Chapter 3: Electron Structure and the Periodic Law

Size: px
Start display at page:

Download "Chapter 3: Electron Structure and the Periodic Law"

Transcription

1 Chapter 3: Electron Structure and the Periodic Law PERIODIC LAW This is a statement about the behavior of the elements when they are arranged in a specific order. In its present form the statement is: Elements with similar chemical properties occur at regular (periodic) intervals when the elements are arranged in order of increasing atomic numbers. PERIODIC TABLE A periodic table is a tabular arrangement of the elements based on the periodic law. In a modern periodic table, elements with similar chemical properties are found in vertical columns called groups or families. group/family period PERIODIC TABLE GROUP OR FAMILY A vertical column of elements that have similar chemical properties. Traditionally designated by a Roman numeral and a letter (either A or B) at the top of the column. Designated only by a number from 1 to 18 in a modern but as yet not universally-used designation. PERIODIC TABLE PERIOD A horizontal row of elements arranged according to increasing atomic numbers. Periods are numbered from top to bottom of the periodic table. APPEARANCE OF A MODERN PERIODIC TABLE In a modern table, elements and are not placed in their correct periods, but are located below the main table ELEMENTS AND THE PERIODIC TABLE Each element belongs to a group and period of the periodic table. EXAMPLES OF GROUP AND PERIOD LOCATION FOR ELEMENTS Calcium, Ca, element # 20: group IIA, period 4 Silver, Ag, element # 47: group IB, period 5 Sulfur, S, element # 16: group VIA, period 3 THE BOHR THEORY OF ELECTRON BEHAVIOR IN HYDROGEN ATOMS Bohr proposed that the electron in a hydrogen atom moved in any one of a series of circular orbits around the nucleus. The electron could change orbits only by absorbing or releasing energy. This model was replaced by a revised model of atomic structure in 1926 THE QUANTUM MECHANICAL MODEL OF ELECTRON BEHAVIOR IN ATOMS According to the quantum mechanical model of electron behavior, the precise paths of electrons moving around the nucleus cannot be determined accurately. Instead of circular orbits, the location and energy of electrons moving around the nucleus is specified using the three terms shell, subshell and orbital

2 SHELL The location of electrons in a shell is indicated by assigning a number n to the shell and all electrons located in the shell. The value of n can be 1, 2, 3, 4, etc. The higher the n value, the higher is the energy of the shell and the contained electrons. SUBSHELL Each shell is made up of one or more subshells that are designated by a letter from the group s, p, d, or f. The number of the shell to which a subshell belongs is combined with the letter of the subshell to clearly identify subshells. For example, a p subshell located in the third shell (n = 3) would be designated as a 3p subshell. The number of subshells located in a shell is the same as the number of the shell. Thus, shell number 3 (n = 3) contains three subshells, designated 3s, 3p, and 3d. Electrons located in a subshell are often identified by using the same designation as the subshell they occupy. Thus, electrons in a 3d subshell are called 3d electrons ATOMIC ORBITALS The description of the location and energy of an electron moving around a nucleus is completed in the quantum mechanical model by specifying an atomic orbital in which the electron is located. Each subshell consists of one or more atomic orbitals, which are specific volumes of space around the nucleus in which electrons move. Atomic orbitals are designated by the same number and letter used to designate the subshell to which they belong. Thus, an s orbital located in a 2s subshell would be called a 2s orbital. All s subshells consist of a single s orbital. All p subshells consist of three p orbitals. All d subshells consist of five d orbitals. All f subshells consist of seven f orbitals. According to the quantum mechanical model, all types of atomic orbitals can contain a maximum of two electrons. Thus, a single d orbital can contain a maximum of 2 electrons, and a d subshell that contains five d orbitals can contain a maximum of 10 electrons ATOMIC ORBITAL SHAPES Atomic orbitals of different types have different shapes. Indicate the number and type of orbitals in each of the following: A. 4s sublevel B. 3d sublevel C. n = 3 A. 4s sublevel one 4s orbital B. 3d sublevel five 3d orbitals C. n = 3 one 3s orbital, three 3p orbitals, and five 3d orbitals

3 The number of A. electrons that can occupy a p orbital is 1) 1 2) 2 3) 3 B. p orbitals in the 2p sublevel is 1) 1 2) 2 3) 3 C. d orbitals in the n = 4 energy level is 1) 1 2) 3 3) 5 D. electrons that can occupy the 4f sublevel are 1) 2 2) 6 3) 14 The number of A. electrons that can occupy a p orbital is 2) 2 B. p orbitals in the 2p sublevel is 3) 3 C. d orbitals in the n = 4 energy level is 3) 5 D. electrons that can occupy the 4f sublevel are 3) 14 THE ENERGY OF ELECTRONS IN ATOMS Electron energy increases with increasing n value. Thus, an electron in the third shell (n = 3) has more energy than an electron in the first shell (n = 1). For equal n values but different orbitals, the energy of electrons in orbitals increases in the order s, p, d and f. Thus, a 4p electron has more energy than a 4s electron RELATIONSHIPS BETWEEN SHELLS, SUBSHELLS, ORBITALS AND ELECTRONS ELECTRONS AND CHEMICAL PROPERTIES The valence shell of an atom is the shell that contains electrons with the highest n value. Atoms with the same number of electrons in the valence shell have similar chemical properties. Members of Group IIA(2) Valence Electrons The valence electrons Determine the chemical properties of the elements. Are the electrons in the highest energy level. Are related to the Group number of the element. Example: Phosphorus has 5 valence electrons 5 valence electrons P Group 5A(15) 1s 2 2s 2 2p 6 3s 2 3p 3 22 magnesium calcium strontium Groups and Valence Electrons All the elements in a group have the same number of valence electrons. Example: Elements in Group 2A(2) have two (2) valence electrons. Be 1s 2 2s 2 Mg 1s 2 2s 2 2p 6 3s 2 Ca [Ar] 4s 2 Sr [Kr] 5s ELECTRON OCCUPANCY OF SHELLS What do magnesium and calcium have in common? 2 electrons in valence shell What predictions can be made about the number of electrons in strontium s valence shell? Sr has similar chemical properties to Mg and Ca, so it likely has 2 electrons in its valence. What other element on this chart has similar properties to Mg, Ca, and Sr? Periodic Table and Valence Electrons Beryllium

