Acid-Base balance. Acid : is the substance that donates H+, base : is the substance which receives or removes that H+.

Size: px
Start display at page:

Download "Acid-Base balance. Acid : is the substance that donates H+, base : is the substance which receives or removes that H+."

Transcription

1 Acid-Base balance Introduction : We usually suffer from metabolic acidosis more than alkalosis, acidosis means that there is an increase in H+ concentration in plasma and thus interstial fluid ;because both have the same concentrations of electrolytes. Acidosis(too much H+) is a very serious condition since it suppresses CNS enzymes leading to coma, on the other hand alkalosis (too little H+) causes over-excitation of CNS leading to convolutions that may take place in respiratory muscles leading to death.what explains the two previous conditions is that every enzyme has its own optimal PH (below or above this value will disrupt enzyme activity) Kidney is the most important organ in acid-base balance. Acid : is the substance that donates H+, base : is the substance which receives or removes that H+. Acids can be weak or strong, the strong ones almost dissociate completely like HCl (one mole of HCl gives one mole of H+ and one mole of Cl-), while the weak ones dissociate incompletly like H2CO3(H2CO3 HCO3 + H). Also bases can be classified in the same manner (strong and weak) PH stands for power of H+ concentration,ph= - log [H+] *In mathematics we use log to express too large or too small numbers [H+] in ECF is very low ( less than [Na+] by 3.5million times, but still Having a very significant effect on our body). - [H + ] = 40 nanomolar [Na + ] = 145 millimolar - ph = -log [40x10-9 ] ~ ph of 7 is ten times more than ph of 8 in terms of [H + ],we conclude that the more the PH is inversely proportional with [H+]**.

2 Normally, plasma has 40 nanomolar of H+ (PH=7.4) BUT our body still can tolerate 4 times above(160 nanomolar,ph=6.8) or below (10 nanomolar,ph=8) this normal concentration. SO,the normal range of PH is [6.8-8], outside this range is not compatible with life. Our body is prepared to deal with acids more that bases, if acids reach plasma, body can deal with them while body can't fight against bases entering the plasma. - As we have seen before body can tolerate 4 times more or less than normal [H+], but this is not true for other electrolytes, if we took potassium for example a two times increase or decrease in concentration is considered incompatible with life, these conditions is termed severe hyperkalemia and severe hypokalemia,respectively - The same thing is applied to Na+ Acid can be classified into two classed : 1/volatile 2/ non-volatile Volatile acids : We produce 200ml CO2 every minute Recall respiratory exchange ratio = rate of CO2 exhalation/ rate of O2 inhalation = 200/250=0.8 We produce or exhale 300 Liter of CO2 daily which corresponds to 10 mol H+ CO2 is regarded as masked acid because this equation (CO2 + H2O H2CO3 HCO3 + H+) and is called VOLATILE ACID,

3 Although 10 mol of H+ is too extremely high,we don't care about them because respiratory system can get rid of them, SO there is no problem with volatile acid when respiratory system works properly. The problem usually resides in non-volatile acids 2/ non-volatile acids (fixed) a. phosphoric acid : produced by breakdown of phosphoproteins, phospholipids and nucleic acids b. sulfuric acid : certain amino acids contain sulfur such as cysteine and methionine c. acetoacetic acid d. hydroxybutyric acid e. kreps cycle acids non- volatile acids are produced at a rate of 1mmole/kg/day so for an 80 kg man, 80mmol of H+ would be produced daily, those 80mmol of nonvolatile acids if we added them to the ECF which equals 14L ;each Liter would have approximately 5mMolar of H + {80mM/14L} 5mMolar = 5x10-3 M [H + ] ph = -log [H + ] = 2-3 (not compatible with life) so adding H+ OF nonvolatile acid TO plasma will shift PH to value that's incompatible with life

4 IF we combine a strong acid with a weak base we would produce a weak acid which will change the PH of solution slightly since weak acids dissociate incompletely HCl (strong acid)+ NaHCO3 (weak base) NaCl + H2CO3 combining a strong base with a weak acid would produce a weak base NaOH + H2CO3 NaHCO3 + H2O - because we produce approximately 80mmol of volatile acids we also need 80mmol of HCO3 - daily to neutralize them into weak acids - but [HCO3 - ] = 24mmol/L, ECF = 14L so all in all we have 24x14 = 336mmol (total HCO3 IN BODY) because we use 80mmol daily, this amount is enough only for four days OR 5 days in maximum (336/80=4.25days), so at the end of 5th day no HCO3 is available in the body and any additional acids coming to plasma won't be buffered shifting the PH of plasma. normal person with normal diet and physical activity have tendency toward acidosis caused by production of non-volatile acids. our body deals with these non-volatile acids by buffers which protect against acidosis BUFFERS : is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, (or vice versa).

