Statistical Modeling and Differential Evolution Optimization of Reactive Extraction of Glycolic Acid

Size: px
Start display at page:

Download "Statistical Modeling and Differential Evolution Optimization of Reactive Extraction of Glycolic Acid"

Transcription

1 International Conference on Biology, Environment and Chemistry IPCBEE vol.4 () ()IACSIT Press, Singapoore Statistical Modeling and Differential Evolution Optimization of Reactive Extraction of Glycolic Acid Dipaloy Datta and Sushil Kumar + Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), PILANI Pilani - (Rajasthan) India Abstract. The equilibrium reactive extraction of glycolic acid (GA) from aqueous solution is studied using tri-n-octylamine () as extractant dissolved in organic solvents (cyclohexane and decane--ol). Experimental studies are designed considering central composite orthogonal design method to investigate the main and interaction effects of initial GA concentration in the aqueous phase (C in, mol/l), initial amine composition in the organic phase ( C, %v/v) and modifier composition (M, %v/v) on the degree of extraction,. The process optimization is performed based on to find out the global optimum parameters using bio-inspired optimization algorithm, called differential evolution (DE). The degree of extraction of GA can be satisfactorily described by a quadratic response surface model with R of.98. The optimum conditions using DE are obtained as C in =.4 mol/l; C = 6. (%v/v); and M = 8.38 (%v/v) DE optimization shows that at this condition, a of 73.8 % can be obtained from the model. Experimental verification gives a of 69. % with a model error of 5.7 %. This indicates high reliability of the model. Keywords: reactive extraction, modeling, optimization, differential evolution. Introduction Glycolic acid (GA) has a broad spectrum of consumer and industrial applications. It is used in leather, oil, gas, laundry and textile industries and as a component in personal care products like skin care creams. Commercially, the acid is produced from petroleum feed-stocks. Therefore, it is essential to replace the petroleum based feed-stocks by renewable resources for the sustainable development of industrial sector. Recently, fermentation technology, comparatively a clean and a green technology, is found to be an attractive alternative to produce GA from renewable sources due to the limitations of chemical synthesis route. Glycolic acid can be produced by the enzymatic conversion of glycolonitrile by nitrilase as an aqueous solution of ammonium glycolate []. The hydrophilic nature of glycolic acid (log P = -.97, []) makes it poorly extractable by common organic solvents and hence reactive extraction has been considered for the separation of this acid from the aqueous solution. Generally, amine based extractants have been found to be efficient extractant for the recovery of carboxylic acids [3-6]. These amines are used with active polar diluents (modifiers) to improve their physical properties such as density, viscosity, surface tension etc. Various studies on the reactive extraction of carboxylic acid are carried out to determine the effect of various parameters such as initial acid and extractant concentration, types of extractant, and diluents on the recovery of acids [3-6]. The effective choice and optimum combinations of these parameters are essential to maximize the recovery of acid from aqueous solution. Therefore, in the present study reactive extraction of glycolic acid is chosen as a case study. In this study, initial glycolic acid concentration, initial tri-n-octylamine composition and modifier (decane-ol) composition are considered as critical and effective independent + Corresponding author: Tel Ext. 5; fax: ; address: sushilk6@gmail.com 5

2 variables of reactive extraction and degree of extraction is chosen as the dependent design variable. With the experimental design and data, an empirical model is constructed and differential evolution optimization is employed to find the global optimal conditions of reactive extraction.. Experimental Section.. Materials and method Glycolic acid of purity 99.5 %w/w is purchased from Spectrochem, India. Tri-n-octylamine (density =.89 g/cm 3 ; purity = 98 %w/w; molar mass g/mol) procured from Spectrochem, India, is used as an extractant in this study. Diluents such as cyclohexane (density =.779 g/cm 3 ; purity = 99 %w/w; S. D. Fine- Chem, India) as an inert diluent and decane--ol (density =.83 g/cm 3 ; purity = 98 %w/w; Spectrochem Pvt. Ltd., India) as a modifier are used to prepare the organic phase. Sodium hydroxide (Merck, Germany) is used for titration and phenolphthalein solution (CDH, India; ph range of 8. to.) is used as an indicator in the titration. The equilibrium extraction experiments are carried out in a temperature controlled reciprocating shaker bath (REMI labs, HS, India) using conical flasks of ml with equal volumes of aqueous and organic phase ( ml). The phase mixture is then shaken at rpm for 6 hours at 98 K. after reaching equilibrium, aqueous and organic phases is kept for hrs for separation in separating funnel ( ml) at constant temperature (98 K). The concentration of the glycolic acid in the aqueous phase is determined by titration with NaOH solution of.5 N and phenolphthalein as an indicator. The acid concentration in the organic phase at equilibrium is calculated by mass balance. The repeatability for few data points is checked and found within error limit of ±5 %. The efficiency of the equilibrium reactive extraction process is analyzed by calculating the degree of extraction (%Y) and is defined as: C Y = () C in The over bar represents the organic phase; C is the concentration of glycolic acid; subscript in refers to the initial condition. 3. Results and Discussion 3.. Response surface methodology approach and experimental design The development of an industrial process requires study of the various process parameters and which can be achieved by exhaustive experimentation. The approximation of the response function in terms of input variables is called Response Surface Methodology (RSM). RSM is applied for the construction of empirical models based on experimental data and experimental design [7-8]. In the present study, the actual values (C o, C, and M) of design variables are coded as x i (dimensionless) and are presented in Table. The experiments in the present study are designed using central composite orthogonal design and a total of 6 batch experiments are carried out. Each run in the batch experiment represents a unique combination of factor s levels and for each experiment run the degree of extraction (%Y) is determined using Eq. (Table ). The experimental data are regressed using least square method and the significance of each regression coefficient is determined by Student s t-test (a null hypothesis test) and Fischer distribution (F-test). Approximate RSM model equation of second order polynomial describing %Y of reactive extraction as a function of coded variables is represented as follows: Y = x x x3.894x3 ().84x x 5.44x x x x Subjected to: 3 α x + α and Y (3) i Statistical significance of the regression equation (Eq. ) is analyzed using analysis of variance (ANOVA) and results are summarized in Table 3. ANOVA analysis shows that P-value near about zero, and R =