4 State the number of valence electrons for each: A. O 1) 4 2) 6 3) 8 B. Al 1) 13 2) 3 3) 1 C. Cl 1) 2 2) 5 3) A. O 2) 6 B. Al 2) 3 C. Cl 3) A. Calcium 1) 1 2) 2 3) 3 B. Group 6A (16) 1) 2 2) 4 3) 6 C. Tin 1) 2 2) 4 3) A. Calcium 2) 2 B. Group 6A (16) 3) 6 A. 1s 2 2s 2 2p 6 3s 2 3p 1 B. 1s 2 2s 2 2p 6 3s 2 C. 1s 2 2s 2 2p 5 A. 1s 2 2s 2 2p 6 3s 2 3p 1 3 B. 1s 2 2s 2 2p 6 3s 2 2 C. 1s 2 2s 2 2p 5 7 C. Tin 2) Electron Configuration An electron configuration Lists the sublevels filling with electrons in order of increasing energy. Uses superscripts to show the number of electrons in each sublevel. For neon is as follows: number of electrons THE ORDER OF SUBSHELL FILLING Electrons will fill subshells in the order of increasing energy of the subshells. Thus, a 1s subshell will fill before a 2s subshell. The order of subshell filling must obey Hund's rule and the Pauli exclusion principle. HUND'S RULE According to Hund's rule, electrons will not join other electrons in an orbital of a subshell if an empty orbital of the same energy is available in the subshell. Thus, the second electron entering a p subshell will go into an empty p orbital of the subshell rather than into the orbital that already contains an electron. sublevel 1s 2 2s 2 2p

5 THE PAULI EXCLUSION PRINCIPLE Electrons behave as if they spin on an axis. According to the Pauli exclusion principle, only electrons spinning in opposite directions (indicated by and ) can occupy the same orbital within a subshell. FILLING ORDER FOR THE FIRST 10 ELECTRONS When it is remembered that each orbital of a subshell can hold a maximum of two electrons, and that Hund's rule and the Pauli exclusion principle are followed, the following filling order for the first 10 electrons in atoms results. Write the orbital diagrams for A. carbon B. oxygen H He Li Be B C N Ne C. magnesium Write the orbital diagrams for A. carbon 1s 2s 2p B. oxygen 1s 2s 2p C. magnesium 1s 2s 2p 3s FILLING ORDER FOR ALL SUBSHELLS IN ATOMS The filling order for any number of electrons is obtained by following the arrows in the diagram. Shells are represented by large rectangles. Subshells are represented by small colored rectangles. Orbitals within the subshells are represented by circles. 41 AID TO REMEMBER SUBSHELL FILLING ORDER The diagram provides a compact way to remember the subshell filling order. The correct order is given by following the arrows from top to bottom of the diagram, going from the arrow tail to the head, and then from the next tail to the head, etc. The maximum number of electrons each subshell can hold must also be remembered: s subshells can hold 2, p subshells can hold 6, d subshells can hold 10, and f subshells can hold SUBSHELL FILLING ORDER AND THE PERIODIC TABLE Notice the order of subshell filling matches the order of the subshell blocks on the periodic table, if the fill occurs in the order of increasing atomic numbers. EXAMPLES OF ELECTRON CONFIGURATIONS FOR ATOMS OF VARIOUS ELEMENTS The following electronic configurations result from the correct use of any of the diagrams given earlier. Magnesium, Mg, 12 electrons: 1s 2 2s 2 2p 6 3s 2 Silicon, Si, 14 electrons: 1s 2 2s 2 2p 6 3s 2 3p 2 Iron, Fe, 26 electrons: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 Galium, Ga, 31 electrons: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1 A. The correct electron configuration for nitrogen is 1) 1s 2 2p 5 2) 1s 2 2s 2 2p 6 3) 1s 2 2s 2 2p 3 B. The correct electron configuration for oxygen is 1) 1s 2 2p 6 2) 1s 2 2s 2 2p 4 3) 1s 2 2s 2 2p 6 C. The correct electron configuration for calcium is 1) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 2) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3) 1s 2 2s 2 2p 6 3s 2 3p