5 buffers tight H+ BUT will not remove them from body (e.g H+ Will bind HCO3- Forming H2CO3 which need to be excreted from the body by other mechanisms ) CO2 + H2O H2CO3 HCO3 + H+ when we add 80meq H+ we shift the equation to the left leading to formation CO2 which is washed out by lungs This graph is called alveolar ventilation curve, acidosis causes lung to hyperventilate in order to wash out excess CO2 while alkalosis suppress ventilation to retain more CO2. The curve is not linear that's mean "one unit decrease in PH have more effect in ventilation than the same unit increase in PH ) this is explained by the following :

6 Acidosis causes hyperventilation which increase alveolar PO2 up to 140 mmhg but this won't add significant O2 to plasma (we can't hyper saturate Hb), so there is no opposing effect of hyperoxia Alkalosis suppresses ventilation which decreases Alveolar PO2 down to 60 mmhg, this decrease in PO2(Hypooxia ) will act as an opposing force to drive hyperventaltion. So Alkalosis can't express itself fully in term of its effect on ventilation In order to have linear correlation between [H+] and alveolar ventilation we should stabilize alveolar PO2 to remove the effect of hypoxia on ventilation. AS we have mentioned before, the problem in our body is the acids coming into plasma, the solution for this problem is buffer which is available in limited amounts in our body (this is overcomed by kidney ) The role of kidney is represented by the following : 1- kidney must absorbs 100% of the filtered HCO3-, 2- It should adds HCO3- to the plasma (renal veins should have 80mm ofhco3 more than that in renal artery/kidney is not just advice that clean the blood from waste products but it adds significantly to the blood such as hormones,erythropoietin and HCO3-,Buffer components are weak acid with its salt(conjugate base of this weak acid) We have three buffers in our body :

7 1) bicarbonic acid : H2CO3(give H+/ HCO3 - (bind H+) 2) phosphate H2PO4 - /HPO4 3) proteins what determine the strength of a buffer? 1. absolute concentration 2. pka 3. renewing capacity Bicarbonic acid buffer : H2CO3 HCO3 + H Pka (disassociation constant) - ph = pka + log [A - ]/[HA] Henderson Hasselbalch equation - ph = log [HCO3] / [H2CO3] - we usually use CO2 instead of H2CO3 - [CO2]= PCO2*0.03 to convert mmhg to molarity (CO2 can be used instead of H2CO3) ph = log 24 / 40*0.03 = =7.4 ph = log 24 / 1.2 = =7.4 In this case base conc. [HCO3-] more than acid conc. [H2CO3] by20 times (24/1.2) which is something we like to have, because it makes the buffer strong (the major threat in out body is having excess acids,we need high conc. Of base to deal with them) as relative conc, of base to that of acid increases, the strength of buffer increases.

8 Pka : it's the PH of the solution when the conc. of base equal to that of acid "major determinant of the strength of the buffer" - ph = pka + log [A - ]/[HA] [A-]=[HA] - ph = pka + log 1 -- ph = pka The above X-axis represents percentage of base while the below x-axis represents percentage of acid Adding base will shift PH to alkaline value (shift to the right) Adding acids will shift PH to acidic value ( shift to the left) If we added a substance to buffer solution that its color is changed in response to changes in PH ( to the red in case decrease in PH) then we add acid to this solution the color will not change in color until we reach critical point at which PH is shifted and the color of that substance is changed When the PH of solution is around the PKa (one unit above or below)of the buffer, it will work with maximum capacity. - meaning that its maximum buffering capacity of HCO3-/H2CO3 is betweenph (its PKa =6.1)

9 - going above or below these values would be beyond the buffering capacity of carbonic acid and would change the PH of solution - PH of plasma is 7.4 when PKa of carbonic acid buffer is far away from its maximum capacity so in term of PKa carbonic acid buffer is not considered as strong buffer - But in term of concentration carbonic acid(24mmol ) is stronger than phosphate buffer. Buffering is the main function of carbonic acid buffer - 2/Phospate buffer : - pka of H2CO3 = 6.1 pka of H2PO4 = 6.8 which means that phosphoric acid is better as a buffer from H2CO3 in terms of pka - phosphoric acid can act also as an intracellular buffer because: - -its PKa is very close the PH of the intracellular fluid which is different from ECF and it's around 7 Phosphate is concentrated inside the cell (70mmol) - Phosphoric acid can act as a buffer in renal tubule due the following: - a/after absorption of water from renal tubules to the blood phosphate become more concentrated - b/ph of tubular fluid is around 6.5 which is close the PKa of phosphate buffer We have 700g-800g phosphate in our body most of it is inside the bone,some resides in soft tissue and less than 0.1% in ECF,SO BUFFERNING IS NOT THE MAIN FUNCTION OF PHOSPHATE. Protein buffer: In term of concentration it's the strongest buffer because its concentration is higher that the two previous buffers

10 70% of our buffering strength is coming from proteins pka of most proteins is around 7(close to plasma PH) but the problem that proteins are hindered in intracellular compartment - but proteins can't be renewed that's why buffering is not the main function of peripheral proteins The most important determinant of buffer strength is the renewal ability The only buffer that can be renewed is bicarbonate buffer that's why it's regarded as the most important buffer in our body Bicarbonate conc. Can be changed by respiratory system (through affecting CO2) AND by renal system. Notes reg arding the previous lecture : there are 180 literes filtered / day. Urine output is 1.5 L/day kidneys reabsorb more than 99% of filtered water : 60% in the proximal convoluted tubules 15% in the descending loop of henle 0% in the ascending limb and early distal 10% in Late distal 9.3 % in the collecting tubules About 0.7 is secreted Remember that ADH plays a role in the establishment of hyperosmolar medium in the interstium by increasing the reabsorbtion of urea from collectecting tubules. Osmolar clearance : C osmolar = Ux * V / Px = 600 x 1 /300 = 2 ml/min

11 To calculate water clearance : C water = urine output C osmolar = 1-2 =-1 this indicates the kindneys secrete more osmoles than water **log 10 = 1 log(x *10) = log(x) +log 10 so ten times increase in the H+ concentration will decrease the ph by 1 Good luck

