into vesicles Qian Zhang, Lipeng He, Hui Wang, Cheng Zhang, Weisheng Liu and

More information

Supporting Information

Supporting Information Supporting Information UCST or LCST? Composition-Dependent Thermoresponsive Behavior of Poly(N-Acryloylglycinamide-co-Diacetone Acrylamide) Wenhui Sun, Zesheng An*, Peiyi Wu * Experimental Materials Glycinamide

More information

Electronic Supplementary Information. for. Self-Assembly of Dendritic-Linear Block Copolymers With Fixed Molecular Weight and Block Ratio.

Electronic Supplementary Information. for. Self-Assembly of Dendritic-Linear Block Copolymers With Fixed Molecular Weight and Block Ratio. Electronic Supplementary Information for Self-ssembly of Dendritic-Linear lock Copolymers With Fixed Molecular Weight and lock Ratio Moon Gon Jeong, a Jan C. M. van Hest, b Kyoung Taek Kim a, * a School

More information

Accessory Publication

Accessory Publication 10.1071/CH10127_AC CSIRO 2010 Australian Journal of Chemistry 2010, 63(8), 1210 1218 Accessory Publication Synthesis of Core Shell Nanoparticles with Polystyrene Core and PEO Corona from Core-Crosslinked

More information

How does A Tiny Terminal Alkynyl End Group Drive Fully Hydrophilic. Homopolymers to Self-Assemble into Multicompartment Vesicles and

How does A Tiny Terminal Alkynyl End Group Drive Fully Hydrophilic. Homopolymers to Self-Assemble into Multicompartment Vesicles and Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 04 Electronic Supplementary Information for How does A Tiny Terminal Alkynyl End Group Drive

More information

Autonomous Fluorescence Regulation in Responsive Polymer Systems Driven by a Chemical Oscillating Reaction **

Autonomous Fluorescence Regulation in Responsive Polymer Systems Driven by a Chemical Oscillating Reaction ** Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2016 Electronic Supporting Information Autonomous Fluorescence Regulation in Responsive Polymer

More information

Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution.

Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution. Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution. Supplementary Figure 2. 1 H nuclear magnetic resonance (NMR) spectra (a) and

More information

Yujuan Zhou, Kecheng Jie and Feihe Huang*

Yujuan Zhou, Kecheng Jie and Feihe Huang* Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 A redox-responsive selenium-containing pillar[5]arene-based macrocyclic amphiphile: synthesis,

More information

Supporting Information. Vesicles of double hydrophilic pullulan and. poly(acrylamide) block copolymers: A combination

Supporting Information. Vesicles of double hydrophilic pullulan and. poly(acrylamide) block copolymers: A combination Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Vesicles of double hydrophilic pullulan and poly(acrylamide) block

More information

Photo-Cleavage of Cobalt-Carbon Bond: Visible. Light-Induced Living Radical Polymerization Mediated by. Organo-Cobalt Porphyrins

Photo-Cleavage of Cobalt-Carbon Bond: Visible. Light-Induced Living Radical Polymerization Mediated by. Organo-Cobalt Porphyrins Photo-Cleavage of Cobalt-Carbon Bond: Visible Light-Induced Living Radical Polymerization Mediated by Organo-Cobalt Porphyrins Yaguang Zhao, Mengmeng Yu, and Xuefeng Fu* Beijing National Laboratory for

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information for Construction of reverse vesicles from pseudo-graft

More information

Supporting Information. Precise Synthesis of Poly(N-Acryloyl Amino Acid) Through

Supporting Information. Precise Synthesis of Poly(N-Acryloyl Amino Acid) Through Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Precise Synthesis of Poly(N-Acryloyl Amino Acid) Through Photoinduced

More information

Supporting Information for

Supporting Information for Supporting Information for Solution Self-Assembly of Block Copolymers Containing a Branched Hydrophilic Block into Inverse Bicontinuous Cubic Mesophases Tae Hyun An, Yunju La, Arah Cho, Moon Gon Jeong,

More information

thiol-ene crosslinking of pyrrolidinone- and alkene-functionalized amphiphilic block anti-fouling coatings

thiol-ene crosslinking of pyrrolidinone- and alkene-functionalized amphiphilic block anti-fouling coatings Supplementary Information Synthesis and solution-state assembly or bulk state thiol-ene crosslinking of pyrrolidinone- and alkene-functionalized amphiphilic block fluorocopolymers: From functional nanoparticles

More information

Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries

Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries Supporting Information Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries Qi Zheng, 1 Danielle M. Pesko, 1 Brett M. Savoie, Ksenia Timachova, Alexandra L. Hasan, Mackensie C.