6 A. The correct electron configuration for nitrogen is 3) 1s 2 2s 2 2p 3 B. The correct electron configuration for oxygen is 2) 1s 2 2s 2 2p 4 C. The correct electron configuration for calcium is 2) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 NOBLE GAS CONFIGURATIONS With the exception of helium, all noble gases (group VIIIA) have electronic configurations that end with completely filled s and p subshells of the highest occupied shell. These configurations are called noble gas configurations. Noble gas configurations can be used to write electronic configurations in an abbreviated form in which the noble gas symbol enclosed in brackets is used to represent all electrons found in the noble gas configuration. EXAMPLES OF THE USE OF NOBLE GAS CONFIGURATIONS Magnesium: [Ne]3s 2. The symbol [Ne] represents the electronic configuration of neon, 1s 2 2s 2 2p 6. Iron: [Ar]4s 2 3d 6. The symbol [Ar] represents the electronic configuration of argon, 1s 2 2s 2 2p 6 3s 2 3p 6. Galium: [Ar]4s 2 3d 10 4p 1. The symbol [Ar] represents the electronic configuration of argon, 1s 2 2s 2 2p 6 3s 2 3p Using the periodic table, write the electron configuration and abbreviated configuration for each of the following elements: A. Cd B. Sr A. Cd 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 [Kr] 4s 2 3d 10 B. Sr 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 [Kr] 5s 2 Give the symbol of the element that has A. [Ar]4s 2 3d 6 B. Four 3p electrons C. Two electrons in the 4d sublevel C. I C. I 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 5 [Kr] 5s 2 4d 10 5p 5 D. The element that has the electron configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d Give the symbol of the element that has A. [Ar]4s 2 3d 6 Fe B. Four 3p electrons S PERIODIC TABLE CLASSIFICATIONS OF THE ELEMENTS The periodic table can be used to classify elements in numerous ways: by Distinguishing Electron. by status as Representative, Transition, or Inner-Transition Element. by status as Metal, Nonmetal, or Metalloid. CLASSIFICATION ACCORDING TO DISTINGUISHING ELECTRONS The distinguishing electron is the last electron listed in the electronic configuration of the element. C. Two electrons in the 4d sublevel Zr D. Electron configuration Ti 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d

7 REPRESENTATIVE, TRANSITION AND INNER- TRANSITION ELEMENTS Elements are, again, classified according to the type of distinguishing electron they contain. METALS, METALLOIDS AND NONMETALS PROPERTY TRENDS WITHIN THE PERIODIC TABLE Properties of elements change in a systematic way within the periodic table. The Elements of Group VA(15) arsenic antimony nitrogen phosphorous bismuth METALLIC AND NONMETALLIC PROPERTIES Most metals have the following properties: high thermal conductivity, high electrical conductivity, ductility, malleability and metallic luster. Most nonmetals have properties opposite those of metals and generally occur as brittle, powdery solids or as gases Metalloids are elements that form a diagonal separation zone between metals and nonmetals in the periodic table. Metalloids have properties between those of metals and nonmetals, and often exhibit some characteristic properties of each type. TRENDS IN METALLIC PROPERTIES Elements in the same period of the periodic table become less metallic and more nonmetallic from left to right across the period. Elements in the same group of the periodic table become more metallic and less nonmetallic from top to bottom down the group. TRENDS IN THE SIZE OF ATOMS For representative elements in the same period, atomic size decreases from left to right in the period. For representative elements in the same group, atomic size increases from top to bottom down the group SCALE DRAWINGS OF REPRESENTATIVE ELEMENT ATOMS TRENDS IN FIRST IONIZATION ENERGY The first ionization energy is the energy required to remove one electron from a neutral gaseous atom of an element. For representative elements in the same period, the general trend is an increase from left to right across the period. For representative elements in the same group, the general trend is a decrease from top to bottom down the group. TRENDS IN CHEMICAL REACTIVITY Based on the photo, what is the trend for chemical reactivity with ethyl alcohol in group 1A(1)? lithium sodium potassium As the atomic number increases in group 1A(1), the chemical reaction becomes more vigorous. The rate of gas formation and the size of the bubbles indicate that reactivity increases from top to bottom in this family

8 Electronegativity Trends Electronegativity, is a chemical property that describes the tendency of an atom or a functional group to attract electrons (or electron density) towards itself. Electron Affinity Trends electron affinity describes the ability of an atom to accept an electron. Unlike electronegativity, electron affinity is a quantitative measure that measures the energy change that occurs when an electron is added to a neutral gas atom Melting Point Trends Melting points are the amount of energy required to break a bond(s) to change the solid phase of a substance to a liquid. Generally, the stronger the bond between the atoms of an element, the higher the energy requirement in breaking that bond. Since temperature is directly proportional to energy, a high bond dissociation energy correlates to a high temperature. Melting points are varied and don't generally form a distinguishable trend across the periodic table. However, certain conclusions can be drawn from the following graph Melting Point Trends Metals generally possess a high melting point. Most non-metals possess low melting points. The non-metal carbon possesses the highest boiling point of all the elements. The semi-metal boron also possesses a high melting point. 67 8

Chapter 3: Electron Structure and the Periodic Law

Chapter 3: Electron Structure and the Periodic Law PERIODIC LAW This is a statement about the behavior of the elements when they are arranged in a specific order. In its present form the statement is: Elements with similar chemical properties occur at

More information

Example: What is the number of electrons in an atom that has 3 protons and 4 neutrons? A. 3. B. 5. C. 7. D. 10.