Physiology lecture (8): Acid Base regulation

Physiology lecture (8): Acid Base regulation Physiology lecture (8): Acid Base regulation If we add hydrogen, we have three lines of defense against a mild change in ph: 1) Buffers, instantaneous, within a fraction of milliseconds. 2) The lung, takes

More information

Principles Of Acid-Base Balance

Principles Of Acid-Base Balance Principles Of Acid-Base Balance I. Introduction A. For normal body function the free H+ concentration [H+] or ph must be kept within a narrow normal range. Some reasons why: 1. The proton "pump" within

More information

Physiology Lecture 2 and 27 Chapter 2: Acids, Bases and Salts REVIEW:

Physiology Lecture 2 and 27 Chapter 2: Acids, Bases and Salts REVIEW: Physiology Lecture 2 and 27 Chapter 2: Acids, Bases and Salts REVIEW: 1. Salts an ionic compounds containing other than H + or OH - ; can dissociate in water to form electrolytes. Electrolytes can conduct

More information

BIOMEDICAL SCIENCE MIN WAN

BIOMEDICAL SCIENCE MIN WAN ACID-BASE LECTURE BIOMEDICAL SCIENCE MIN WAN (min.wan@ki.se) SEPT. 12-13, 2016 9/6/2016 1 Acid Base lecture 14-15 September 2015 Min Wan 1. Introduction to ph 2. Acid base concept -calculations 3. Buffer

More information

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2 Acids and bases, ph and buffers Dr. Mamoun Ahram Lecture 2 ACIDS AND BASES Acids versus bases Acid: a substance that produces H+ when dissolved in water (e.g., HCl, H2SO4) Base: a substance that produces

More information

Practical: Acid-base balance

Practical: Acid-base balance Practical: Acid-base balance Definition All the processes inside the body which keep the H+ concentration within normal values. It is a result of the hydro-electrolytic balance and a sum of mechanisms

More information

Acids, Bases, Salts, Buffers

Acids, Bases, Salts, Buffers Acids, Bases, Salts, Buffers Acids, Bases, Salts, Buffers An acid is any solute that dissociates in a solution and releases hydrogen ions, thereby lowering ph Since a hydrogen ion consist solely of a proton,

More information

Alkalosis or alkalemia arterial blood ph rises above Acidosis or acidemia arterial ph drops below 7.35 (physiological acidosis)

Alkalosis or alkalemia arterial blood ph rises above Acidosis or acidemia arterial ph drops below 7.35 (physiological acidosis) Acid-Base Balance Normal ph of body fluids Arterial blood is 7.4 Venous blood and interstitial fluid is 7.35 Intracellular fluid is 7.0 Alkalosis or alkalemia arterial blood ph rises above 7.45 Acidosis

More information

ph and buffers Dr. Mamoun Ahram Summer, 2018

ph and buffers Dr. Mamoun Ahram Summer, 2018 ph and buffers Dr. Mamoun Ahram Summer, 2018 Kw Kw is called the ion product for water What is ph? Example: Find the K a of a 0.04 M weak acid HA whose [H + ] is 1 x 10-4? HA H + + A - K a = [A - ] [H

More information

Acid-Base Balance. Lecture # 5 Second class/ 2015

Acid-Base Balance. Lecture # 5 Second class/ 2015 Acid-Base Balance Lecture # 5 Second class/ 2015 Terms Acid Any substance that can yield a hydrogen ion (H + ) or hydronium ion when dissolved in water Release of proton or H + Base Substance that can

More information

ACID-BASE PHYSIOLOGY. Dr. Ana-Maria Zagrean

ACID-BASE PHYSIOLOGY. Dr. Ana-Maria Zagrean ACID-BASE PHYSIOLOGY 1 Dr. Ana-Maria Zagrean Acid-base physiology consists in all the processes inside the body which keep the H + concentration within normal values, thus maintaining the proper balance

More information

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers ACIDS AND BASES, DEFINED A hydrogen atom contains a proton and an electron, thus a hydrogen ion (H + ) is a proton: Acids: Proton (H + ) transfer between molecules is the basis of acid/base chemistry Ø

More information

continuing education Acid-Base Review

continuing education Acid-Base Review continuing education Acid-Base Review James P. Dearing, B.S., C.C.P. In the normal, healthy individual the acid-base balance within the body is remarkably constant. For example, arterial blood, drawn from

More information

The body has three primary lines of defense against changes in hydrogen ion concentration in the body fluids.

The body has three primary lines of defense against changes in hydrogen ion concentration in the body fluids. ph and Nucleic acids Hydrogen Ion (H+) concentration is precisely regulated. The H+ concentration in the extracellular fluid is maintained at a very low level, averaging 0.00000004Eq/L. normal variations

More information

NURS1004 Week 12 Lecture 1 Acid Base Balance Prepared by Didy Button

NURS1004 Week 12 Lecture 1 Acid Base Balance Prepared by Didy Button NURS1004 Week 12 Lecture 1 Acid Base Balance Prepared by Didy Button The Role of Amino Acids in Protein Buffer Systems 2-7 ph and Homeostasis ph The concentration of hydrogen ions (H + ) in a solution

