e. Using your answer from d, how many grams of NaCl would you need to make 1000 ml of the saline solution?

Size: px
Start display at page:

Download "e. Using your answer from d, how many grams of NaCl would you need to make 1000 ml of the saline solution?"

Transcription

1 I.V. fluids and Molarity 1. Normal saline solutions used for I.V. drips contain 0.9 grams of NaCl per 100 ml of solution. a. Calculate the number of moles of NaCl in the saline solution b. Calculate the number of Liters of NaCl in this saline solution c. Determine the molarity of the saline solution d. Using your answer from c, calculate the number of moles of NaCl you would need to make 1000 ml of the saline solution e. Using your answer from d, how many grams of NaCl would you need to make 1000 ml of the saline f. Why do you think an I.V. drip is made up of a solution of 0.9 grams of NaCl/100 ml of Why can t we hook a patient up to an I.V. of pure water?

2 2. When diabetic patients experience low blood sugar, a dextrose solution (D5W) may be administered. Dextrose is a form of glucose (C6H12O6) and is utilized by the body cells for basic metabolic needs (cell respiration). The dextrose solution contains 5 grams of dextrose per 100 ml of solution a. Calculate the molarity of the dextrose solution (you ll need to convert both grams and ml) b. How many grams would you need for 1000 ml of a dextrose solution of the same concentration as the one in part a? 3. Magnesium sulfate, or mag, is administered to women who are experiencing preterm labor or pre-eclampsia (pregnancy-induced high blood pressure). Magnesium sulfate (MgSO4) is thought to slow uterine contractions by blocking the release of calcium to uterine muscles as well as prevent seizures in pre-eclampsia patients. A Magnesium Sulfate solution contains 0.42 moles of MgSO4. a. If the molarity of the solution is 4.2 M, how many Liters of MgSO4 solution do you have?

3 Dilutions Lab Assume your beaker contains a 3.0 M solution (your stock solution ) 1. Based on the given molarity and the volume of the solution, how many moles of solute are in your 2. Pour ~50 ml of your stock solution into a separate container. Does this 50 ml solution have the same molarity as the stock If not, how would the molarity be different? 3. Add ~50 ml of water to your 50 ml solution (from #2). Does this new ~100 ml solution have the same molarity as your stock If not, how would the molarity be different? 4. What you just did in step 3 is known as a dilution. Explain what you think it means to dilute a solution

4 Use the Model below to set up your dilution Making Dilutions: M Molarity of Solution V volume of solution *since volume (V) is on both sides of the equation, you need to make sure they are both in the same units! They can both be in L or both in ml just as long as V1 and V2 are in the same unit! Sample Problem: What volume of concentrated (12 M) HCl is needed to make 500 ml of 2 M HCl? (12 ) (2 ) (500 ). This means that you need to pour 83.3 ml of the concentrated 12 M solution into a separate container, then add enough water so you have 500 ml of solution. This is how you would dilute your solution to a concentration of 2 M. Consider your stock solution from the first part of your lab (concentration of 3.0 M). You need to take your stock solution and dilute it to make ml of a 1.2 M solution. 1. Using the dilution formula above, calculate the volume of your stock solution that you would need to make the diluted solution. 2. Measure out the volume of stock solution needed to make your diluted solution and pour it into the ml volumetric flask. 3. Do you have 50 ml of About how much more water do you need to add to make a 50 ml

5 DILUTIONS PRACTICE PROBLEMS M Molarity of Solution V volume of solution *since volume (V) is on both sides of the equation, you need to make sure they are both in the same units! They can both be in L or both in ml just as long as V1 and V2 are in the same unit! 1. What volume of concentrated hydrochloric acid (12.0 M) is needed to make 3.0 L of 1.0 M HCl? 2. What volume of concentrated ammonium hydroxide (14.5 M) is needed to make 250 ml of 0.5 M NH4OH? 3. If I have 340 ml of a 0.50 M NaBr solution, what will the concentration be if I made a new solution with the total volume is 560 ml? 4. If I dilute 250 ml of 0.10 M lithium acetate solution to a volume of 750 ml, what will the concentration of this solution be? 5. Using 52.5mL, a M solution was diluted to ml. What is the new concentration of this 6. A stock solution of 10.0 M NaOH is prepared. From this solution, you need to make ml of M solution. How many ml will be required?