More information

Preparation of 1:1 alternating, nucleobase-containing copolymers for use in sequence-controlled polymerization

Preparation of 1:1 alternating, nucleobase-containing copolymers for use in sequence-controlled polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information for Preparation of 1:1 alternating, nucleobase-containing copolymers

More information

Supporting Information for

Supporting Information for Supporting Information for AmPhos Pd-Catalyzed Suzuki-Miyaura Catalyst-Transfer Condensation Polymerization: Narrower Dispersity by Mixing the Catalyst and Base Prior to Polymerization Kentaro Kosaka,

More information

Electronic Supplementary Information RAFT polymerization with triphenylstannylcarbodithioates (Sn-RAFT)

Electronic Supplementary Information RAFT polymerization with triphenylstannylcarbodithioates (Sn-RAFT) Electronic Supplementary Information RAFT polymerization with triphenylstannylcarbodithioates (Sn-RAFT) Ihor Kulai,, Oleksii Brusylovets, Zoia Voitenko, Simon Harrisson, Stéphane Mazières and Mathias Destarac,*

More information

Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification

Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification Supporting Information to Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification by Tina I. Löbling, Olli Ikkala, André H. Gröschel *, Axel H. E. Müller * Materials

More information

Self-Healing Polymers with PEG Oligomer Side Chains. Based on Multiple H-Bonding and Adhesion Properties

Self-Healing Polymers with PEG Oligomer Side Chains. Based on Multiple H-Bonding and Adhesion Properties Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Self-Healing Polymers with PEG Oligomer Side Chains Based on Multiple

More information

Supplementary Materials: SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens

Supplementary Materials: SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens Supplementary Materials: SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens Shun Mitsui, Mitsuo Hara, Shusaku Nagano, and Takahiro Seki S. Synthesis Materials Sodium

More information

Supporting Information

Supporting Information Block Copolymer Mimetic Self-Assembly of Inorganic Nanoparticles Yunyong Guo, Saman Harirchian-Saei, Celly M. S. Izumi and Matthew G. Moffitt* Department of Chemistry, University of Victoria, P.O. Box

More information

Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible photolysis of the chain-transfer agent

Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible photolysis of the chain-transfer agent Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Optimizing The Generation Of Narrow Polydispersity ArmFirst Star Polymers Made Using RAFT Polymerization Julien Ferrera, a Jay Syrett, b Michael Whittaker, a David Haddleton, b Thomas

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 Supplementary Information for: Scrambling Reaction between Polymers Prepared by Step-growth and Chain-growth Polymerizations: Macromolecular Cross-metathesis between 1,4-Polybutadiene and Olefin-containing

More information

Amphiphilic diselenide-containing supramolecular polymers

Amphiphilic diselenide-containing supramolecular polymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Amphiphilic diselenide-containing supramolecular polymers Xinxin Tan, Liulin Yang, Zehuan

More information

Photocontrolled RAFT Polymerization Mediated by a

Photocontrolled RAFT Polymerization Mediated by a Supporting Information Photocontrolled RAFT Polymerization Mediated by a Supramolecular Catalyst Liangliang Shen, Qunzan Lu, Anqi Zhu, Xiaoqing Lv, and Zesheng An* Institute of Nanochemistry and Nanobiology,

More information

Supporting Information

Supporting Information Supporting Information Azo Polymer Janus Particles and Their Photoinduced Symmetry-Breaking Deformation Xinran Zhou, Yi Du, Xiaogong Wang* Department of Chemical Engineering, Laboratory of Advanced Materials

More information

Di-Stimuli Responsive Diblock and Triblock Copolymer Particles

Di-Stimuli Responsive Diblock and Triblock Copolymer Particles Di-Stimuli Responsive Diblock and Triblock Copolymer Particles Nancy Weber, John Texter *, and Klaus Tauer Max Planck Institute for Colloids and Interfaces Department of Colloid Chemistry 14476 Golm, Germany

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information A synthetic strategy for the preparation of sub-100nm functional

More information

Novel Tri-Block Copolymer of Poly (acrylic acid)-b-poly (2,2,3,3,4,4,4- hexafluorobutyl acrylate)-b-poly (acrylic acid) Prepared via Two-Step

Novel Tri-Block Copolymer of Poly (acrylic acid)-b-poly (2,2,3,3,4,4,4- hexafluorobutyl acrylate)-b-poly (acrylic acid) Prepared via Two-Step Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry Please do 2016 not adjust margins Electronic Supplementary Information (ESI) for Novel Tri-Block