More information

Chem 150, Spring Unit 4 - Acids & Bases. Introduction

Chem 150, Spring Unit 4 - Acids & Bases. Introduction Chem 150, Spring 2015 Unit 4 - Acids & Bases Introduction Patients with emphysema cannot expel CO2 from their lungs rapidly enough. This can lead to an increase of carbonic (H2CO3) levels in the blood

More information

BIOC 460 General Chemistry Review: Chemical Equilibrium, Ionization of H 2 O, ph, pk a

BIOC 460 General Chemistry Review: Chemical Equilibrium, Ionization of H 2 O, ph, pk a BIOC 460 General Chemistry Review: Chemical Equilibrium, Ionization of H 2 O, ph, pk a General Equilibrium: What are the UNITS of K eq? Example reactions: A --> B units of K eq? A --> B + C units of K

More information

battery acid the most widely used industrial chemical Hydrochloric acid, HCl muriatic acid stomach acid Nitric acid, HNO 3

battery acid the most widely used industrial chemical Hydrochloric acid, HCl muriatic acid stomach acid Nitric acid, HNO 3 BRCC CHM 101 Chapter 9 Notes (Chapter 8 in older text versions) Page 1 of 9 Chapter 9: Acids and Bases Arrhenius Definitions more than 100 years old Acid a substance that produces H + in water (H + is

More information

Where does Physical Chemistry fit into your course in Dentistry?

Where does Physical Chemistry fit into your course in Dentistry? Where does Physical Chemistry fit into your course in Dentistry? Acidogenic bacteria in dental plaque can rapidly metabolise certain carbohydrates to acid endproducts. In the mouth, the resultant change

More information

General Phenomena: Law of mass action, dissociation of water, ph, buffers

General Phenomena: Law of mass action, dissociation of water, ph, buffers General Phenomena: Law of mass action, dissociation of water, ph, buffers Ionization of Water, Weak Acids and Weak Bases Many properties of water can be explained in terms of uncharged H 2 O molecule Small

More information

Renal handling of substances. Dr.Charushila Rukadikar Assistance Professor Physiology

Renal handling of substances. Dr.Charushila Rukadikar Assistance Professor Physiology Renal handling of substances Dr.Charushila Rukadikar Assistance Professor Physiology GENERAL PRINCIPLES OF RENAL TUBULAR TRANSPORT Transport mechanisms across cell membrane 1) Passive transport i. Diffusion

More information

K w. Acids and bases 8/24/2009. Acids and Bases 9 / 03 / Ionization of water. Proton Jumping Large proton and hydroxide mobility

K w. Acids and bases 8/24/2009. Acids and Bases 9 / 03 / Ionization of water. Proton Jumping Large proton and hydroxide mobility Chapter 2 Water Acids and Bases 9 / 03 / 2009 1. How is the molecular structure of water related to physical and chemical behavior? 2. What is a Hydrogen Bond? 3Wh 3. What are Acids Aid and db Bases? 4.

More information

-log [H+][OH-] = - log [1 x ] Left hand side ( log H + ) + ( log OH - ) = ph + poh Right hand side = ( log 1) + ( log ) = 14 ph + poh = 14

-log [H+][OH-] = - log [1 x ] Left hand side ( log H + ) + ( log OH - ) = ph + poh Right hand side = ( log 1) + ( log ) = 14 ph + poh = 14 Autoionization of Water H 2 O H + + OH - K = [H + ][OH - ]/[H 2 O] = 1.802 x 10-16 Concentration of [H 2 O] is so HIGH autoionization is just a drop in the bucket, so [H 2 O] stays constant at 55.5 M,

More information

Understanding Acid-Base Disturbances Gaps, Deficits and Differences

Understanding Acid-Base Disturbances Gaps, Deficits and Differences Critical Care Medicine Apollo Hospitals Understanding Acid-Base Disturbances Gaps, Deficits and Differences Ramesh Venkataraman, AB(Int Med), AB (CCM) Consultant, Critical Care Medicine Apollo Hospitals

More information

17.1 Common Ion Effect

17.1 Common Ion Effect 17.1 Common Ion Effect Buffer Solutions The resistance of ph change Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Common Ion Effect Common Ion Effect Ionization of an electrolyte, i.e., salt, acid

More information

BCH312 [Practical] 1

BCH312 [Practical] 1 BCH312 [Practical] 1 Triprotic acid is acid that contain three hydrogens ions. It dissociates in solution in three steps, with three Ka values. phosphoric acid is an example of triprotic acid. It dissociates

More information

Basic Chemistry for Biology. Honors Biology

Basic Chemistry for Biology. Honors Biology Basic Chemistry for Biology Honors Biology 2013-2014 Composition of Matter Matter - Everything in universe is composed of matter Matter is anything that occupies space or has mass Mass quantity of matter

More information

Acids, Bases and the Common Ion Effect. More quantitative. Continued [F - ] = M. Consider the following acid equilibrium of a weak acid:

Acids, Bases and the Common Ion Effect. More quantitative. Continued [F - ] = M. Consider the following acid equilibrium of a weak acid: Acids, Bases and the Common Ion Effect Consider the following acid equilibrium of a weak acid: HF + H O H 3 O + + F - K a = [H 3 O + ][F - ] [HF] By LeChatelier s principle, we predict the HF dissociation

More information

Blood Gas analyzer. 4 th year Clinical Chemistry Equipment (MLS-CCHM-421) 26/12/2018