c. Using your values from a&b, calculate the molarity of the saline solution

c. Using your values from a&b, calculate the molarity of the saline solution HMSA Chemistry Ms. Ye Name Date Block I.V. fluids and Molarity 1. Normal saline solutions used for I.V. drips contain 0.9 grams of NaCl per 100 ml of solution. a. Convert the grams of Nacl in the saline

More information

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions Unit V: Solutions A. Properties of Solutions B. Concentration Terms of Solutions C. Mass Percent Calculation D. Molarity of Solutions E. Solution Stoichiometry F. Dilution Problems 5-A Properties of Solutions

More information

Example: How would we prepare 500. ml of M sodium sulfate in water?

Example: How would we prepare 500. ml of M sodium sulfate in water? 95 Example: How would we prepare 500. ml of 0.500 M sodium sulfate in water? Dissolve the appropriate amount of sodium sulfate into enough water to make 500. ml of solution. A VOLUMETRIC FLASK is a flask

More information

Preparation of Biological Solutions and Serial Dilutions

Preparation of Biological Solutions and Serial Dilutions Preparation of Biological Solutions and Serial Dilutions - Objective: 1- To learn how to prepare solutions. 2-To get familiar with solution dilutions. - Introduction: - It is very important to understand

More information

91 PERCENTAGE COMPOSITION

91 PERCENTAGE COMPOSITION 91 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

Concentration of Solutions

Concentration of Solutions Section 3 10C, 10D Main Ideas Molarity is moles of solute per liter of solution Molality is moles of solute per kilogram of solvent 10C calculate the concentration of solutions in units of molarity; 10D

More information

Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water.

Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water. Solutions The federal government and state governments set standards limiting the amount of contaminants allowed in drinking water. 16.1 Properties of Solutions 16. Concentrations of Solutions 16. Colligative

More information

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS 84 CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS Chemical equations are written and balanced in terms of ATOMS and MOLECULES - While chemical equations are written in terms of ATOMS and MOLECULES, that's

More information

84 PERCENTAGE COMPOSITION

84 PERCENTAGE COMPOSITION 84 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction 81 COEFFICIENTS - Experimentally, we can usually determine the reactants and products of a reaction - We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process

More information

*You should work in groups of no more than 3 students. Each individual is responsible for all data and information in their own booklet.

*You should work in groups of no more than 3 students. Each individual is responsible for all data and information in their own booklet. Name Period 1 *You should work in groups of no more than 3 students. Each individual is responsible for all data and information in their own booklet. Pre-Lab Questions: What is the molarity equation?

More information

Assume 1 mol hemoglobin: mass Fe 2+ = (6.8x10 4 g mol -1 ) = g

Assume 1 mol hemoglobin: mass Fe 2+ = (6.8x10 4 g mol -1 ) = g 4. Hemoglobin, a protein in red blood cells, carries O 2, from the lungs to the body s cells. Iron (as Fe 2+ ) makes up 0.33 mass % of hemoglobin. If the molar mass of hemoglobin is 6.8x10 4 g/mol, how

More information

These numbers are the masses of each element in a mole of the compound!

These numbers are the masses of each element in a mole of the compound! 91 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

SOLUTIONS. Solutions - page

SOLUTIONS. Solutions - page SOLUTIONS For gases in a liquid, as the temperature goes up the solubility goes. For gases in a liquid, as the pressure goes up the solubility goes. Example: What is the molarity of a solution with 2.0

More information

MOLAR CONCENTRATION. - unit: MOLARITY (M): moles of dissolved substance per LITER of solution. molarity

MOLAR CONCENTRATION. - unit: MOLARITY (M): moles of dissolved substance per LITER of solution. molarity 93 MOLAR CONCENTRATION - unit: MOLARITY (M): moles of dissolved substance per LITER of solution dissolved substance moles of SOLUTE molarity L SOLUTION If you have 0.250 L (250 ml) of 6.0 M HCl, how many

More information

Chemistry 143 Experiment #11 Acid Base Titration Dr. Caddell. Titrating Acid

Chemistry 143 Experiment #11 Acid Base Titration Dr. Caddell. Titrating Acid Titrating Acid In this lab you will first determine the concentration of sodium hydroxide in a stock solution that you prepare. You will then use that stock sodium hydroxide solution to titrate a solution

More information

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g.