Example: What is the number of electrons in an atom that has 3 protons and 4 neutrons? A. 3. B. 5. C. 7. D. 10. Structure of atom: PROTONS Protons are located in the nucleus of an atom. They carry a +1 electrical charge and have a mass of 1 atomic mass unit (u). NEUTRONS Neutrons are located in the nucleus of an

More information

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n.

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n. Shells and Subshells The orbitals in an atom are arranged in shells and subshells. n=3 orbital 3s 3p 3d Shell: all orbitals with the same value of n n=3 3s 3p 3d Subshell: all orbitals with the same value

More information

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period Regan & Johnston Name Chemistry Unit 3 Exam: The Periodic Table Class Period 1. An atom of which element has the largest atomic radius? (1) Si (2) Fe (3) Zn (4) Mg 2. Which characteristics both generally

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Unit 3 Periodic Table and Quantum HW Packet Name Date. Periodic Table Concepts. 1. In what family are the most active metals located?

Unit 3 Periodic Table and Quantum HW Packet Name Date. Periodic Table Concepts. 1. In what family are the most active metals located? Directions: Answer the following questions. Periodic Table Concepts 1. In what family are the most active metals located? 2. In what family are the most active non-metals located? 3. What family on the

More information

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the number of oxidation states 2.

More information

Periodic Table Workbook

Periodic Table Workbook Key Ideas: The placement or location of elements on the Periodic Table gives an indication of physical and chemical properties of that element. The elements on the Periodic Table are arranged in order

More information

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period Regan & Johnston Name Chemistry Unit 3 Exam: The Periodic Table Class Period 1. An atom of which element has the largest atomic radius? (1) Si (2) Fe (3) Zn (4) Mg 2. Which characteristics both generally

More information

Test Review # 4. Chemistry: Form TR4-9A

Test Review # 4. Chemistry: Form TR4-9A Chemistry: Form TR4-9A REVIEW Name Date Period Test Review # 4 Location of electrons. Electrons are in regions of the atom known as orbitals, which are found in subdivisions of the principal energy levels

More information

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass 1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass A Br, Ga, Hg C O, S, Se B atomic number D oxidation number 2. Which list includes elements with the

More information

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass 1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass A Br, Ga, Hg C O, S, Se B atomic number D oxidation number 2. Which list includes elements with the

More information

LIMITATIONS OF RUTHERFORD S ATOMIC MODEL

LIMITATIONS OF RUTHERFORD S ATOMIC MODEL ELECTRONS IN ATOMS LIMITATIONS OF RUTHERFORD S ATOMIC MODEL Did not explain the chemical properties of atoms For example, it could not explain why metals or compounds of metals give off characteristic

More information

2/15/2013. Chapter 6 6.1

2/15/2013. Chapter 6 6.1 Chapter 6 In a self-service store, the products are grouped according to similar characteristics. With a logical classification system, finding and comparing products is easy. You will learn how elements

More information

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom?

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom? Atomic Structure and the Periodic Table Evolution of Atomic Theory The ancient Greek scientist Democritus is often credited with developing the idea of the atom Democritus proposed that matter was, on

More information

Name Date Class THE PERIODIC TABLE

Name Date Class THE PERIODIC TABLE Name Date Class 6 THE PERIODIC TABLE SECTION 6.1 ORGANIZING THE ELEMENTS (pages 155 160) This section describes the development of the periodic table and explains the periodic law. It also describes the

More information

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. ELECTRONS IN ATOMS Chapter Quiz Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. The orbitals of a principal energy level are lower in energy than the orbitals

More information

Electron Configurations

Electron Configurations Section 3 Electron Configurations Key Terms electron configuration Pauli exclusion principle noble gas Aufbau principle Hund s rule noble-gas configuration Main Ideas Electrons fill in the lowest-energy

More information

Organizing the Periodic Table

Organizing the Periodic Table Organizing the Periodic Table How did chemists begin to organize the known elements? Chemists used the properties of the elements to sort them into groups. The Organizers JW Dobereiner grouped the elements

More information

Name: Teacher: Gerraputa

Name: Teacher: Gerraputa Name: Teacher: Gerraputa 1. Which list of elements contains a metal, a metalloid, and a nonmetal? 1. Ag, Si, I 2 3.K, Cu, Br 2 2. Ge, As, Ne 4.S, Cl 2, Ar 2. The elements on the Periodic Table are arranged

More information

Electronic Structure of Atoms and the Periodic table. Electron Spin Quantum # m s

Electronic Structure of Atoms and the Periodic table. Electron Spin Quantum # m s Electronic Structure of Atoms and the Periodic table Chapter 6 & 7, Part 3 October 26 th, 2004 Homework session Wednesday 3:00 5:00 Electron Spin Quantum # m s Each electron is assigned a spinning motion

More information

6.4 Electronic Structure of Atoms (Electron Configurations)

6.4 Electronic Structure of Atoms (Electron Configurations) Chapter 6 Electronic Structure and Periodic Properties of Elements 317 Orbital n l m l degeneracy Radial nodes (no.) 4f 4 3 7 0 4p 4 1 3 2 7f 7 3 7 3 5d 5 2 5 2 Check Your Learning How many orbitals have

More information

Period Table Worksheet 1

Period Table Worksheet 1 Period Table Worksheet. While doing a research project, you noted the following information about five elements. Element A :. is a solid;. conducts electricity;. has electrons in its outermost shell;.