Blood Gas analyzer. 4 th year Clinical Chemistry Equipment (MLS-CCHM-421) 26/12/2018 Blood Gas analyzer 4 th year Clinical Chemistry Equipment (MLS-CCHM-421) 26/12/2018 Learning objectives By the end of this lecture you will be able to Define Arterial blood gas Identify different component

More information

Chapter 8 Lecture Notes: Acids, Bases, and ph

Chapter 8 Lecture Notes: Acids, Bases, and ph Educational Goals Chapter 8 Lecture Notes: Acids, Bases, and ph 1. Given a chemical equation, write the law of mass action. 2. Given the equilibrium constant (K eq ) for a reaction, predict whether the

More information

Catedra Biochimie și Biochimie Clinică

Catedra Biochimie și Biochimie Clinică Topics: THEORETICAL SUPPORT FOR STRUCTURAL BIOCHEMISTRY COURSE (DESCRIPTIVE) Water structure. Physical properties of water. Water ionization. Ionic result of water. The ph measure. Buffer systems. [PROFFESSOR]

More information

Chapter 16 Aqueous Ionic Equilibrium Buffer Solutions

Chapter 16 Aqueous Ionic Equilibrium Buffer Solutions Chapter 16 Aqueous Ionic Equilibrium 16.1-16.2 Buffer Solutions Why? While a weak acid will partially ionize to produce its conjugate base, it will not produce enough conjugate base to be considered a

More information

Chapter 8 Educational Goals

Chapter 8 Educational Goals Chapter 8 Educational Goals 1. Given a chemical equation, write the law of mass action. 2. Given the equilibrium constant (K eq ) for a reaction, predict whether the reactants or products are predominant.

More information

{Take note: Why is water liquid at room temperature, but Ammonia is gas at room temperature? What is Hydrogen bond?}

{Take note: Why is water liquid at room temperature, but Ammonia is gas at room temperature? What is Hydrogen bond?} 1 Structure of Water (H 2 O) UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES BIOCHEMISTRY AND MOLECULAR BIOLOGY PBL Seminar WATER, ph and BUFFER SOLUTIONS: Overview

More information

10.1 Acids and Bases in Aqueous Solution

10.1 Acids and Bases in Aqueous Solution 10.1 Acids and Bases in Aqueous Solution Arrhenius Definition of Acids and Bases An acid is a substance that gives hydrogen ions, H +, when dissolved in water. In fact, H + reacts with water and produces

More information

Chapter 2 Water: The Solvent for Biochemical Reactions

Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens. There are

More information

The ph of aqueous salt solutions

The ph of aqueous salt solutions The ph of aqueous salt solutions Sometimes (most times), the salt of an acid-base neutralization reaction can influence the acid/base properties of water. NaCl dissolved in water: ph = 7 NaC 2 H 3 O 2

More information

Water: The Solvent for Biochemical Reactions

Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions 11 SUMMARY Section 2.1 Section 2.2 Section 2.3 Section 2.4 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive

More information

HW #10: 10.38, 10.40, 10.46, 10.52, 10.58, 10.66, 10.68, 10.74, 10.78, 10.84, 10.88, 10.90, ,

HW #10: 10.38, 10.40, 10.46, 10.52, 10.58, 10.66, 10.68, 10.74, 10.78, 10.84, 10.88, 10.90, , Chemistry 121 Lectures 20 & 21: Brønstead-Lowry Acid/Base Theory Revisited; Acid & Base Strength - Acids & Bases in Aqueous Solution; Acid Dissociation Constants and the Autoionization of Water; ph or

More information

6.02 Acids - Bases. Dr. Fred Omega Garces. Chemistry 100. Miramar College Acids - Bases. January 10

6.02 Acids - Bases. Dr. Fred Omega Garces. Chemistry 100. Miramar College Acids - Bases. January 10 6.02 Acids - Bases Dr. Fred Omega Garces Chemistry 100 Miramar College 1 10 Acids - Bases Acids-Bases Characteristics Acids (Properties) Taste Sour Dehydrate Substances Neutralize bases Dissolve metals

More information

Chapter 10. Acids, Bases, and Salts

Chapter 10. Acids, Bases, and Salts Chapter 10 Acids, Bases, and Salts Topics we ll be looking at in this chapter Arrhenius theory of acids and bases Bronsted-Lowry acid-base theory Mono-, di- and tri-protic acids Strengths of acids and

More information

Chemical calculations in medicine. Josef Fontana

Chemical calculations in medicine. Josef Fontana Chemical calculations in medicine Josef Fontana Chemical calculations Expression of concentration molar concentration percent concentration conversion of units Osmotic pressure, osmolarity Dilution of

More information

Chemical calculations in medicine. Josef Fontana

Chemical calculations in medicine. Josef Fontana Chemical calculations in medicine Josef Fontana Chemical calculations Expression of concentration molar concentration percent concentration conversion of units Osmotic pressure, osmolarity Dilution of

More information

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 16 Aqueous Ionic Equilibrium Sherril Soman Grand Valley State University The Danger of Antifreeze Each year, thousands of pets and wildlife species die from consuming antifreeze.