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g. Lecture 5 Professor Hicks General Chemistry II (CHE132) Percent Composition (aka percent by mass) % by mass component 1 = mass component 1 mass sample 100% sample component 1 100 g sample component 1 component

More information

Molarity. How can the concentration of a solution be expressed quantitatively? Lemonade Solution 1 Lemonade Solution 2

Molarity. How can the concentration of a solution be expressed quantitatively? Lemonade Solution 1 Lemonade Solution 2 Why? Molarity How can the concentration of a solution be expressed quantitatively? When you buy a bottle of a certain brand of lemonade you expect it to taste just as sweet as the last time you bought

More information

Name Date. 9. Which substance shows the least change in solubility (grams of solute) from 0 C to 100 C?

Name Date. 9. Which substance shows the least change in solubility (grams of solute) from 0 C to 100 C? Solubility Curve Practice Problems Directions: Use the graph to answer the questions below. Assume you will be using 100g of water unless otherwise stated. 1. How many grams of potassium chloride (KCl)

More information

Solution Concentrations CHAPTER OUTLINE

Solution Concentrations CHAPTER OUTLINE Chapter 8B Solution Concentrations CHAPTER OUTLINE Concentration Units Mass Percent Using Percent Concentration Molarity Using Molarity Dilution Osmolarity Tonicity of Solutions 2 CONCENTRATION UNITS The

More information

Chapter. Measuring Concentration. Table of Contents

Chapter. Measuring Concentration. Table of Contents Measuring Concentration Table of Contents Introduction 1. Percent Concentration 2. Molarity 3. Preparation of a with a Desired Concentration Measuring Concentration Warm Up How do you classify solutions

More information

BCH312 [Practical] 1

BCH312 [Practical] 1 BCH312 [Practical] 1 Understanding how to prepare solutions and make dilutions is an essential skill for biochemists which is necessary knowledge needed for doing any experiment. What is SOLUTIONS? A simple

More information

Unit 15 Solutions and Molarity

Unit 15 Solutions and Molarity Unit 15 s and Molarity INTRODUCTION In addition to chemical equations chemists and chemistry students encounter homogeneous mixtures or solutions quite frequently. s are the practical means to deliver

More information

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Calculate the amount of solid required Weigh out the solid Place in an appropriate volumetric

More information

Chemistry 143 Acid Base Titration Dr. Caddell. Titrating Acid

Chemistry 143 Acid Base Titration Dr. Caddell. Titrating Acid Titrating Acid In this lab you will first determine the concentration of sodium hydroxide in a stock solution that you prepare. You will then use that stock sodium hydroxide solution to titrate a solution

More information

Types of Concentration Expressions

Types of Concentration Expressions Chapter 12 Lecture Chapter 12 Solutions 12.4 Concentrations of Solutions Learning Goal Calculate the concentration of a solute in a solution; use concentration as a conversion factor to calculate the amount

More information

Name Class Date. Symbol Meaning How to prepare Percentage % Moles solute per liter of solution. Moles solute per kilogram of solvent

Name Class Date. Symbol Meaning How to prepare Percentage % Moles solute per liter of solution. Moles solute per kilogram of solvent Skills Worksheet Problem Solving Concentration of Solutions There are three principal ways to express solution concentration in chemistry percentage by mass, molarity, and molality. The following table

More information

Concentration of Solutions

Concentration of Solutions CHAPTER 4 Concentration of Solutions There are three principal ways to express solution concentration in chemistry percentage by mass, molarity, and molality. The following table compares these three ways