More information

A1: Atomic Structure Worksheet (Goals 1 3, Chapter 4)

A1: Atomic Structure Worksheet (Goals 1 3, Chapter 4) Unit 3 Assignment Packet Name: Period: A1: Atomic Structure Worksheet (Goals 1 3, Chapter 4) 1. Democritus, who lived in Greece during the 4 th century B.C., suggested that is made up of tiny particles

More information

Unit 4 - Periodic Table Exam Name: PRACTICE QUESTIONS Date: 2/23/2016

Unit 4 - Periodic Table Exam Name: PRACTICE QUESTIONS Date: 2/23/2016 Name: PRACTICE QUESTIONS Date: 2/23/2016 1. Which pair of symbols represents a metalloid and a noble gas? 1) Si and Bi 2) As and Ar 3) Ge and Te 4) Ne and Xe 2. What determines the order of placement of

More information

Exam Electrons and Periodic Table

Exam Electrons and Periodic Table 1-20 multiple choice. Answer on scantron. 21-25 short response. Answer on exam paper. All questions are 4 points each. 1. Which term is defined as the region in an atom where an electron is most likely

More information

Professor K. Section 8 Electron Configuration Periodic Table

Professor K. Section 8 Electron Configuration Periodic Table Professor K Section 8 Electron Configuration Periodic Table Schrödinger Cannot be solved for multielectron atoms We must assume the orbitals are all hydrogen-like Differences In the H atom, all subshells

More information

Atoimic Structure and the Periodic Table: Unit Objective Study Guide Part 2

Atoimic Structure and the Periodic Table: Unit Objective Study Guide Part 2 Name Date Due Atoimic Structure and the Periodic Table: Unit Objective Study Guide Part 2 Directions: Write your answers to the following questions in the space provided. For problem solving, all of the

More information

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS The Periodic Table ELECTRONS AND THE STRUCTURE OF ATOMS 6.1 Organizing the Elements Essential Understanding Although Dmitri Mendeleev is often credited as the father of the periodic table, the work of

More information

Test Review # 4. Chemistry: Form TR4-5A 6 S S S

Test Review # 4. Chemistry: Form TR4-5A 6 S S S Chemistry: Form TR4-5A REVIEW Name Date Period Test Review # 4 Development of the Periodic Table. Dmitri Mendeleev (1869) prepared a card for each of the known elements listing the symbol, the atomic mass,

More information

Chapter 4 Atoms Practice Problems

Chapter 4 Atoms Practice Problems Chapter 4 Atoms Practice Problems 1) The primary substances of which all other things are composed are A) molecules. B) compounds. C) elements. D) electrons. E) protons. 2) Which of the following is a

More information

Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the

Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the Honors Chemistry Ms. Ye Name Date Block Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the 2. The Pauli Exclusion Principle: a maximum of can occupy an orbital

More information

Full file at

Full file at 16 Chapter 2: Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element. a.

More information

Honors Chemistry: Chapter 4- Problem Set (with some 6)

Honors Chemistry: Chapter 4- Problem Set (with some 6) Honors Chemistry: Chapter 4- Problem Set (with some 6) All answers and work on a separate sheet of paper! Classify the following as always true (AT), sometimes true (ST), or never true (NT) 1. Atoms of

More information

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE What Makes Red Light Red? (4.1) Electromagnetic Radiation: energy that travels in waves (light) Waves Amplitude: height

More information

Chapter 2 Atoms and the Periodic Table

Chapter 2 Atoms and the Periodic Table Chapter 2 1 Chapter 2 Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element.

More information

The Quantum Mechanical Model

The Quantum Mechanical Model Recall The Quantum Mechanical Model Quantum Numbers Four numbers, called quantum numbers, describe the characteristics of electrons and their orbitals Quantum Numbers Quantum Numbers The Case of Hydrogen

More information

Chapter 2: Atoms and the Periodic Table

Chapter 2: Atoms and the Periodic Table 1. Which element is a nonmetal? A) K B) Co C) Br D) Al Ans: C Difficulty: Easy 2. Which element is a metal? A) Li B) Si C) Cl D) Ar E) More than one of the elements above is a metal. Ans: A Difficulty:

More information

Periodic Table Practice 11/29

Periodic Table Practice 11/29 Periodic Table Practice 11/29 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the

More information

Name PRACTICE Unit 3: Periodic Table

Name PRACTICE Unit 3: Periodic Table 1. Compared to the atoms of nonmetals in Period 3, the atoms of metals in Period 3 have (1) fewer valence electrons (2) more valence electrons (3) fewer electron shells (4) more electron shells 2. On the

More information

Regents review Atomic & periodic

Regents review Atomic & periodic 2011-2012 1. The diagram below represents the nucleus of an atom. What are the atomic number and mass number of this atom? A) The atomic number is 9 and the mass number is 19. B) The atomic number is 9