More information

Reflections About Quantitative Acid Base

Reflections About Quantitative Acid Base Reflections About Quantitative Acid Base This helpfile gives an introduction into the usage of the spreadsheet Schroeck_Peter_Stewart_standard_including_P.xls (development state: 03 Aug 2009, Helmut Schröck)

More information

A 95 g/mol B 102 /mol C 117 g/mol D 126 g/mol E 152 g/mol

A 95 g/mol B 102 /mol C 117 g/mol D 126 g/mol E 152 g/mol Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

More information

Strong and Weak. Acids and Bases

Strong and Weak. Acids and Bases Strong and Weak Acids and Bases Strength of Acids H2SO4 HSO4 - + H + HNO3 NO3 - + H + Strong Acids HCl Cl - + H + H3PO4 H2PO4 - + H + Phosphoric acid Moderate Acid CH3COOH CH3COO - + H + Acetic acid HF

More information

Buffered and Isotonic Solutions

Buffered and Isotonic Solutions Physical Pharmacy Lecture 8 Buffered and Isotonic Solutions Assistant Lecturer in Pharmaceutics Overview Buffered Solutions Definition Buffer Equation Buffer Capacity Buffer in Biological Systems Pharmaceutical

More information

Acids and Bases. Moore, T. (2016). Acids and Bases. Lecture presented at PHAR 422 Lecture in UIC College of Pharmacy, Chicago.

Acids and Bases. Moore, T. (2016). Acids and Bases. Lecture presented at PHAR 422 Lecture in UIC College of Pharmacy, Chicago. Acids and Bases Moore, T. (2016). Acids and Bases. Lecture presented at PHAR 422 Lecture in UIC College of Pharmacy, Chicago. Drug dissolution can impact buffering capacity of the body Most enzymes require

More information

SKKU Physical Pharmacy Laboratory 성균관대학교물리약학연구실

SKKU Physical Pharmacy Laboratory 성균관대학교물리약학연구실 The Buffer Equation Buffer Capacity Buffers in pharmaceutical and Biologic Systems Buffered Isotonic Solutions Methods of Adjusting Tonicity and ph - Solutions which resist changes in ph when small quantities

More information

BUFFERS. RAMESH REDDY.K M.Pharm.,(Ph.D) KRISHNA TEJA PHARMACY COLLEGE

BUFFERS. RAMESH REDDY.K M.Pharm.,(Ph.D) KRISHNA TEJA PHARMACY COLLEGE BUFFERS RAMESH REDDY.K M.Pharm.,(Ph.D) KRISHNA TEJA PHARMACY COLLEGE Definition Buffers are compounds or mixtures of compounds that by their presence in the solution resist changes in the ph upon the addition

More information

Acids, Bases, and Buffers

Acids, Bases, and Buffers Print Presentation Acids, Bases, and Buffers OVERVIEW You're probably familiar with acids and bases in the products you use at home. Rust removers often contain phosphoric acid. Muriatic acid (a common

More information

Ionization of acids and bases

Ionization of acids and bases ionization equation Ionization of acids and bases Acid Base AH + H 2 O H 3 O + + A B + H 2 O OH + BH + simpler eq. AH H + + A B + H + BH + ionization K A = [H 3 O + ][A - ]/[AH] K B = [OH - ][BH + ]/[B]

More information

Chapter 9 Acids & Bases

Chapter 9 Acids & Bases Chapter 9 Acids & Bases 9.1 Arrhenius Acids and Bases o Arrhenius Acid: substance that produces H + ions in aqueous solutions. HCl (aq) H + (aq) + Cl - (aq) o Arrhenius Base: substance that produces OH

More information

Chemistry 6/15/2015. Outline. Why study chemistry? Chemistry is the basis for studying much of biology.

Chemistry 6/15/2015. Outline. Why study chemistry? Chemistry is the basis for studying much of biology. Chemistry Biology 105 Lecture 2 Reading: Chapter 2 (pages 20-29) Outline Why study chemistry??? Elements Atoms Periodic Table Electrons Bonding Bonds Covalent bonds Polarity Ionic bonds Hydrogen bonding

More information

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Chapter 15 Applications of Aqueous Equilibria (mainly acid/base & solubility)

More information

Buffer Titrations Lab

Buffer Titrations Lab Buffer Titrations Lab The Buffers of the Oceans We ve discussed the ability of a buffer to resist changes in ph. The efficacy of a buffer is dependent upon the ph of the solution different buffers are

More information

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions.

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions. Lecture 12 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

Homework #7 Chapter 8 Applications of Aqueous Equilibrium

Homework #7 Chapter 8 Applications of Aqueous Equilibrium Homework #7 Chapter 8 Applications of Aqueous Equilibrium 15. solution: A solution that resists change in ph when a small amount of acid or base is added. solutions contain a weak acid and its conjugate

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic Formation of a salt (ionic compound): Neutralization reaction molecular Full ionic Eliminate spect ions to yield net ionic Hydrolysis/ reaction with water Anions of Weak Acids Consider the weak acid HF

More information

Full file at Chapter 2 Water: The Solvent for Biochemical Reactions

Full file at   Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Summary Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens.

More information

Kotz 7 th ed. Section 18.3, pp

Kotz 7 th ed. Section 18.3, pp Lecture 15 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17)

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17) 16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit By Anthony Quintano - https://www.flickr.com/photos/quintanomedia/15071865580, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=38538291

More information

HA + B BH + + A acid base acid base

HA + B BH + + A acid base acid base Acid-Base Equilibria On-line: 1.http://chem.libretexts.org/LibreTexts/Sacramento_City_College/SCC%3A_Chem_309_(Bennett)/Ch apters Chap 12.2-12.7 2. https://open.umn.edu/opentextbooks/bookdetail.aspx?bookid=40

More information

Volume NaOH Delivered (ml)

Volume NaOH Delivered (ml) Chemistry Spring 011 Exam 3: Chapters 8-10 Name 80 Points Complete five (5) of the following problems. Each problem is worth 16 points. CLEARLY mark the problems you do not want graded. You must show your

More information

Preparation of different buffer solutions

Preparation of different buffer solutions Preparation of different buffer solutions 1 - Buffers: - All biochemical reactions occur under strict conditions of the concentration of hydrogen ion. - Biological life cannot withstand large changes in

More information

How Does Exercise Affect the Body?