More information

Name Chemistry Pre-AP. Notes: Solutions

Name Chemistry Pre-AP. Notes: Solutions Name Chemistry Pre-AP Notes: Solutions Period I. Intermolecular Forces (IMFs) A. Attractions Between Molecules Attractions between molecules are called and are very important in determining the properties

More information

Preparation Of Biological Solutions And Serial Dilutions. BCH 312 [Practical]

Preparation Of Biological Solutions And Serial Dilutions. BCH 312 [Practical] Preparation Of Biological Solutions And Serial Dilutions BCH 312 [Practical] Introduction : - It is very important to understand how to prepare solutions and make dilutions and it is an essential skill

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS

STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS OBJECTIVES: Study the relationship of reactants & products in solution phase chemical reactions, Learn how to prepare solutions from solid and liquid stock,

More information

Chemistry 150/151 Review Worksheet

Chemistry 150/151 Review Worksheet Chemistry 150/151 Review Worksheet This worksheet serves to review concepts and calculations from first semester General Chemistry (CHM 150/151). Brief descriptions of concepts are included here. If you

More information

Explain freezing-point depression and boiling-point elevation at the molecular level.

Explain freezing-point depression and boiling-point elevation at the molecular level. Solutions 1 UNIT4: SOLUTIONS All important vocabulary is in Italics and bold. Describe and give examples of various types of solutions. Include: suspension, emulsion, colloid, alloy, solute, solvent, soluble,

More information

Chemistry 20 In Class Assignment

Chemistry 20 In Class Assignment What is Dissociation? Chemistry 20 In Class Assignment How do you complete a dissociation equation? 1. Write the ionic formula for the desired compound 2. Write an arrow with water above it (representing

More information

CHM152LL Solution Chemistry Worksheet

CHM152LL Solution Chemistry Worksheet Name: Section: CHM152LL Solution Chemistry Worksheet Many chemical reactions occur in solution. Solids are often dissolved in a solvent and mixed to produce a chemical reaction that would not occur if

More information

Announcements. Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts!

Announcements. Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts! Announcements Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts! Announcements 1. Mid-term grades will be posted soon (just used scaled exam 1 score

More information

A. Correct. You successfully completed the stoichiometry problem. B. Incorrect. There are 2 moles of AgCl produced for each mole of CaCl 2 reacted.

A. Correct. You successfully completed the stoichiometry problem. B. Incorrect. There are 2 moles of AgCl produced for each mole of CaCl 2 reacted. MCAT General Chemistry Problem Drill 18: Stoichiometry Question No. 1 of 10 1. How many grams of AgCl will precipitate out if 0.27 mole is reacted? + 2 AgNO 3 2 AgCl + Ca(NO 3 ) 2 Question #01 (A) 77 g

More information

Toxins 4/27/2010. Acids and Bases Lab. IV-17 to IV-22

Toxins 4/27/2010. Acids and Bases Lab. IV-17 to IV-22 Toxins IV-17 to IV-22 Countless products are advertised on TV with the promise of reducing acid indigestion. a.what is acid indigestion? b.what does acid have to do with your stomach? c.how do you think

More information

Chapter 15. Solutions

Chapter 15. Solutions Chapter 15 Solutions Key Terms for this Chapter Make sure you know the meaning of these: Solution Solute Solvent Aqueous solution Solubility Saturated Unsaturated Supersaturated Concentrated Dilute 15-2

More information

Give 6 different types of solutions, with an example of each.