3 (Figure ) are obtained for Eq. indicating better fit of the RSM regression model. The effects of design parameters (C o, C, and M) on %Y are determined by plotting response surface plots on -D planes and are shown in Figures -4. Effect of C on %Y at various C and at fixed modifier composition (M = 5 %v/v) is shown in Figure. This figure also indicates the effect of interaction between both variables (C andc ). As indicated by the Figure, an increase in the acid concentration decreases %Y for a fixed amount of composition. At higher acid concentration the competency between acid molecules to attach with the extractant molecules becomes more and hence less amount of acid molecule can be extracted by the amine molecule decreasing %Y. At higher amine composition there are sufficient amount of amine molecules available for a particular acid concentration and hence a greater the value of %Y. Figure 3 elaborates the variation of degree of extraction as a function of C o at different M values and at C = %v/v. Since has a relatively high viscosity and density, it is used along with diluents, which could facilitate good phase separation in the continuous extraction process. Diluents chosen in the study are cyclohexane from the inactive chemical class, and decane--ol as modifier from active chemical class to examine the effect of diluent-complex interactions. These interactions generally have been found to affect the stoichiometry of reaction and magnitude of the corresponding equilibrium constants. From the Figure 3 it can then be observed that the solubility of extracted species increases in the organic phase. So, %Y of GA increases with an increase in the concentration of decane--ol (modifier) in the mixture of and cyclohexane. The significant effect of M on %Y (response) with C is shown in Figure 4 at C o =.6 mol/l. In this study decane--ol has been used as a modifier which is an active polar solvent (dipole moment, μ =.6 D). Use of non-polar solvents (e.g. cyclohexane, μ = D) at higher initial concentration of glycolic acid in aqueous solutions, could lead to the formation of a stable emulsion and dimer in the organic phase. Therefore, a modifier is generally added to the organic phase to avoid such kind of problems and assures a higher solubility of the formed acid-amine complex in the organic phase. Active diluent, decane--ol is having an active group ( OH, proton donor), which enhance the extractability of low polar. On the other hand, non-polar diluents do not affect the extraction process significantly. Figure 4 dictates that with increase in both values of M andc, the %Y increases. Table : Independent variables (their coded and actual values) Actual design variables/factors Coded variables Coded levels - α - + α* Initial GA concentration (C, mol/l) x Initial composition ( C, %v/v) x Modifier composition (M, %v/v). x * α =.5 (star point for central composite orthogonal design, k = 3 design variables) Table : Experimental design points and degree of extraction Run number Run type Design variables Response C x C x M x 3 O O O O O O O O S S

4 S S S S a C b C O = orthogonal design points, C = center points, S = star points, = low value, = center value, + = high value, +/ α = star point value Table 3: Analysis of variance (ANOVA) for RSM model Source DF SS MS F-value P-value Multiple R R R adj Regression Residual Total E DF = degrees of freedom, SS = sum of squares, MS = mean square, R = coefficient of determination, R adj = adjusted statistic 3.. Optimization using differential evolution In science and engineering, optimization is defined as the method of minimizing or maximizing an objective function comprised of different independent variables and finding the values of those variables for which the objective function takes on minimum or maximum value with in the defined domains of variables. Figure 5 describes the effect of one of the parameters as coded variable on %Y. It can be seen that with the increase in the values of x, there is a decrease in the %Y, but with the increase in the values of x and x 3, the %Y increases. It means there is a trade-off or balance between the values of x i s which will optimize (maximize in this case) the response function. During the last two decades there has been a growing interest in optimization algorithms, which are based on the principle of evolution (survival of the fittest).the bestknown algorithms in this class include Genetic Algorithm, Differential Evolution, Evolutionary Programming, Evolution Strategies and Genetic Programming. A brief review of the evolutionary computation techniques is presented by Babu, 4 [9]. However, certain guidelines and heuristics are available for the choice of these parameters. Based on these heuristics, the values of DE key parameters for the present problem are set as population size (NP) = 3, cross-over frequency (CR) =.7; multiplication factor (F) =.8. The fitness function, which is to be minimized, is considered as: MSE = j = N j= MSE: mean-squared error; N is the number of experiments exp pred ( Y j Y j ) (8) For the optimization of RSM fitness function a computer code has been developed in MATLAB (v 6.). DE has converged to the optimal value only after 3 generations. Therefore, it can be said that DE is comparatively faster than other optimization techniques [8]. The optimal solution obtained by means of RSM-DE involves the following conditions: C =.4 mol/l, C = 6. %v/v, and M = 8.38 %v/v with predicted %Y is about 7.8 % by RSM model and about 69. % from experiment. This value is greater than the value of % that is obtained for the run number from initial experimental design (Table ). Therefore, the scope of optimization has been achieved by RSM-DE for this process. 5 R = Initial composition (% v/v) Initial modifier composition (% v/v) Y pred (%) Y exp (%) Initial acid concentration, mol/l Initial acid concentration, mol/l 8