How Does Exercise Affect the Body? Many people today are interested in exercise as a way of improving their health and physical abilities. But there is also concern that too much exercise, or exercise that is not appropriate for certain

More information

Unless otherwise stated, all images in this file have been reproduced from:

Unless otherwise stated, all images in this file have been reproduced from: Unless otherwise stated, all images in this file have been reproduced from: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3 rd Edition 2016 (John Wiley & Sons) The University of Sydney Page

More information

ACID-BASE REACTIONS. Titrations Acid-Base Titrations

ACID-BASE REACTIONS. Titrations Acid-Base Titrations Page III-b-1 / Chapter Fourteen Part II Lecture Notes ACID-BASE REACTIONS Chapter (Part II A Weak Acid + Strong Base Titration Titrations In this technique a known concentration of base (or acid is slowly

More information

Osmolarity, Tonicity, and Equivalents Study Guide & Practice. 1. Osmolarity

Osmolarity, Tonicity, and Equivalents Study Guide & Practice. 1. Osmolarity Osmolarity, Tonicity, and Equivalents Study Guide & Practice 1. Osmolarity Recall that the osmotic pressure of a solution is created by solutes dissolved in a solvent, and the dissolved solutes create

More information

... so we need to find out the NEW concentrations of each species in the system.

... so we need to find out the NEW concentrations of each species in the system. 171 Take 100. ml of the previous buffer (0.050 M tris / 0.075 M tris-hcl), and add 5.0 ml of 0.10 M HCl. What is the ph of the mixture? The HCl should react with basic component of the buffer (tris), and

More information

Acids, Bases and the Common Ion Effect

Acids, Bases and the Common Ion Effect cids, Bases and the Common Ion Effect Consider the following acid equilibrium of a weak acid: HF + H O H 3 O + + F By LeChatelier s principle, we predict the HF dissociation should be driven left, suppressing

More information

Acids, Bases and ph Preliminary Course. Steffi Thomas 14/09/2017

Acids, Bases and ph Preliminary Course. Steffi Thomas 14/09/2017 Acids, Bases and ph Preliminary Course Steffi Thomas ssthomas@tcd.ie 14/09/2017 Outline What are acids and bases? Can we provide a general definition of acid and base? How can we quantify acidity and basicity?

More information

Preparation Of Buffer Solutions By Different Laboratory Ways. BCH 312 [Practical]

Preparation Of Buffer Solutions By Different Laboratory Ways. BCH 312 [Practical] Preparation Of Buffer Solutions By Different Laboratory Ways BCH 312 [Practical] Dissociation of Triprotic acid Triprotic acid is acid that contain three hydrogens ions. It dissociates in solution in three

More information

may contain one or more neutrons

may contain one or more neutrons Biology 115 Fall 2001 Campos/Saupe Atoms and Molecules I. Introduction - living things are composed of the same chemical elements as the nonliving world and obey the same physical and chemical laws - living

More information

Hashem Al-Dujaily. Hala Al Suqi. Mamoun + Diala. Tamer Barakat + Hashem Al-Dujaily

Hashem Al-Dujaily. Hala Al Suqi. Mamoun + Diala. Tamer Barakat + Hashem Al-Dujaily 3 Hashem Al-Dujaily Tamer Barakat + Hashem Al-Dujaily Hala Al Suqi Mamoun + Diala Last time we talked about the Ionization of water and then started talking about kw (ion product for water) which is a

More information

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY Acids And Bases A. Characteristics of Acids and Bases 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Chem 5 PAL Worksheet Acids and Bases Smith text Chapter 8

Chem 5 PAL Worksheet Acids and Bases Smith text Chapter 8 D.CHO3HE.KOHB.NHC.CHC3OHHCl3F.H.CHHCH3COG.H2HCHEM 5 PAL Worksheet Acids and Bases Fall 2017 Chem 5 PAL Worksheet Acids and Bases Smith text Chapter 8 Many substances in the body are acids and bases. Many

More information

2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS

2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS 2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS 2.1 Water and Polarity Both geometry and properties of molecule determine polarity Electronegativity - The tendency of an atom to attract electrons to itself

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) What is a dominant equilibrium? How do we define major species? Reactions between acids and bases 1. Strong Acids + Strong Base The reaction

More information

Grace King High School Chemistry Test Review

Grace King High School Chemistry Test Review CHAPTER 19 Acids, Bases & Salts 1. ACIDS Grace King High School Chemistry Test Review UNITS 7 SOLUTIONS &ACIDS & BASES Arrhenius definition of Acid: Contain Hydrogen and produce Hydrogen ion (aka proton),

More information

Chemical Equilibria Part 2

Chemical Equilibria Part 2 Unit 1 - Inorganic & Physical Chemistry 1.4 Chemical Equilibria Part 2 Acid / Base Equilibria Indicators ph Curves Buffer Solutions Pupil Notes Learning Outcomes Questions & Answers KHS ChemistrySept 2015