Give 6 different types of solutions, with an example of each. Warm up (Jan 5) Give 6 different types of solutions, with an example of each. 1 Warm Up (Jan 6) 1. Write the reaction showing the dissolving of the following solids (be sure to note whether they are covalent

More information

Mixtures. Chapters 12/13: Solutions and Colligative Properties. Types of Solutions. Suspensions. The Tyndall Effect: Colloid

Mixtures. Chapters 12/13: Solutions and Colligative Properties. Types of Solutions. Suspensions. The Tyndall Effect: Colloid Mixtures Chapters 12/13: Solutions and Colligative Properties Solution - a homogeneous mixture of two or more substances in a single phase Soluble - capable of being dissolved Solutions - 2 Parts Solvent

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

1.22 Concentration of Solutions

1.22 Concentration of Solutions 1.22 Concentration of Solutions A solution is a mixture formed when a solute dissolves in a solvent. In chemistry we most commonly use water as the solvent to form aqueous solutions. The solute can be

More information

Last, First Period, Date

Last, First Period, Date Block 4 Molarity Packet Work List 1. /10 Cover / Vocabulary 2. /10 WCW 3. /10 Notes: Molarity #1-4 4. /10 Molarity: Concentration Solutions #8-23 5. /10 Molarity Worksheet 6. /10 Solution Concentration

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

64 previous solution

64 previous solution 64 previous solution mole fraction (definition) 1 - Convert 29.6 grams sodium sulfate to moles. We already did this to find molality, so we can re-use the number. 2 - This is the total moles of both sodium

More information

4. Magnesium has three natural isotopes with the following masses and natural abundances:

4. Magnesium has three natural isotopes with the following masses and natural abundances: Exercise #1. Determination of Weighted Average Mass 1. The average mass of pennies minted after 1982 is 2.50 g and the average mass of pennies minted before 1982 is 3.00 g. Suppose that a bag of pennies

More information

ph = -log[h+], [H+] = 10-pH ph + poh = 14

ph = -log[h+], [H+] = 10-pH ph + poh = 14 You may remove this page. ph = -log[h+], [H+] = 10-pH McVc = MdVd ph + poh = 14 NA = 6.02 x 1023 mol-1 JBA 2017 Chemistry Exam 3 Name: Score: /100 = /80 Multiple choice questions are worth two points each.

More information

Unit VI Stoichiometry. Applying Mole Town to Reactions

Unit VI Stoichiometry. Applying Mole Town to Reactions Unit VI Stoichiometry Applying Mole Town to Reactions Learning Goals I can apply mole town to reactions to determine the amount of product based on the amount of a reactant. I can apply mole town to reaction

More information

O'DONEL HIGH SCHOOL CHEMISTRY 2202

O'DONEL HIGH SCHOOL CHEMISTRY 2202 Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN O'DONEL HIGH SCHOOL MIDYEAR EXAMINATION CHEMISTRY 2202 SAMPLE (Revised January 2015) Value: 100% Time: 2 hours

More information

CP Chapter 15/16 Solutions What Are Solutions?

CP Chapter 15/16 Solutions What Are Solutions? CP Chapter 15/16 Solutions What Are Solutions? What is a solution? A solution is uniform that may contain solids, liquids, or gases. Known as a mixture Solution = + o Solvent The substance in abundance

More information

AP Chemistry Summer Assignment

AP Chemistry Summer Assignment Name AP Chemistry Summer Assignment Welcome to AP chemistry! This summer assignment is intended to help you review the basic topics you learned in pre-ap chemistry that are crucial for your success in

More information

Chemistry 20 Final Review Solutions Checklist Knowledge Key Terms Solutions

Chemistry 20 Final Review Solutions Checklist Knowledge Key Terms Solutions Chemistry 20 Final Review Solutions Checklist Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

More information

Titration Curves. What is in the beaker at each stage of a titration? Beaker A Beaker B Beaker C Beaker D. 20 ml NaOH Added

Titration Curves. What is in the beaker at each stage of a titration? Beaker A Beaker B Beaker C Beaker D. 20 ml NaOH Added Why? Titration Curves What is in the beaker at each stage of a titration? Titration is a very useful technique for determining the properties of an unknown solution. The unknown is reacted with a known

More information

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet

Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet Part 1: Vocabulary Properties of Solutions Use section 15 and your textbook glossary to complete this worksheet A solution is a mixture The solvent is the medium in a solution. The particles are the solute.

More information

Solution Concentration

Solution Concentration Agenda Day 66 Concentration Lesson: PPT, Handouts: 1. Concentration& Dilution Handout. 2. Concentration of Solutions Worksheet Text: 1. P. 398-401 - Concentration ( %, ppm) HW: 1. Worksheets, P. 400 #

More information

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent.