5 Fig. : RSM model predicted versus experimental degree of extraction Fig. : Effect of C Fig. o andc on at M = 5 %v/v Fig. 3: Effect of C o and M on Y (%) at C = %v/v Initial modifier composition (% v/v) x x Initial composition, %v/v Fig. 4: Effect of C and M on at C o =.6 mol/l Coded variables, x i 's Fig. 5: Effect of various factors on the degree of extraction x 3 4. Conclusions In this work, RSM and DE methods are applied for modeling and optimization of equilibrium reactive extraction process of glycolic acid considering three design variables (C, C and M). The reactive extraction of glycolic acid from aqueous solutions with (amine) dissolved in organic solvents (cyclohexane and decane-ol) has been considered as the case study. The regression equation in coded variables has been constructed by RSM to describe the empirical functional relationships between input variables (factors) and response (degree of extraction) with R for empirical model equal to.98. The optimum conditions are found to be: C =.4 mol/l, C = 6. %v/v, and M = 8.38 %v/v with %Y of 7.8 % and 69. % by the RSM model and by experiment, respectively. 5. References [] L. N. Xu, W. Fox, N. Zaher, and C. F. Dicosimo, Method for the production of glycolic acid from ammonium glycolate by direct deammoniation. U. S. Patent WO/6/699, June, 3, 6. [] A. D. John, Lange s Handbook of Chemistry (XXth Ed). McGraw-Hill Book Co. Inc., New York, USA, 97. [3] S. Kumar, D. Datta, and B. V. Babu, Experimental data and theoretical (chemodel using the differential evolution approach and linear solvation energy relationship model) predictions on reactive extraction of monocarboxylic acids using tri-n-octylamine, J. Chem. Eng. Data,, 55: [4] S. Kumar, D. Datta, and B. V. Babu, Estimation of equilibrium parameters using differential evolution in reactive extraction of propionic acid by tri-n-butyl phosphate dissolved in n-decane & -Decanol. Chem. Eng. Proc., 5 (7): [5] D. Datta, and S. Kumar, Reactive extraction of glycolic acid using tri-n-butyl phosphate and tri-n-octylamine in six different diluents: Experimental data and theoretical predictions, Ind. Eng. Chem. Res., 5 (5): [6] D. Datta, and S. Kumar, Reactive extraction of -methylidenebutanedioic acid with N, N-dioctyloctan--amine dissolved in six different diluents: Experimental and theoretical equilibrium studies at (98 ± ) K. J. Chem. Eng. Data,, 56 (5): [7] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 8, 76 (5): [8] N. Marchitana, C. Cojocarub, A. Mereuta, Gh. Duca, I. Cretescu, and M. Gonta, Modeling and optimization of tartaric acid reactive extraction from aqueous, solutions: A comparison between response surface methodology and artificial neural network, Sep. Purif. Technol., : [9] B. V. Babu, Process Plant Simulation, Oxford University Press, New Delhi, India, 4. 9

Sushil Kumar 1, T R Mavely 2 and B V Babu* Birla Institute of Technology and Science (BITS), PILANI (Rajasthan) India

Sushil Kumar 1, T R Mavely 2 and B V Babu* Birla Institute of Technology and Science (BITS), PILANI (Rajasthan) India Reactive Extraction of Carboxylic s (Butyric-, Lactic-, Tartaric-, Itaconic- Succinic- and Citric s) using Tri-n-Butylphosphate (TBP) Dissolved in 1-Dodecanol and n-octane (1:1 v/v) Sushil Kumar 1, T R

More information

Recovery of Nicotinic Acid from Aqueous Solution using Reactive Extraction with Tri-n-Octyl Phosphine Oxide (TOPO) in Kerosene

Recovery of Nicotinic Acid from Aqueous Solution using Reactive Extraction with Tri-n-Octyl Phosphine Oxide (TOPO) in Kerosene Recovery of Nicotinic Acid from Aqueous Solution using Reactive Extraction with Tri-n-Octyl Phosphine Oxide (TOPO) in erosene Sushil umar 1, aran Gupta 2, and B V Babu* Birla Institute of Technology and

More information

INFLUENCE OF TEMPERATURE AND ESTIMATION OF ENTHALPY AND ENTROPY FOR REACTIVE EXTRACTION OF LACTIC ACID

INFLUENCE OF TEMPERATURE AND ESTIMATION OF ENTHALPY AND ENTROPY FOR REACTIVE EXTRACTION OF LACTIC ACID Int. J. Chem. Sci.: (3), 22, 39-36 ISSN 972-768X www.sadgurupublications.com INFLUENCE OF TEMPERATURE AND ESTIMATION OF ENTHALPY AND ENTROPY FOR REACTIVE EXTRACTION OF LACTIC ACID HUSSEIN SALIH HUSSEIN

More information

Separation of Isomeric Butanol Mixture Using Hydrotropes, Plots Using Matlab

Separation of Isomeric Butanol Mixture Using Hydrotropes, Plots Using Matlab 2012 4th International Conference on Chemical, Biological and Environmental Engineering IPCBEE vol.43 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2012. V43. 30 Separation of Isomeric Butanol

More information

Reactive Extraction of L (+) Tartaric Acid by Amberlite LA-2 in Different Solvents

Reactive Extraction of L (+) Tartaric Acid by Amberlite LA-2 in Different Solvents http://www.e-journals.net ISSN: 973-4945; CODEN ECJHAO E- Chemistry 211, 8(S1), S59-S515 Reactive Extraction of L (+) Tartaric Acid by Amberlite LA-2 in Different Solvents İ. İNCİ, Y. S. AŞÇI and A. F.

More information

Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic Solvent

Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic Solvent International Proceedings of Chemical, Biological and Environmental Engineering, V0l. 96 (2016) DOI: 10.7763/IPCBEE. 2016. V96. 4 Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic

More information

Distribution of Glycolic Acid Between Water and Different Organic Solutions

Distribution of Glycolic Acid Between Water and Different Organic Solutions . NCI, Distribution of Glycolic Acid Between Water and Different Organic Solutions, Chem. Biochem. Eng. Q. 16 (2) 81 85 (2002) 81 Distribution of Glycolic Acid Between Water and Different Organic Solutions.

More information

REACTIVE EXTRACTION OF SUCCINIC ACID USING NATURAL DILUENT

REACTIVE EXTRACTION OF SUCCINIC ACID USING NATURAL DILUENT REATIVE EXTRATION OF SUINI AID USING NATURAL DILUENT Rakesh Shantaram Mekade 1, Rashmi S. Deshpande 1Post Graduate Student, Department of hemical Engineering, Sinhgad ollege of Engineering, Pune. Associate

More information

Reactive extraction of propionic acid using Aliquat 336 in MIBK: Linear solvation energy relationship (LSER) modeling and kinetics study

Reactive extraction of propionic acid using Aliquat 336 in MIBK: Linear solvation energy relationship (LSER) modeling and kinetics study Journal of Scientific & Industrial Research 78 Vol. 68, ugust 29, pp. 78-713 J SCI IN RES VOL 68 UGUST 29 Reactive extraction of propionic acid using liquat 336 in MIBK: Linear solvation energy relationship

More information

Separation Characteristics of Lactic Acid in Reactive Extraction and Stripping

Separation Characteristics of Lactic Acid in Reactive Extraction and Stripping Korean J. Chem. Eng., 17(5), 528-533 (2000) Separation Characteristics of Lactic Acid in Reactive and Stripping Dong Hoon Han*, Yeon Ki Hong and Won Hi Hong Department of Chemical Engineering, Korea Advanced

More information

Box Behnken modelling of phenol removal from aqueous solution using Emulsion Liquid Membrane