More information

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Terms, definitions, and people Dobereiner Newlands Mendeleev Moseley Periodic table Periodic Law group family period Page 1 of 38 alkali

More information

Modern Atomic Theory CHAPTER OUTLINE

Modern Atomic Theory CHAPTER OUTLINE Chapter 3B Modern Atomic Theory 1 CHAPTER OUTLINE Waves Electromagnetic Radiation Dual Nature of Light Bohr Model of Atom Quantum Mechanical Model of Atom Electron Configuration Electron Configuration

More information

1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions

1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions Pre-AP Chemistry 11 Atomic Theory II Name: Date: Block: 1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions Electronic

More information

Chemistry B11 Chapter 3 Atoms

Chemistry B11 Chapter 3 Atoms Chapter 3 Atoms Element: is a substance that consists of identical atoms (hydrogen, oxygen, and Iron). 116 elements are known (88 occur in nature and chemist have made the others in the lab). Compound:

More information

Komperda. Electron Configuration and Orbital Notation

Komperda. Electron Configuration and Orbital Notation Electron Configuration and Orbital Notation Dmitri Mendeleyev Father of the Modern P.T. Periods and Group Period horizontal row on P.T. Each period represents an energy level (think back to models of the

More information

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles.

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles. Chemistry: Form TR5-8A REVIEW Name Date Period Test Review # 5 Subatomic particles. Type of Particle Location Mass Relative Mass Charge Proton Center 1.67 10-27 kg 1 +1 Electron Outside 9.11 10-31 kg 0-1

More information

Introduction period group

Introduction period group The Periodic Table Introduction The periodic table is made up of rows of elements and columns. An element is identified by its chemical symbol. The number above the symbol is the atomic number The number

More information

Practice Periodic Table Review

Practice Periodic Table Review Practice Periodic Table Review Name 1. An electron will emit energy in quanta when its energy state changes from 4p to A) 5s B) 5p C) 3s D) 6p 2. Which electron configuration represents an atom in the

More information

Notes: Unit 6 Electron Configuration and the Periodic Table

Notes: Unit 6 Electron Configuration and the Periodic Table Name KEY Block Notes: Unit 6 Electron Configuration and the Periodic Table In the 1790's Antoine Lavoisier compiled a list of the known elements at that time. There were only 23 elements. By the 1870's

More information

Electronic Structure and Bonding Review

Electronic Structure and Bonding Review Name: Band: Date: Electronic Structure and Bonding Review 1. For electrons: a. What is the relative charge? b. What is the relative mass? c. What is the symbol? d. Where are they located in the modern

More information

Periodic Table Practice Questions

Periodic Table Practice Questions Periodic Table Practice Questions 1. Elements in the Periodic Table are arranged according to their (1) atomic number (3) relative activity (2) atomic mass (4) relative size 2. Elements in a given period

More information

UNIT 2 PART 1: ELECTRONS

UNIT 2 PART 1: ELECTRONS UNIT 2 PART 1: ELECTRONS Electrons in an Atom Bohr s Model: Electrons resided in an allowed orbit. Quantum Mechanics Model: Probability of finding an electron in an area around the nucleus. This area around

More information

[3.3] Energy Level Diagrams and Configurations

[3.3] Energy Level Diagrams and Configurations [3.3] Energy Level Diagrams and Configurations 1 Energy Level Diagrams Energy level diagrams are used to represent the electron arrangement in an atom 2 Pauli s Exclusion Principle No two electrons have

More information

2. Read pages a. Answer the five Reading Check questions on page 47

2. Read pages a. Answer the five Reading Check questions on page 47 Chemistry Test #1 Review Chapters 1 & 2 1. Page 37, #4-6, 8, 9, 13, 14 2. Read pages 45 47 a. Answer the five Reading Check questions on page 47 3. Read pages 52 57 a. Copy the table on page 55 b. Define

More information

CHAPTER 6 The Periodic Table

CHAPTER 6 The Periodic Table CHAPTER 6 The Periodic Table 6.1 Organizing the Elements Mendeleev: listed the elements in order of increasing atomic mass and in vertical columns according to their properties. Left blank spaces for undiscovered

More information

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements?

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements? Searching for an Organizing Principle Searching for an Organizing Principle How did chemists begin to organize the known elements? Searching for an Organizing Principle A few elements, including copper,

More information

Page 1 of 9. Website: Mobile:

Page 1 of 9. Website:    Mobile: Question 1: Did Dobereiner s triads also exist in the columns of Newlands Octaves? Compare and find out. Only one triad of Dobereiner s triads exists in the columns of Newlands octaves. The triad formed

More information

Atoms and Elements Class Notes and Class Work

Atoms and Elements Class Notes and Class Work Atoms and Elements Class Notes and Class Work Introduction to Matter Property: Characteristics matter has. Law: A rule nature seems to follow. It s been observed regularly. Theory: Tries to explain the

More information

Unit 2 Atomic Theory and Periodicity Review

Unit 2 Atomic Theory and Periodicity Review Unit 2 Atomic Theory and Periodicity Review Section I: History In each box, write the name of the scientist(s) associated with the statement. Choose from among the following: Democritus Thomson Bohr Schroedinger

More information

Part A. Answer all questions in this part.