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent. Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 15 SOLUTIONS Day Plans for the day Assignment(s) for the day 1 Begin Chapter 15

More information

Classifying Chemical Reactions

Classifying Chemical Reactions Classifying Chemical Reactions Name: Partner: Discussion Question #1 will be evaluated 25 marks (5 marks per reaction) - 2 marks for correct reactants and products - 1 mark for states - 1 mark for balancing

More information

Tuesday, February 3rd, 2015 Learning Target : I can make solutions and dilutions. Homework: n/a

Tuesday, February 3rd, 2015 Learning Target : I can make solutions and dilutions. Homework: n/a Tuesday, February 3rd, 2015 Learning Target : I can make solutions and dilutions. Homework: n/a As you enter... What is the definition and formula for molarity? (hint: check out your brochure) Big Idea:

More information

THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil.

THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil. THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil. Department of Pure and Applied Sciences Portmore Community College Main

More information

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction 81 COEFFICIENTS - Experimentally, we can usually determine the reactants and products of a reaction - We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process

More information

Chapter 2 Overview. Chapter 2 Overview

Chapter 2 Overview. Chapter 2 Overview Chapter 2 Overview! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules! the identity of an atom and its chemical behavior is strictly defined by the number of electrons in

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry Chapter 4: Types of Chemical Reactions and Solution Stoichiometry 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition of Solutions (MOLARITY!)

More information

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6.

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Formula, Complete, Net Ionic Equations 7. Qualitative Analysis

More information

Section EXAM II Total Points = 150. October 15, Each student is responsible for following directions. Read this page carefully.

Section EXAM II Total Points = 150. October 15, Each student is responsible for following directions. Read this page carefully. Name Chemistry 11100 Test 55 Section EXAM II Total Points = 150 TA Monday, 6:30 PM October 15, 2012 Directions: 1. Each student is responsible for following directions. Read this page carefully. 2. Write

More information

91 PERCENTAGE COMPOSITION

91 PERCENTAGE COMPOSITION 91 PERCENTAGE COMPOSITION - sometimes called "percent composition" or "percent composition by mass" - the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage

More information

Name Date Class PROPERTIES OF SOLUTIONS

Name Date Class PROPERTIES OF SOLUTIONS 16.1 PROPERTIES OF SOLUTIONS Section Review Objectives Identify the factors that determine the rate at which a solute dissolves Identify the units usually used to express the solubility of a solute Calculate

More information

Molarity, ph, and Buffers

Molarity, ph, and Buffers Molarity, ph, and Buffers BTEC 1015 A bit of chemistry review ELEMENT - a substance that cannot be broken down to other substances by chemical reactions ATOM - the smallest unit of matter that still retains

More information

19.4 Neutralization Reactions > Chapter 19 Acids, Bases, and Salts Neutralization Reactions

19.4 Neutralization Reactions > Chapter 19 Acids, Bases, and Salts Neutralization Reactions Chapter 19 Acids, Bases, and Salts 19.1 Acid-Base Theories 19.2 Hydrogen Ions and Acidity 19.3 Strengths of Acids and Bases 19.4 Neutralization Reactions 19.5 Salts in Solution 1 Copyright Pearson Education,

More information

Funsheet 9.1 [VSEPR] Gu 2015

Funsheet 9.1 [VSEPR] Gu 2015 Funsheet 9.1 [VSEPR] Gu 2015 Molecule Lewis Structure # Atoms Bonded to Central Atom # Lone Pairs on Central Atom Name of Shape 3D Lewis Structure NI 3 CF 4 OCl 2 C 2 F 2 HOF Funsheet 9.1 [VSEPR] Gu 2015

More information

X Unit 14 Solutions & Acids and Bases

X Unit 14 Solutions & Acids and Bases 1 X Unit 14 Solutions & Acids and Bases I. Solutions All solutions are composed of two parts: the and the. o Solute o Solvent A solution may exist as a solid, liquid, or gas depending on the state of the

More information

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar.