Box Behnken modelling of phenol removal from aqueous solution using Emulsion Liquid Membrane Box Behnken modelling of phenol removal from aqueous solution using Emulsion Liquid Membrane A. Balasubramanian Assistant Professor, Department of Petroleum Engineering, AMET University, Chennai, Tamilnadu,

More information

LIQUID-LIQUID EXTRACTION EQUILIBRIUM FOR PYRUVIC ACID RECOVERY: EXPERIMENTAL DATA AND MODELING

LIQUID-LIQUID EXTRACTION EQUILIBRIUM FOR PYRUVIC ACID RECOVERY: EXPERIMENTAL DATA AND MODELING Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.scielo.br/bjce Vol. 34, No. 03, pp. 919 925, July September, 2017 dx.doi.org/10.1590/0104-6632.20170343s20150276 LIQUI-LIQUI

More information

To determine the Molar Mass of an unknown diprotic acid, by an acid-base titration.

To determine the Molar Mass of an unknown diprotic acid, by an acid-base titration. PURPOSE: To determine the Molar Mass of an unknown diprotic acid, by an acid-base titration. PRINCIPLES: This experiment is a continuation of a previous experiment (Experiment # 9B) and is based on the

More information

Nitration of Benzene at High-Concentrations of Sulfuric Acid

Nitration of Benzene at High-Concentrations of Sulfuric Acid Asian Journal of Chemistry Vol. 21, No. 6 (29), 4533-4542 Nitration of Benzene at High-Concentrations of Sulfuric Acid S. SARKAR, S.K. GHOSH and P. GHOSH* Department of Chemical Engineering, Indian Institute

More information

DETERMINATION OF ACETIC ACID IN VINEGAR

DETERMINATION OF ACETIC ACID IN VINEGAR DETERMINATION OF ACETIC ACID IN VINEGAR 1 INTRODUCTION Juices from plants and fruits contain sugar. When these juices are fermented, the sugar molecules are converted into ethyl alcohol molecules (C 2

More information

7/16/2012. Chapter Four: Like Dissolve Like. The Water Molecule. Ionic Compounds in Water. General Properties of Aqueous Solutions

7/16/2012. Chapter Four: Like Dissolve Like. The Water Molecule. Ionic Compounds in Water. General Properties of Aqueous Solutions General Properties of Aqueous Solutions Chapter Four: TYPES OF CHEMICAL REACTIONS AND SOLUTION STOICHIOMETRY A solution is a homogeneous mixture of two or more substances. A solution is made when one substance

More information

Recovery of Fumaric acid from Aqueous Solution Using Laboratory Prepared Nontoxic Diluent

Recovery of Fumaric acid from Aqueous Solution Using Laboratory Prepared Nontoxic Diluent International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.11 No.10, pp 14-21, 2018 Recovery of Fumaric acid from Aqueous Solution Using Laboratory Prepared

More information

Solution Concentration

Solution Concentration Solution Concentration solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute: component present in smaller amount solvent: component present in greater amount Note:

More information

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet Part 1: Vocabulary Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet A solution is a mixture The solvent is the medium in a solution. The particles are the solute.

More information

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5 Solutions and concentration Solution: a homogeneous mixture of two or more substances. Example: water, sugar, flavor mixture (Coke). The substances are physically combined, not chemically combined or bonded

More information

Full file at Chapter 2 Water: The Solvent for Biochemical Reactions

Full file at   Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Summary Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens.

More information

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Calculate the amount of solid required Weigh out the solid Place in an appropriate volumetric

More information

OPTIMIZATION OF MICROWAVE HYDRODISTILLATION OF DRIED PATCHOULI LEAVES BY RESPONSE SURFACE METHODOLOGY

OPTIMIZATION OF MICROWAVE HYDRODISTILLATION OF DRIED PATCHOULI LEAVES BY RESPONSE SURFACE METHODOLOGY ISSN: 0974-1496 e-issn: 0976-0083 CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in OPTIMIZATION OF MICROWAVE HYDRODISTILLATION OF DRIED PATCHOULI LEAVES BY RESPONSE SURFACE METHODOLOGY

More information

Extract: A new Simulation Software for Liquid-Liquid Extraction Process

Extract: A new Simulation Software for Liquid-Liquid Extraction Process Extract: A new Simulation Software for Liquid-Liquid Extraction Process A. Hadj Seyd 1, Lanezt 2, M. L. Belfar 2, T. Gharib 1, A. Kemassi 3, F. Ben Brahim 3 1 University Mohamed Khider-Biskra. B.P. 145

More information

Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers

Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers Pre-Laboratory Assignments Reading: Textbook Chapter 16 Chapter 17:1-3 This Laboratory Handout Pre-Laboratory Assignments: Complete

More information

Chapter 2 Water: The Solvent for Biochemical Reactions

Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens. There are

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

Penicillin G extraction from simulated media by emulsion liquid membrane

Penicillin G extraction from simulated media by emulsion liquid membrane DARU Vol. 5, No. 27 2 Penicillin G extraction from simulated media by emulsion liquid membrane Ramazani Kalhor R., *2 Kaghazchi T., 3 Fazeli M.R., 4 Daeipoor F. Tofigh Daru (TODA) Co., 2 Department of

More information

EXPERIMENTAL PROCEDURE

EXPERIMENTAL PROCEDURE EXPERIMENTAL PROCEDURE The present experimentation is carried out on biosorption of chromium and lead from aqueous solutions by biosorbents Ageratum conyzoides leaf and Anacardium occidentale testa powder.