More information

Cobalt-Porphyrin /Dansyl Piperazine Complex Coated Filter. Paper for Turn on Fluorescence Sensing of Ammonia Gas

Cobalt-Porphyrin /Dansyl Piperazine Complex Coated Filter. Paper for Turn on Fluorescence Sensing of Ammonia Gas Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information Cobalt-Porphyrin /Dansyl Piperazine Complex Coated Filter

More information

RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol solvent mixtures

RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol solvent mixtures Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting information for RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol

More information

A dual redox-responsive supramolecular amphiphile fabricated by selenium-containing pillar[6]arene-based molecular recognition

A dual redox-responsive supramolecular amphiphile fabricated by selenium-containing pillar[6]arene-based molecular recognition Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 A dual redox-responsive supramolecular amphiphile fabricated by selenium-containing pillar[6]arene-based

More information

Polymerization-Induced Thermal Self-Assembly (PITSA)

Polymerization-Induced Thermal Self-Assembly (PITSA) Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information for Polymerization-Induced Thermal Self-Assembly (PITSA)

More information

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators . Polymers.1. Traditional and modern applications.. From chemistry to statistical description.3. Polymer solutions and polymer blends.4. Amorphous polymers.5. The glass transition.6. Crystalline polymers.7.

More information

Mild and efficient bromination of Poly(hydroxyethyl)acrylate and its use towards Ionic-Liquid containing polymers

Mild and efficient bromination of Poly(hydroxyethyl)acrylate and its use towards Ionic-Liquid containing polymers Supporting Information for Mild and efficient bromination of Poly(hydroxyethyl)acrylate and its use towards Ionic-Liquid containing polymers Vinu Krishnan Appukuttan, Anais Dupont, Sandrine Denis-Quanquin,

More information

Supporting Information for:

Supporting Information for: Supporting Information for: Self-assembled blends of AB/BAB block copolymers prepared through dispersion RAFT polymerization Chengqiang Gao, Jiaping Wu, Heng Zhou, Yaqing Qu, Baohui Li,*,, and Wangqing

More information

Supporting Information

Supporting Information Supporting Information Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium- Ion Batteries Jimin Shim, [a] Ki Yoon Bae, [b] Hee Joong Kim,

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2014 Supporting Information for Application of thermal azide-alkyne cycloaddition

More information

supramolecular hyperbranched polymers for controllable self-assembly

supramolecular hyperbranched polymers for controllable self-assembly Electronic upplementary Material (EI) for Polymer Chemistry. This journal is The Royal ociety of Chemistry 2017 upplementary Information AB x -type amphiphilic macromonomer-based supramolecular hyperbranched

More information

RAFT and Click Chemistry : A Versatile Approach to the Block Copolymer Synthesis

RAFT and Click Chemistry : A Versatile Approach to the Block Copolymer Synthesis RAFT and Click Chemistry : A Versatile Approach to the Block Copolymer ynthesis Damien Quémener, Thomas P. Davis, Christopher Barner-Kowollik* and Martina H. tenzel* Centre for Advanced Macromolecular

More information

Supporting Information. Well-defined polyelectrolyte and its copolymers by reversible. addition fragmentation chain transfer (RAFT) polymerization:

Supporting Information. Well-defined polyelectrolyte and its copolymers by reversible. addition fragmentation chain transfer (RAFT) polymerization: Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Well-defined polyelectrolyte and its copolymers by reversible addition

More information

Supporting Information

Supporting Information Supporting Information Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer Reversible-Addition Fragmentation Chain Transfer Polymerization (PET-RAFT) Jonathan

More information

Supporting Information for. Effect of Molecular Weight on Lateral Microphase Separation of Mixed Homopolymer. Brushes Grafted on Silica Particles

Supporting Information for. Effect of Molecular Weight on Lateral Microphase Separation of Mixed Homopolymer. Brushes Grafted on Silica Particles Supporting Information for Effect of Molecular Weight on Lateral Microphase Separation of Mixed Homopolymer Brushes Grafted on Silica Particles Chunhui Bao, Saide Tang, Roger A. E. Wright, Ping Tang, Feng

More information

Scheme 1: Reaction scheme for the synthesis of p(an-co-mma) copolymer

Scheme 1: Reaction scheme for the synthesis of p(an-co-mma) copolymer Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Design and Development of Poly (acrylonitrile-co-methyl methacrylate) Copolymer to Improve

More information

Supplementary Information. Self-assembly of PS-PNaSS-PS triblock copolymers from solution to solid state