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar. The titration of Acetic Acid in Vinegar In this laboratory exercise we will determine the percentage Acetic Acid (CH CO H) in Vinegar. We will do this by Titrating the Acetic Acid present with a Strong

More information

Chapter 2 Overview. Chapter 2 Overview

Chapter 2 Overview. Chapter 2 Overview Chapter 2 Overview! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules! the identity of an atom and its chemical behavior is strictly defined by the number of electrons in

More information

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. 1 Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. You should be able to: Vocabulary of water solubility Differentiate between

More information

Unit Two Worksheet WS DC U2

Unit Two Worksheet WS DC U2 Unit Two Worksheet WS DC U2 Name Period Short Answer [Writing]. Write skeleton equations representing the following reactions and then balance them. Then identify the reaction type. Include all needed

More information

Titrations Worksheet and Lab

Titrations Worksheet and Lab Titrations Worksheet and Lab Vocabulary 1. Buret: a piece of glassware used for dispensing accurate volumes, generally reads to two places of decimal. 2. Titrant: the substance of known concentration added

More information

A. Correct! You successfully completed the stoichiometry problem.

A. Correct! You successfully completed the stoichiometry problem. CLEP Chemistry - Problem Drill 09: Stoichiometry No. 1 of 10 Instructions: (1) Read the problem statement and answer choices carefully () Work the problems on paper as 1. How many grams of AgCl will precipitate

More information

UNIT SEVEN PROBLEM SET CHEMISTRY LEE

UNIT SEVEN PROBLEM SET CHEMISTRY LEE CHEMISTRY LEE NAME DATE BLOCK UNIT SEVEN PROBLEM SET Score: Do not cheat by copying the work of another person, or by allowing another person to copy your answers. Cheating results in a 0% grade for both

More information

F321: Atoms, Bonds and Groups Acids

F321: Atoms, Bonds and Groups Acids F321: Atoms, Bonds and Groups Acids 49 Marks 1. A student carries out experiments using acids, bases and salts. Calcium nitrate, Ca(NO 3 ) 2, is an example of a salt. The student prepares a solution of

More information

INTRODUCTION TO CONCENTRATION Practice Problems. You must know the differences among the following terms to be successful making solutions.

INTRODUCTION TO CONCENTRATION Practice Problems. You must know the differences among the following terms to be successful making solutions. 1 INTRODUCTION TO CONCENTRATION Practice Problems You must know the differences among the following terms to be successful making solutions. Solution: A solution is a homogeneous mixture in which one or

More information

Dr. Rogers Chapter 3 Homework Chem 111 Fall From textbook: 1-23 odd,27,28,29-53 odd,57,59,61,63,65,67,69,71,73,75,77,79 and 81

Dr. Rogers Chapter 3 Homework Chem 111 Fall From textbook: 1-23 odd,27,28,29-53 odd,57,59,61,63,65,67,69,71,73,75,77,79 and 81 Dr. Rogers Chapter 3 Homework Chem 111 Fall 2003 From textbook: 1-23 odd,27,28,29-53 odd,57,59,61,63,65,67,69,71,73,75,77,79 and 81 1. Give the name for the following compounds and state whether they are

More information

Ch 4-5 Practice Problems - KEY

Ch 4-5 Practice Problems - KEY Ch 4-5 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

Stoichiometry Part 1

Stoichiometry Part 1 Stoichiometry Part 1 Formulae of simple compounds Formulae of simple compounds can be deduced from their ions/valencies but there are some that you should know off by heart. You will learn these and more

More information

Name: Date: AP Chemistry. Titrations - Volumetric Analysis. Steps for Solving Titration Problems

Name: Date: AP Chemistry. Titrations - Volumetric Analysis. Steps for Solving Titration Problems Name: Date: AP Chemistry Titrations - Volumetric Analysis Term Volumetric analysis Burette Pipette titrate titre aliquot end point equivalence point indicator primary standard standardisation secondary

More information

A1: Chapter 15.2 & 16.1 Aqueous Systems ( ) 1. Distinguish between a solution and an aqueous solution.