More information

Experiment: 8. Determining the Solubility of Aspirin at Different Temperatures and Calculating the Heat of Solution. Theory

Experiment: 8. Determining the Solubility of Aspirin at Different Temperatures and Calculating the Heat of Solution. Theory Experiment: 8 Determining the olubility of Aspirin at Different Temperatures and Calculating the Heat of olution Theory One of the most common forms of a homogeneous mixture is a solution. The one component

More information

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. 1 Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. You should be able to: Vocabulary of water solubility Differentiate between

More information

KINETICS OF ESTERIFICATION OF CITRIC ACID WITH BUTANOL USING SULPHURIC ACID

KINETICS OF ESTERIFICATION OF CITRIC ACID WITH BUTANOL USING SULPHURIC ACID Int. J. Chem. Sci.: 2(3), 204, 95-920 ISSN 0972-768X www.sadgurupublications.com KINETICS OF ESTERIFICATION OF CITRIC ACID WITH BUTANOL USING SULPHURIC ACID PRATIBHA SINGH, SANJAY P. KABLE *a and PRAKASH

More information

Solutions Solubility. Chapter 14

Solutions Solubility. Chapter 14 Copyright 2004 by Houghton Mifflin Company. Solutions Chapter 14 All rights reserved. 1 Solutions Solutions are homogeneous mixtures Solvent substance present in the largest amount Solute is the dissolved

More information

Apparent molar volume of sodium chloride in mixed solvent at different temperatures

Apparent molar volume of sodium chloride in mixed solvent at different temperatures Ultra Chemistry Vol. 8(2), 205-210 (2012). Apparent molar volume of sodium chloride in mixed solvent at different temperatures C.K. RATH 1, N.C. ROUT 2, S.P. DAS 3 and P.K. MISHRA 4 1 Department of Chemistry,

More information

What Do You Think? Investigate GOALS. Part A: Precipitation of Calcium

What Do You Think? Investigate GOALS. Part A: Precipitation of Calcium H 2 Woes Activity 6 Water Softening GOALS In this activity you will: Investigate the equilibria behind water softening. Determine which reduces water hardness more, precipitation reactions or ion-exchange

More information

SOLUTIONS. Definitions. Solvation. Hydration. Energy changes involved in solutions

SOLUTIONS. Definitions. Solvation. Hydration. Energy changes involved in solutions 1 SOLUTIONS Definitions Solvation Hydration Energy changes involved in solutions 2 Solubility Definition Unsaturated Saturated supersaturated Factors affecting solubility Interactions of solute with solvent

More information

p. 309 #1-3, 5-9, 11-15, 17, 18 p. 403 #1, 2, 4-7, 10, 18, 19, 21 p. 358 #1-3, 9, 10 p. 408 #1, 8, 9, 11, 12, 14-18, 20-24, 28, 31-35

p. 309 #1-3, 5-9, 11-15, 17, 18 p. 403 #1, 2, 4-7, 10, 18, 19, 21 p. 358 #1-3, 9, 10 p. 408 #1, 8, 9, 11, 12, 14-18, 20-24, 28, 31-35 SCH3U Unit 4 Test Review Solutions & Solubility Name: Date: Solutions - Intermolecular/Intramolecular Forces -Ionic, dipole-dipole, hydrogen bonding, London Forces, covalent Like-dissolves-like Other terms:

More information

Bellwork: Answer these in your notes. What is the [H + ] of a solution with a ph of 4.90? Name this acid: H 3 PO 4. Name this base: KOH

Bellwork: Answer these in your notes. What is the [H + ] of a solution with a ph of 4.90? Name this acid: H 3 PO 4. Name this base: KOH Bellwork: Answer these in your notes. What is the [H + ] of a solution with a ph of 4.90? Name this acid: H 3 PO 4 Name this base: KOH Stoichiometry The stoichiometry of an acid-base neutralization reaction

More information

9/24/12. Chemistry Second Edition Julia Burdge. Reactions in Aqueous Solutions

9/24/12. Chemistry Second Edition Julia Burdge. Reactions in Aqueous Solutions Chemistry Second Edition Julia Burdge 4 Reactions in Aqueous Solutions Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 4 Reactions in Aqueous Solutions

More information

CHEM-102 EXAM I Name Fall 2004 Section

CHEM-102 EXAM I Name Fall 2004 Section CHEM-102 EXAM I Name Fall 2004 Section 10 11 12 Version A (Circle one) Instructions: 1. Put your name and section number on both page 1 and the answer key. Do not detach the answer key from the back of

More information

Midterm SID: grading. page of the. considered in. Constants: ph = - log[h ] Question. exam. px = - log X X = 10 -px Kw = Points. Score.

Midterm SID: grading. page of the. considered in. Constants: ph = - log[h ] Question. exam. px = - log X X = 10 -px Kw = Points. Score. Name: KEY SID: GSI Name: The test consists of 4 short answer questions and 21 multiple choice questions. Put your written answers in the boxes provided. Answers outside the boxes may not be considered

More information

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY Water, the common solvent Solution is a homogeneous mixture Solvent is the substance that does the dissolving Solute is the substance that

More information

REACTIVE EXTRACTION OF NICOTINIC ACID WITH TRI-ISO-OCTYLAMINE (TIOA) IN 1- DECANOL

REACTIVE EXTRACTION OF NICOTINIC ACID WITH TRI-ISO-OCTYLAMINE (TIOA) IN 1- DECANOL REACTIVE EXTRACTION OF NICOTINIC ACID WITH TRI-ISO-OCTYLAMINE (TIOA) IN 1- DECANOL Priti V. Ganorkar 1, S.M. Jadhav 2, S.G. Gaikwad 3 1, 2 Department of Chemical Engineering, Bharati Vidyapeeth Deemed

More information

We need to find the new concentrations of the species in this buffer system. Remember that we also DILUTED the solution by adding 5.0 ml of the HCl.

We need to find the new concentrations of the species in this buffer system. Remember that we also DILUTED the solution by adding 5.0 ml of the HCl. 164 Take 100. ml of the previous buffer (0.05 M tris / 0.075 M tris-hcl), and add 5.0 ml of.10 M HCl. What is the ph of the mixture? The HCl reacts with the tris base, converting it to tris-hcl We need

More information

Properties of Aqueous Solutions

Properties of Aqueous Solutions Properties of Aqueous Solutions Definitions A solution is a homogeneous mixture of two or more substances. The substance present in smaller amount is called the solute. The substance present in larger

More information

4.6 Describing Reactions in Solution

4.6 Describing Reactions in Solution 4.6 Describing Reactions in Solution The overall or formula equation for this reaction: K 2 CrO(aq) Ba(NO 3 ) 2 (aq) BaCrO 4 (s) 2KNO 3 (aq) Although the formula equation shows the reactants and products

More information

Solutions, Ions & Acids, Bases (Chapters 3-4) Example - Limiting Reagents. Percent Yield. Reaction Yields. Yield - example.