More information

CHEMISTRY OF THE HUMAN BODY

CHEMISTRY OF THE HUMAN BODY CHEMISTRY OF THE HUMAN BODY (Sample Questions) WUCT 2018 The three questions below are meant to give a sense of the kinds of questions that might be asked on the exam in April 2018. The actual exam is

More information

Chapter 15. Acid-Base Equilibria

Chapter 15. Acid-Base Equilibria Chapter 15 Acid-Base Equilibria The Common Ion Effect The common-ion effect is the shift in an ionic equilibrium caused by the addition of a solute that provides an ion already involved in the equilibrium

More information

Buffers. How can a solution neutralize both acids and bases? Beaker B: 100 ml of 1.00 M HCl. HCl (aq) + H 2 O H 3 O 1+ (aq) + Cl 1 (aq)

Buffers. How can a solution neutralize both acids and bases? Beaker B: 100 ml of 1.00 M HCl. HCl (aq) + H 2 O H 3 O 1+ (aq) + Cl 1 (aq) Buffers How can a solution neutralize both acids and bases? Why? Buffer solutions are a mixture of substances that have a fairly constant ph regardless of addition of acid or base. They are used in medicine,

More information

BCHS 3304: General Biochemistry I, Section 07553 Spring 2003 1:00-2:30 PM Mon./Wed. AH 101 1 http://www.uh.edu/sibs/faculty/glegge Instructor: Glen B. Legge, Ph.D., Cambridge UK Phone: 713-743-8380 Fax:

More information

5.111 Lecture Summary #22 Wednesday, October 31, 2014

5.111 Lecture Summary #22 Wednesday, October 31, 2014 5.111 Lecture Summary #22 Wednesday, October 31, 2014 Reading for Today: Sections 11.13, 11.18-11.19, 12.1-12.3 in 5 th ed. (10.13, 10.18-10.19, 11.1-11.3 in 4 th ed.) Reading for Lecture #23: Sections

More information

Extension 17: Haemoglobin, the transport of oxygen in the blood and ph buffers in the blood

Extension 17: Haemoglobin, the transport of oxygen in the blood and ph buffers in the blood Extension 17: Haemoglobin, the transport of oxygen in the blood and ph buffers in the blood 1. Prerequisites The ideas which form the background to this case study are listed in the following table. Topic

More information

Solution Concentrations CHAPTER OUTLINE

Solution Concentrations CHAPTER OUTLINE Chapter 8B Solution Concentrations CHAPTER OUTLINE Concentration Units Mass Percent Using Percent Concentration Molarity Using Molarity Dilution Osmolarity Tonicity of Solutions 2 CONCENTRATION UNITS The

More information

CHAPTER 7 Acid Base Equilibria

CHAPTER 7 Acid Base Equilibria 1 CHAPTER 7 Acid Base Equilibria Learning Objectives Acid base theories Acid base equilibria in water Weak acids and bases Salts of weak acids and bases Buffers Logarithmic concentration diagrams 2 ACID

More information

I. Acids & Bases. A. General ideas:

I. Acids & Bases. A. General ideas: Acid-Base Equilibria 1. Application of equilibrium concepts. 2. Not much else new in the way of theory is presented. 3. Specific focus on aqueous (H O is 2 solvent) systems. 4. Assume we are at equilibrium

More information

LECTURE #25 Wed. April 9, 2008

LECTURE #25 Wed. April 9, 2008 CHEM 206 section 01 LECTURE #25 Wed. April 9, 2008 LECTURE TOPICS: TODAY S CLASS: 18.1-18.2 NEXT CLASS: finish Ch.18 (up to 18.5) (1) 18.1 The Common Ion Effect basis of all Ch.18 = shift in eqm position

More information

Chapter 13 Acids and Bases

Chapter 13 Acids and Bases William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 13 Acids and Bases Edward J. Neth University of Connecticut Outline 1. Brønsted-Lowry acid-base model 2. The

More information

11. Introduction to Acids, Bases, ph, and Buffers

11. Introduction to Acids, Bases, ph, and Buffers 11. Introduction to Acids, Bases, ph, and Buffers What you will accomplish in this experiment You ll use an acid-base indicating paper to: Determine the acidity or basicity of some common household substances

More information

12. Acid Base Equilibria

12. Acid Base Equilibria 2. Acid Base Equilibria BronstedLowry Definition of acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that can

More information

CHAPTER 8 CHEMICAL EQUILIBRIUM SHORT QUESTION WITH ANSWERS Q.1 What is weak electrolyte? A compound which is only partially ionized in aqueous solution is called as weak electrolyte.e.g CH 3 COOH(Acetic

More information

Equations. M = n/v. M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14

Equations. M = n/v. M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14 Equations M = n/v M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14 [H 3 O + ] = 10^-pH [OH - ] = 10^-pOH [H 3 O + ] [OH

More information

Acids & Bases. Tuesday, April 23, MHR Chemistry 11, ch. 10

Acids & Bases. Tuesday, April 23, MHR Chemistry 11, ch. 10 Acids & Bases 1 MHR Chemistry 11, ch. 10 Acid or base? 2 Make a chart like this: Strong v. Weak oncentrated v. Diluted 3 Acid Strength Acid strength depends on how much an acid dissociates. The more it

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Often, there are many equilibria going on in an aqueous solution. So, we must determine the dominant equilibrium (i.e. the equilibrium reaction

More information