A1: Chapter 15.2 & 16.1 Aqueous Systems ( ) 1. Distinguish between a solution and an aqueous solution. Unit 9 Assignment Packet A1: Chapter 15.2 & 16.1 Aqueous Systems (494-497) 1. Distinguish between a solution and an aqueous solution. Name Period: 2. Define the following: Solute Solvent 3. Identify the

More information

CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK

CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK Chapter 3 3.68 Calculate each of the following quantities: (a) Mass (g) of solute in 185.8 ml of 0.267 M calcium acetate (b) Molarity of 500. ml

More information

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent Quick Review - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent Water H 2 O Is water an ionic or a covalent compound? Covalent,

More information

Solution Concentration

Solution Concentration Solution Concentration solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute: component present in smaller amount solvent: component present in greater amount Note:

More information

Solutions. Solution: A solution is homogeneous liquid mixture of two or more substances.

Solutions. Solution: A solution is homogeneous liquid mixture of two or more substances. Solutions Objectives: 1. Learn the various methods of expressing concentrations of solutions. 2. Learn to make percent and molar solutions from solids, liquids, and stock solutions. 3. Learn the various

More information

Today is Wednesday, January 10 th, 2018

Today is Wednesday, January 10 th, 2018 In This Lesson: Molarity (Lesson 2 of 4) Today is Wednesday, January 10 th, 2018 Stuff You Need: Calculator Periodic Table Polyatomic Ion List Worksheet Pre-Class: Earlier in the year I used hydrogen peroxide

More information

A1: Chapter 15.2 & 16.1 Aqueous Systems ( ) 1. Distinguish between a solution and an aqueous solution.

A1: Chapter 15.2 & 16.1 Aqueous Systems ( ) 1. Distinguish between a solution and an aqueous solution. A1: Chapter 15.2 & 16.1 Aqueous Systems (494-497) 1. Distinguish between a solution and an aqueous solution. A solution is any substance dissolved into another substance. An aqueous solution is specifically

More information

Chapter 4. Aqueous Reactions and Solution Stoichiometry

Chapter 4. Aqueous Reactions and Solution Stoichiometry Sample Exercise 4.1 (p. 127) The diagram below represents an aqueous solution of one of the following compounds: MgCl 2, KCl, or K 2 SO 4. Which solution does it best represent? Practice Exercise 1 (4.1)

More information

Titration Curves Name: Date: Period:

Titration Curves Name: Date: Period: Titration Curves Name: Date: Period: Understanding the shape of a titration curve There are four phases of a titration: Phase 1: Before the titration begins Phase 2: Before the equivalence point Phase

More information

REVIEW QUESTIONS Chapter 17

REVIEW QUESTIONS Chapter 17 Chemistry 102 REVIEW QUESTIONS Chapter 17 1. A buffer is prepared by adding 20.0 g of acetic acid (HC 2 H 3 O 2 ) and 20.0 g of sodium acetate (NaC 2 H 3 O 2 ) in enough water to prepare 2.00 L of solution.

More information

Solutions- Chapter 12 & 13 Academic Chemistry

Solutions- Chapter 12 & 13 Academic Chemistry Objectives: Solutions- Chapter 12 & 13 Academic Chemistry Describe the unique role of water in chemical and biological systems Develop and use general rules regarding solubility through investigations

More information

Net Ionic Reactions. The reaction between strong acids and strong bases is one example:

Net Ionic Reactions. The reaction between strong acids and strong bases is one example: Net Ionic Reactions Model 1 Net Ionic Reactions. Net ionic reactions are frequently used when strong electrolytes react in solution to form nonelectrolytes or weak electrolytes. These equations let you

More information

Chapter 4 Chemical Quantities and Aqueous Reactions

Chapter 4 Chemical Quantities and Aqueous Reactions Chapter 4 Chemical Quantities and Aqueous Reactions Reaction Stoichiometry the numerical relationships between chemical amounts in a reaction is called stoichiometry the coefficients in a balanced chemical

More information