Supplementary Information. Self-assembly of PS-PNaSS-PS triblock copolymers from solution to solid state Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supplementary Information Self-assembly of PS-PNaSS-PS triblock copolymers from solution

More information

Supporting Information

Supporting Information Supporting Information Controlled Radical Polymerization and Quantification of Solid State Electrical Conductivities of Macromolecules Bearing Pendant Stable Radical Groups Lizbeth Rostro, Aditya G. Baradwaj,

More information

1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via RAFT

1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via RAFT Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via

More information

Acid-Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-pot Tandem Reaction

Acid-Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-pot Tandem Reaction Supporting Information Acid-Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-pot Tandem Reaction Li-Chen Lee, a# Jie Lu, b# Marcus Weck, b * Christopher W. Jones a * a School of Chemical

More information

Synthesis and characterization of amino-functionalized Poly(propylene carbonate)

Synthesis and characterization of amino-functionalized Poly(propylene carbonate) Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supplementary Information Synthesis and characterization of amino-functionalized Poly(propylene

More information

HIV anti-latency treatment mediated by macromolecular prodrugs of histone deacetylase inhibitor, panobinostat

HIV anti-latency treatment mediated by macromolecular prodrugs of histone deacetylase inhibitor, panobinostat Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 206 Supporting information HIV anti-latency treatment mediated by macromolecular prodrugs of

More information

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts

More information

Supporting Information for:

Supporting Information for: Supporting Information for: Preparation and Cross-linking of All-Acrylamide Diblock Copolymer Nano-objects via Polymerization-Induced Self-Assembly in Aqueous Solution Sarah J. Byard, Mark Williams, Beulah

More information

Supporting Information

Supporting Information Supporting Information A Rational Design of Highly Controlled Suzuki-Miyaura Catalyst-Transfer Polycondensation for Precision Synthesis of Polythiophenes and their Block Copolymers: Marriage of Palladacycle

More information

Synthesis of Core Shell Poly(Styrene) Particles by RAFT Polymerization Using Amphiphilic Copolymers as Surf-RAFT Agent

Synthesis of Core Shell Poly(Styrene) Particles by RAFT Polymerization Using Amphiphilic Copolymers as Surf-RAFT Agent IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736.Volume 9, Issue 12 Ver. I (December. 2016), PP 47-53 www.iosrjournals.org Synthesis of Core Shell Poly(Styrene) Particles by RAFT Polymerization

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2633 Mechanically controlled radical polymerization initiated by ultrasound Hemakesh Mohapatra, Maya Kleiman, Aaron P. Esser-Kahn Contents 1. Materials and methods 2 2. Procedure for

More information

Supplementary Information

Supplementary Information Supplementary Information Facile preparation of superhydrophobic coating by spraying a fluorinated acrylic random copolymer micelle solution Hui Li, a,b Yunhui Zhao a and Xiaoyan Yuan* a a School of Materials

More information

Tunable thermo-responsive water-dispersed multi walled. carbon nanotubes

Tunable thermo-responsive water-dispersed multi walled. carbon nanotubes Tunable thermo-responsive water-dispersed multi walled carbon nanotubes Gaojian Chen, Peter M. Wright, Jin Geng, Giuseppe Mantovani, and David M. Haddleton* Department of Chemistry, University of Warwick,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Boron Stitching Reaction: A Powerful Tool for the Synthesis of

More information

Supporting Information

Supporting Information Supporting Information Molecular Weight Dependence of Zero-Shear Viscosity in Atactic Polypropylene Bottlebrush Polymers Samuel J. Dalsin, Marc A. Hillmyer,*, and Frank S. Bates*, Department of Chemical

More information

Electronic Supplementary Material

Electronic Supplementary Material Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Material A Novel Functionalized Pillar[5]arene: Synthesis, Assembly

More information

Supporting Information. Amphiphilic Block Copolymer Nano-fibers via RAFT- Mediated Polymerization in Aqueous Dispersed System

Supporting Information. Amphiphilic Block Copolymer Nano-fibers via RAFT- Mediated Polymerization in Aqueous Dispersed System Supporting Information Amphiphilic Block Copolymer Nano-fibers via RAFT- Mediated Polymerization in Aqueous Dispersed System Stéphanie Boissé, a,b Jutta Rieger,* a Khaled Belal, a Aurélie Di-Cicco, b Patricia

More information

Electronic Supplementary Information (ESI) A Green Miniemulsion-Based Synthesis of Polymeric Aggregation-Induced Emission.