Solutions, Ions & Acids, Bases (Chapters 3-4) Example - Limiting Reagents. Percent Yield. Reaction Yields. Yield - example. Solutions, Ions & Acids, Bases (Chapters 3-4) Chem 107 T. Hughbanks Example - Limiting Reagents SiCl 4 is used in making computer chips. It is produced by the reaction: SiO 2 + 2 C + 2 Cl 2 SiCl 4 + 2

More information

Solutions, Ions & Acids, Bases (Chapters 3-4)

Solutions, Ions & Acids, Bases (Chapters 3-4) Solutions, Ions & Acids, Bases (Chapters 3-4) Chem 107 T. Hughbanks Example - Limiting Reagents SiCl 4 is used in making computer chips. It is produced by the reaction: SiO 2 + 2 C + 2 Cl 2 SiCl 4 + 2

More information

Water: The Solvent for Biochemical Reactions

Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions 11 SUMMARY Section 2.1 Section 2.2 Section 2.3 Section 2.4 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive

More information

International Journal of Pharma and Bio Sciences V1(2)2010 SOLVENT EXTRACTION OF CHROMIUM (VI) FROM MINERAL ACID SOLUTIONS BY TRIBUTYL AMINE

International Journal of Pharma and Bio Sciences V1(2)2010 SOLVENT EXTRACTION OF CHROMIUM (VI) FROM MINERAL ACID SOLUTIONS BY TRIBUTYL AMINE A.V.L.N.S.H. HARI HARAN * AND D.MURALI KRISHNA * Department of Chemistry Gitam Institute of Technology, GITAM UNIVERSITY VISAKHAPATNAM-530 045. INDIA Corresponding author ahharan@rediffmail.com ABSTRACT

More information

Determining the K sp of Calcium Hydroxide

Determining the K sp of Calcium Hydroxide Determining the K sp of Calcium Hydroxide (Titration Method) Computer 23 Calcium hydroxide is an ionic solid that is sparingly soluble in water. A saturated, aqueous, solution of Ca(OH) 2 is represented

More information

Sectional Solutions Key

Sectional Solutions Key Sectional Solutions Key 1. For the equilibrium: 2SO 2 (g) + O 2 (g) 2SO 3 (g) + 188 kj, the number of moles of sulfur trioxide will increase if: a. the temperature of the system is increased (at constant

More information

Studies in liquid-liquid systems. the components of a solution by distributing them between two liquid phases. Its applications

Studies in liquid-liquid systems. the components of a solution by distributing them between two liquid phases. Its applications Studies in liquid-liquid systems Liquid- liquid extraction commonly known as solvent extraction is used for separating the components of a solution by distributing them between two liquid phases. Its applications

More information

CaCO 3(s) + 2HCl (aq) CaCl 2(aq) + H 2 O (l) + CO 2(g) mole mass 100g 2(36.5g) 111g 18g 44g

CaCO 3(s) + 2HCl (aq) CaCl 2(aq) + H 2 O (l) + CO 2(g) mole mass 100g 2(36.5g) 111g 18g 44g STOICHIOMETRY II Stoichiometry in chemical equations means the quantitative relation between the amounts of reactants consumed and product formed in chemical reactions as expressed by the balanced chemical

More information

Chapter 4. Reactions in Aqueous Solution

Chapter 4. Reactions in Aqueous Solution Chapter 4. Reactions in Aqueous Solution 4.1 General Properties of Aqueous Solutions A solution is a homogeneous mixture of two or more substances. A solution is made when one substance (the solute) is

More information

Florian Chemarin, Marwen Moussa, Florent Allais, Violaine Athès, Ioan-Cristian Trelea

Florian Chemarin, Marwen Moussa, Florent Allais, Violaine Athès, Ioan-Cristian Trelea Mechanistic modeling and equilibrium prediction of the reactive extraction of organic acids with amines: a comparative study of two complexation-solvation models using 3-hydroxypropionic acid Florian Chemarin,

More information

Chapter Four. Experimental

Chapter Four. Experimental Chapter Four 4.1 Materials N,N-Diethyl monoethanolamine (purity 98%) used in all experiments was purchased from Spectrochem Pvt. Ltd., Mumbai. N-Ethyl monoethanolamine, N-(- aminoethyl)ethanolamine, diethanolamine,

More information

DATA SHEETS AND CALCULATIONS FOR ACIDS & BASES

DATA SHEETS AND CALCULATIONS FOR ACIDS & BASES Chemistry 112 Laboratory: Chemistry of Acids & Bases Page 73 DATA SHEETS AND CALCULATIONS FOR ACIDS & BASES Name Partner s Name Grade and Instructor Comments Part 1: Experimental Measurement Determining

More information

Response Surface Methodology Optimization of Methylene Blue Removal by Activated Carbon Derived from Foxtail Palm Tree Empty Fruit Bunch

Response Surface Methodology Optimization of Methylene Blue Removal by Activated Carbon Derived from Foxtail Palm Tree Empty Fruit Bunch J. Trop. Resour. Sustain. Sci. 4 (206): 25-30 Response Surface Methodology Optimization of Methylene Blue Removal by Activated Carbon Derived from Foxtail Palm Tree Empty Fruit Bunch Farah Amni Daud, Norhisyam

More information

Chapter 4 - Types of Chemical Reactions and Solution Chemistry

Chapter 4 - Types of Chemical Reactions and Solution Chemistry Chapter 4 - Types of Chemical Reactions and Solution Chemistry 4.1 Water, the Common Solvent - the water molecule is bent with and H-O-H angles of approx. 105 º - O-H bonds are covalent - O is slightly

More information

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry Chapter 4: Types of Chemical Reactions and Solution Stoichiometry 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition of Solutions (MOLARITY!)