Part A. Answer all questions in this part. Part A Directions (1-20): For each statement or question, record on your separate answer sheet the number of the word or expression that, of those given, best completes the statement or answers the question.

More information

Modern Atomic Theory

Modern Atomic Theory Modern Atomic Theory Review of the Discovery of the Atom 1803 John Dalton discovered that elements are made of atoms. He thought that atoms were solid, like a marble. 1875 Crooks discovered the electron.

More information

2. Why do all elements want to obtain a noble gas electron configuration?

2. Why do all elements want to obtain a noble gas electron configuration? AP Chemistry Ms. Ye Name Date Block Do Now: 1. Complete the table based on the example given Location Element Electron Configuration Metal, Nonmetal or Semi-metal Metalloid)? Group 1, Period 1 Group 11,

More information

UNIT #3: Electrons in Atoms/Periodic Table and Trends

UNIT #3: Electrons in Atoms/Periodic Table and Trends Name: Period: UNIT #3: Electrons in Atoms/Periodic Table and Trends 1. ELECTRON CONFIGURATION Electrons fill the space surrounding an atom s nucleus in a very specific order following the rules listed

More information

Atoms & the Periodic Table. Chapter Outline. Elements

Atoms & the Periodic Table. Chapter Outline. Elements Atoms & the Periodic Table Chapter Outline What is Atom? Chemical properties of Atoms: the Periodicity Isotopes Electrons in Atom: Quantum physics view Valence electrons and the Periodic Table 2 Elements

More information

Chapter 4. Lecture Presentation

Chapter 4. Lecture Presentation Chapter 4 Lecture Presentation 4.1 Elements and Symbols 4.2 The Periodic Table 4.3 The Atom 4.4 Atomic Number and Mass Number 4.5 Isotopes and Atomic Mass 4.6 Electron Energy Levels 4.7 Electron Configurations

More information

Modern Atomic Theory and the Periodic Table

Modern Atomic Theory and the Periodic Table Modern Atomic Theory and the Periodic Table Chapter 10 the exam would have to be given earlier Hein and Arena Version 1.1 Eugene Passer Chemistry Department Bronx Community 1 College John Wiley and Sons,

More information

Chapter 2: Atoms and the Periodic Table

Chapter 2: Atoms and the Periodic Table 1. Which element is a nonmetal? A) K B) Co C) Br D) Al Ans: C Difficulty: Easy 2. Which element is a metal? A) Li B) Si C) Cl D) Ar E) More than one of the elements above are metals. 3. Which element is

More information

Unit 02 Review: Atomic Theory and Periodic Table Review

Unit 02 Review: Atomic Theory and Periodic Table Review Practice Multiple Choice Questions Unit 02 Review: Atomic Theory and Periodic Table Review 1. The number of neutrons in an atom of radioactive C 14 is: a) 6 c) 8 b) 12 d) 14 2. When a radioactive nucleus

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ ID: A EOC review II Matching Match each item with the correct statement below. a. atomic orbital d. ground state b. aufbau principle e. Pauli exclusion principle c. electron configuration

More information

Electrons! Chapter 5, Part 2

Electrons! Chapter 5, Part 2 Electrons! Chapter 5, Part 2 3. Contained within sublevels are orbitals: pairs of electrons each having a different space or region they occupy a. Each sublevel contains certain orbitals: i. s sublevel

More information

Atomic Model and Periodic Table Test Review

Atomic Model and Periodic Table Test Review Atomic Model and Periodic Table Test Review A. Give the family name for each description. 1. I have 1 electron on my outer shell. 2. One of the elements has 35 protons. 3. I have 2 electrons on my outer

More information

Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized

Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized Chemistry I: Quantum Mechanics Notes Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized Major developments that put

More information

POGIL: Electron Configurations

POGIL: Electron Configurations Name DUE DATE Period Chemistry POGIL: Electron Configurations Why? The electron structure of an atom is very important. Scientists use the electronic structure of atoms to predict bonding in molecules,

More information

Development of the Modern Periodic Table

Development of the Modern Periodic Table 2017/2018 Development of the Modern Periodic Table Mohamed Ahmed Abdelbari Introduction Atom: the smallest, indivisible unit of an element that retains all chemical and physical properties of the element.

More information

3.1 Classification of Matter. Copyright 2009 by Pearson Education, Inc.

3.1 Classification of Matter. Copyright 2009 by Pearson Education, Inc. Chapter 3 Atoms and Elements 3.1 Classification of Matter Copyright 2009 by Pearson Education, Inc. 1 Matter Matter is the stuff that makes up all things. Copyright 2009 by Pearson Education, Inc. 2 Pure

More information

1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude

1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude Wave Nature of Light 1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude 2. Draw two waves with different frequencies and circle the wave that has a higher frequency.