Electronic Supplementary Information (ESI) A Green Miniemulsion-Based Synthesis of Polymeric Aggregation-Induced Emission. Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information (ESI) A Green Miniemulsion-Based Synthesis of Polymeric

More information

Spin Capturing with Nitrones: Radical Coupling Reactions with Concurrent Introduction of Midchain Functionality

Spin Capturing with Nitrones: Radical Coupling Reactions with Concurrent Introduction of Midchain Functionality Supplementary Information: Spin Capturing with Nitrones: Radical Coupling Reactions with Concurrent Introduction of Midchain Functionality Edgar H. H. Wong, a,b Cyrille Boyer, b Martina H. Stenzel, b Christopher

More information

Supporting Information

Supporting Information Supporting Information Ionic Dithioester-Based RAFT Agents Derived From N-Heterocyclic Carbenes Daniel J. Coady, Brent C. Norris, Vincent M. Lynch and Christopher W. Bielawski* Department of Chemistry

More information

Influence of photo-isomerisation on host-guest interaction in poly(azocalix[4]arene)s

Influence of photo-isomerisation on host-guest interaction in poly(azocalix[4]arene)s Electronic Supplementary Information Influence of photo-isomerisation on host-guest interaction in poly(azocalix[4]arene)s Szymon Wiktorowicz, Heikki Tenhu and Vladimir Aseyev *, Department of Chemistry,

More information

Supporting Information. Reduction- and Thermo-Sensitive Star Polypeptide Micelles. and Hydrogels for On-Demand Drug Delivery

Supporting Information. Reduction- and Thermo-Sensitive Star Polypeptide Micelles. and Hydrogels for On-Demand Drug Delivery Supporting Information Reduction- and Thermo-Sensitive Star Polypeptide Micelles and ydrogels for n-demand Drug Delivery Dong-Lin Liu, Xiao Chang, Chang-Ming Dong* Department of Polymer Science & Engineering,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information TEMPO-catalyzed Synthesis of 5-Substituted Isoxazoles from Propargylic

More information

Redox-Controlled Micellization of Organometallic Block Copolymers

Redox-Controlled Micellization of Organometallic Block Copolymers Redox-Controlled Micellization of Organometallic lock Copolymers David. Rider, a Mitchell. Winnik a, * and Ian Manners b, * Supplementary Information Figure S1. () UV-vis spectra of PS 548 -b-pfmps 73

More information

Rapid Preparation of Polymersomes by a Water Addition/Solvent Evaporation Method. Supporting Information

Rapid Preparation of Polymersomes by a Water Addition/Solvent Evaporation Method. Supporting Information Rapid Preparation of Polymersomes by a Water Addition/Solvent Evaporation Method Supporting Information Hana Robson Marsden, Luca Gabrielli, Alexander Kros* Department of Soft Matter Chemistry, Leiden

More information

Block copolymers containing organic semiconductor segments by RAFT polymerization

Block copolymers containing organic semiconductor segments by RAFT polymerization Block copolymers containing organic semiconductor segments by RAFT polymerization Ming Chen, Matthias Häussler, Graeme Moad, Ezio Rizzardo Supplementary Material Radical polymerizations in the presence

More information

Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School of Chemical Engineering, Yeungnam University, Dae-dong, Gyeongsan,

Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School of Chemical Engineering, Yeungnam University, Dae-dong, Gyeongsan, Electronic Supplementary Information For M Amount of Fe (III)-mediated ATR of MMA with hosphorus Containing Ligands in the Absence of Any Additives Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School

More information

An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for. intelligent gene delivery systems

An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for. intelligent gene delivery systems Supporting Information An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems Song Lin, Fusheng Du,* Yang Wang, Dehai Liang, and Zichen Li* Beijing

More information

Hierarchically Porous Bio-inspired Films by. combining Breath Figure Templating and. selectively Degradable Block Copolymer Directed. self-assembly.

Hierarchically Porous Bio-inspired Films by. combining Breath Figure Templating and. selectively Degradable Block Copolymer Directed. self-assembly. Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Hierarchically Porous Bio-inspired Films by combining Breath Figure Templating and selectively

More information

Supporting Information

Supporting Information Supporting Information Precision Synthesis of Poly(-hexylpyrrole) and its Diblock Copolymer with Poly(p-phenylene) via Catalyst-Transfer Polycondensation Akihiro Yokoyama, Akira Kato, Ryo Miyakoshi, and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information RAFT-mediated, Visible Light-initiated Single Unit Monomer Insertion

More information

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Supporting Information for Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Michael R. Kember, Charlotte K. Williams* Department

More information