More information

Bioresource Technology

Bioresource Technology Bioresource Technology 100 (2009) 2878 2882 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Short Communication Study on solvent extraction

More information

Practice Examination #8B

Practice Examination #8B Practice Examination #8B Name: Date: 1. Equal volumes of 0.5 M HCl and 0.5 M NaOH are mixed. The total volume of the resulting mixture is 2 liters. The ph of the resulting solution is 1. A. 1 B. 2 C. 7

More information

Lecture 1 Solubility and Distribution Phenomena

Lecture 1 Solubility and Distribution Phenomena Physical Pharmacy Lecture 1 Solubility and Distribution Phenomena Assistant Lecturer in Pharmaceutics Overview Solubility Phenomena Introduction Solute-Solvent Interactions Solubility of gas in liquid

More information

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file)

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file) Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file) Section 3.1: Solubility Rules (For Ionic Compounds in Water) Section 3.1.1: Introduction Solubility

More information

Validated RP-HPLC Method for Estimation of Cefprozil in Tablet Dosage Form

Validated RP-HPLC Method for Estimation of Cefprozil in Tablet Dosage Form International Journal of PharmTech Research CDEN (USA): IJPRIF ISSN : 0974-4304 Vol.4, No.3, pp 1228-1232, July-Sept 2012 Validated RP-HPLC Method for Estimation of Cefprozil in Tablet Dosage Form Manzoor

More information

Chemistry Project. Measuring the Amount of Acetic Acid In Vinegar by Titration with an Indicator Solution

Chemistry Project. Measuring the Amount of Acetic Acid In Vinegar by Titration with an Indicator Solution Chemistry Project easuring the Amount of Acetic Acid In inegar by Titration with an Indicator Solution Index 1 Certificate 2 Acknowledgement Aim 4 Objective 5 Introduction 6 aterials and Equipment 7 Theory

More information

Comparative Study of Molecular Interaction in Ternary Liquid Mixtures of Polar and Non-Polar Solvents by Ultrasonic Velocity Measurements

Comparative Study of Molecular Interaction in Ternary Liquid Mixtures of Polar and Non-Polar Solvents by Ultrasonic Velocity Measurements Comparative Study of Molecular Interaction in Ternary Liquid Mixtures of Polar and Non-Polar Solvents by Ultrasonic Velocity Measurements Manoj Kumar Praharaj 1, Sarmistha Mishra 2 Department of Physics,

More information

DETERMINATION OF DRUG RELEASE DURING DISSOLUTION OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

DETERMINATION OF DRUG RELEASE DURING DISSOLUTION OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY CHAPTER 9 DETERMINATION OF DRUG RELEASE DURING DISSOLUTION OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY CHAPTER 9 Determination of drug release during

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2010, 2(4):257-265 Selective Extraction of 7-aminodeacetoxycephalosporanic

More information

9.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 100, Miramar College. 1 Solutions. Aug 17

9.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 100, Miramar College. 1 Solutions. Aug 17 9.01 Solutions The Chemistry of Matter in Water Dr. Fred Omega Garces Chemistry 100, Miramar College 1 Solutions 8.01 Solutions How water Dissolves Salts 2 Solutions Components of Solution Homogeneous

More information

Name Solutions and Acids/Bases/Salts

Name Solutions and Acids/Bases/Salts Name Solutions and Acids/Bases/Salts 1. Which compound is insoluble in water? A) calcium bromide B) potassium bromide C) silver bromide D) sodium bromide 2. According to Reference Table F, which of these

More information

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17)

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17) 16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit By Anthony Quintano - https://www.flickr.com/photos/quintanomedia/15071865580, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=38538291

More information

Acids, Bases, & Neutralization Chapter 20 & 21 Assignment & Problem Set

Acids, Bases, & Neutralization Chapter 20 & 21 Assignment & Problem Set Acids, Bases, & Neutralization Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Acids, Bases, & Neutralization 2 Study Guide: Things You Must Know

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

E09. Exp 09 - Solubility. Solubility. Using Q. Solubility Equilibrium. This Weeks Experiment. Factors Effecting Solubility.

E09. Exp 09 - Solubility. Solubility. Using Q. Solubility Equilibrium. This Weeks Experiment. Factors Effecting Solubility. E09 Exp 09 - Solubility Solubility Solvation The reaction coefficient Precipitating Insoluble Substances Comparing Q to Ksp Solubility Equilibrium Solubility Product, Ksp Relating Molar Solubility Factors

More information

Liquid-liquid extraction of sulfuric acid using tri-n-dodecylamine/kerosene

Liquid-liquid extraction of sulfuric acid using tri-n-dodecylamine/kerosene Ŕ periodica polytechnica Chemical Engineering 5/1 (8) 3 8 doi: 1.3311/pp.ch.8-1.5 web: http:// www.pp.bme.hu/ ch c Periodica Polytechnica 8 Liquid-liquid extraction of sulfuric acid using tri-n-dodecylamine/kerosene

More information

ISEC The 21st International Solvent Extraction Conference

ISEC The 21st International Solvent Extraction Conference Zinc(II) and Iron(III) Extraction From Chloride Media Using Pyridinecarboximidamides as Extractant Aleksandra WOJCIECHOWSKA*, Irmina WOJCIECHOWSKA, Karolina WIESZCZYCKA Poznan University of Technology,

More information

EXPERIMENTAL DESIGN TECHNIQUES APPLIED TO STUDY OF OXYGEN CONSUMPTION IN A FERMENTER 1

EXPERIMENTAL DESIGN TECHNIQUES APPLIED TO STUDY OF OXYGEN CONSUMPTION IN A FERMENTER 1 EXPERIMENTAL DESIGN TECHNIQUES APPLIED TO STUDY OF OXYGEN CONSUMPTION IN A FERMENTER 1 Blanca VELÁZQUEZ MSc, Department of Biotechnology Development Institute of Hygiene, Faculty of Medicine, University

More information

Supporting Information

Supporting Information Supporting Information Visual Determination of Cu 2+ through Copper-Catalysed in-situ Formation of Ag Nanoparticles Xun Yuan a and Yi Chen* a,b a Key Laboratory of Analytical Chemistry for Living Biosystems,

More information

Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary

Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary 4.1 Water, the Common Solvent A. Structure of water 1. Oxygen s electronegativity is high (3.5) and hydrogen s is low (2.1)

More information

Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine

Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine Indian Journal of Chemical Technology Vol. 17, November 2010, pp. 431-435 Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine M K Mondal Department of Chemical Engineering

More information

SAMPLE CHEMISTRY QUESTIONS MIXTURE OF UNIT 3 & 4 MATERIALS

SAMPLE CHEMISTRY QUESTIONS MIXTURE OF UNIT 3 & 4 MATERIALS SAMPLE CHEMISTRY QUESTIONS MIXTURE OF UNIT 3 & 4 MATERIALS QUESTION 1 The equation describing the production of butyl ethanoate is given below. Catalyst C4H 9OH CH 3COOH CH 3COOC 4H 9 H 2O( l ) 0.0500

More information

Molarity of Acetic Acid in Vinegar A Titration Experiment

Molarity of Acetic Acid in Vinegar A Titration Experiment Molarity of Acetic Acid in Vinegar A Titration Experiment Introduction Vinegar is prepared commercially in two steps, both requiring microorganisms. The first step is the production of ethyl alcohol, C

More information

Optimization of Methane Conversion to Liquid Fuels over W-Cu/ZSM5 Catalysts by Response Surface Methodology

Optimization of Methane Conversion to Liquid Fuels over W-Cu/ZSM5 Catalysts by Response Surface Methodology Diponegoro University From the SelectedWorks of Istadi May 12, 2008 Optimization of Methane Conversion to Liquid Fuels over W-Cu/ZSM5 Catalysts by Response Surface Methodology Istadi Istadi, Diponegoro

More information

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5 Solutions and concentration Solution: a homogeneous mixture of two or more substances. Example: water, sugar, flavor mixture (Coke). The substances are physically combined, not chemically combined or bonded

More information

Exam #5 May 2, Closed Book Exam - No books or notes allowed. All work must be shown for full credit. You may use a calculator.

Exam #5 May 2, Closed Book Exam - No books or notes allowed. All work must be shown for full credit. You may use a calculator. Chem 110 Name Exam #5 May 2, 2017 Closed Book Exam - No books or notes allowed. All work must be shown for full credit. You may use a calculator. Question Credit TOTAL Multiple Choice 3 ⅓ points each.

More information

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA Acids- taste sour Bases(alkali)- taste bitter and feel slippery Arrhenius concept- acids produce hydrogen ions in aqueous solution while

More information

Name Chemistry Pre-AP. Notes: Solutions

Name Chemistry Pre-AP. Notes: Solutions Name Chemistry Pre-AP Notes: Solutions Period I. Intermolecular Forces (IMFs) A. Attractions Between Molecules Attractions between molecules are called and are very important in determining the properties

More information

Assessment of Dye Adsorption by Luffa Cylindrica fibers Using Experimental Design Methodology

Assessment of Dye Adsorption by Luffa Cylindrica fibers Using Experimental Design Methodology , July 4-6, 2012, London, U.K. Assessment of Dye Adsorption by Luffa Cylindrica fibers Using Experimental Design Methodology A. López Vásquez, A Suárez and C. Gómez Abstract Response surface methodology

More information

Name Solutions and Acids/Bases/Salts

Name Solutions and Acids/Bases/Salts Name Solutions and Acids/Bases/Salts 1. Which compound is insoluble in water? A) calcium bromide B) potassium bromide C) silver bromide D) sodium bromide 2. According to Reference Table F, which of these

More information

19.3 Strengths of Acids and Bases > Chapter 19 Acids, Bases, and Salts Strengths of Acids and Bases

19.3 Strengths of Acids and Bases > Chapter 19 Acids, Bases, and Salts Strengths of Acids and Bases Chapter 19 Acids, Bases, and Salts 19.1 Acid-Base Theories 19.2 Hydrogen Ions and Acidity 19.3 Strengths of Acids and Bases 19.4 Neutralization Reactions 19.5 Salts in Solution 1 Copyright Pearson Education,

More information

Stoichiometry: Chemical Calculations. Chapter 3-4

Stoichiometry: Chemical Calculations. Chapter 3-4 Chapters 3-4 Stoichiometry: Chemical Calculations Slide 1 of 48 Molecular Masses And Formula Masses Molecular Masses Molecular mass is the sum of the masses of the atoms represented in a molecular formula.

More information

CHEM 123L Lab Report. Synthesis of Acetaminophen. [Type the author name]

CHEM 123L Lab Report. Synthesis of Acetaminophen. [Type the author name] CHEM 123L Lab Report Synthesis of Acetaminophen [Type the author name] Introduction: Acetaminophen, first introduced in 1955, is an over-the-counter drug that relieves pain and reduces fevers (Richman,

More information

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide:

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide: Weak Acid Titration v010516 You are encouraged to carefully read the following sections in Tro (3 rd ed.) to prepare for this experiment: Sec 4.8, pp 168-174 (Acid/Base Titrations), Sec 16.4, pp 769-783

More information

INTRODUCTION TO CONCENTRATION Practice Problems. You must know the differences among the following terms to be successful making solutions.

INTRODUCTION TO CONCENTRATION Practice Problems. You must know the differences among the following terms to be successful making solutions. 1 INTRODUCTION TO CONCENTRATION Practice Problems You must know the differences among the following terms to be successful making solutions. Solution: A solution is a homogeneous mixture in which one or

More information

Make a mixture of a weak acid and its conjugate base (as the SALT) Make a mixture of a weak base and its conjugate acid (as the SALT)

Make a mixture of a weak acid and its conjugate base (as the SALT) Make a mixture of a weak base and its conjugate acid (as the SALT) 175 BUFFERS - resist ph change caused by either the addition of strong acid/base OR by dilution Made in one of two ways: Make a mixture of a weak acid and its conjugate base (as the SALT) Make a mixture

More information

ph = -log[h+], [H+] = 10-pH ph + poh = 14

ph = -log[h+], [H+] = 10-pH ph + poh = 14 You may remove this page. ph = -log[h+], [H+] = 10-pH McVc = MdVd ph + poh = 14 NA = 6.02 x 1023 mol-1 JBA 2017 Chemistry Exam 3 Name: Score: /100 = /80 Multiple choice questions are worth two points each.

More information

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS THE COMMON ION EFFECT The common ion effect occurs when the addition of an ion already present in the system causes the equilibrium to shift away

More information

Solvent Extraction Research and Development, Japan, Vol. 23, No 2, (2016)

Solvent Extraction Research and Development, Japan, Vol. 23, No 2, (2016) Solvent Extraction Research and Development, Japan, Vol. 23, No 2, 175 180 (2016) Effect of Quaternary Ammonium Salts on the Extraction of 1,3-Propanediol with Phenylboronic Acid Michiaki MATSUMOTO*, Kikuko

More information