More information

Unit 3. Atoms and molecules

Unit 3. Atoms and molecules Unit 3. Atoms and molecules Index. s and compounds...2.. Dalton's Atomic theory...2 2.-The atom...2 3.-Atomic number and mass number...2 4.-Isotopes, atomic mass unit and atomic mass...3 5.- configuration...3

More information

Notes: Electrons and Periodic Table (text Ch. 4 & 5)

Notes: Electrons and Periodic Table (text Ch. 4 & 5) Name Per. Notes: Electrons and Periodic Table (text Ch. 4 & 5) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to

More information

Periodic Table of Elements

Periodic Table of Elements Periodic Table of Elements The Atomic Nucleus The nucleus is a small, dense region at the center of the atom. It consists of positive protons and neutral neutrons, so it has an overall positive charge.

More information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information Discovery of Elements Development of the Periodic Table Chapter 5 Honors Chemistry 412 At the end of the 1700 s, only 30 elements had been isolated Included most currency metals and some nonmetals New

More information

Ionic Bonding Ionic bonding occurs when metals and nonmetals trade one or more electrons and the resulting opposite charges attract each other. Metals

Ionic Bonding Ionic bonding occurs when metals and nonmetals trade one or more electrons and the resulting opposite charges attract each other. Metals Chemical Bonding Now that we know what atoms look like A very small (less than 0.001% of the volume) and massive (more than 99.99% of the mass) nucleus with protons (+) and neutrons (neutral) and electrons

More information

HSVD Ms. Chang Page 1

HSVD Ms. Chang Page 1 Name: Chemistry, PERIODIC TABLE 1. A solid element that is malleable, a good conductor of electricity, and reacts with oxygen is classified as a (1) noble gas (2) metalloid (3) metal (4) nonmetal 2. Which

More information

Periodic Table. Metalloids diagonal between metals and nonmetals. Have metallic and non-metallic properties

Periodic Table. Metalloids diagonal between metals and nonmetals. Have metallic and non-metallic properties Chapter 6 Periodic Table Most elements are metals Metals are shiny, malleable, ductile, and good conductors of heat and electricity Most metals are solid at room temperature Non-metals in upper right corner,

More information

How Electrons Determine Chemical Behavior

How Electrons Determine Chemical Behavior The Periodic Table Activity 7 How Electrons Determine Chemical Behavior GOALS In this activity you will: Investigate more patterns electron arrangements of atoms. Relate the positions s on the, their electron

More information

Model 1: Orbitals. 1. What is an atomic orbital? What are the four different orbitals?

Model 1: Orbitals. 1. What is an atomic orbital? What are the four different orbitals? Name: Date: Period: POGIL: Electron Configuration and Orbitals Model 1: Orbitals The quantum mechanical model determines the allowed energies an electron can have and how likely it is to find the electron

More information

2 e. 14 e. # e # orbitals. 10 e 5. sublevel. shape of orbital. Orbital Shapes. Notes Orbital Notation; e Config; NGN.

2 e. 14 e. # e # orbitals. 10 e 5. sublevel. shape of orbital. Orbital Shapes. Notes Orbital Notation; e Config; NGN. How to build an atom: The bigger (more massive) the atom, the more protons (and neutrons) The bigger the atom, the more electrons Electrons fill lower energy levels first "Aufbau" Principle ("To build

More information

Periodic Table. Engr. Yvonne Ligaya F. Musico 1

Periodic Table. Engr. Yvonne Ligaya F. Musico 1 Periodic Table Engr. Yvonne Ligaya F. Musico 1 TOPIC Definition of Periodic Table Historical Development of the Periodic Table The Periodic Law and Organization of Elements in a Periodic Table Periodic

More information

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy?

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? Periodic Trends 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? 4. What periodic trends exist for ionization energy? 5. What

More information

CHAPTER NOTES CHAPTER 14. Chemical Periodicity

CHAPTER NOTES CHAPTER 14. Chemical Periodicity Goals : To gain an understanding of : 1. Electron configurations 2. Periodicity. CHAPTER NOTES CHAPTER 14 Chemical Periodicity The periodic law states that when the elements are arranged according to increasing

More information

Determine Chemical Behavior

Determine Chemical Behavior Fun with the Periodic Table Activity 7 CHEM POETRY A sodium atom walks onto the scene, His valence electron s feeling keen, Positive that he will ionically bond With a halogen of whom he is fond. How Electrons

More information

8.5C: Periodic Table

8.5C: Periodic Table Reflect Suppose you wanted to organize your locker at school. How could you separate and arrange everything in an organized way? You could place the books, notebooks, and folders on a shelf that is separate

More information

Chapter 9: Elements are the Building blocks of Life

Chapter 9: Elements are the Building blocks of Life Chapter 9: Elements are the Building blocks of Life Section 9.1- Elements and the Periodic Table Keep Scale in mind Animation: http://htwins.net/scale2/ I. ELEMENTS All matter is made up of one or more

More information

1. Demonstrate knowledge of the three subatomic particles, their properties, and their location within the atom.

1. Demonstrate knowledge of the three subatomic particles, their properties, and their location within the atom. 1. Demonstrate knowledge of the three subatomic particles, their properties, and their location within the atom. 2. Define and give examples of ionic bonding (e.g., metal and non metal) and covalent bonding

More information

Name Class Date. Chapter: Arrangement of Electrons in Atoms

Name Class Date. Chapter: Arrangement of Electrons in Atoms Assessment Chapter Test A Chapter: Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the

More information

An Electron s Address: Orbital Diagrams and Electron Configuration

An Electron s Address: Orbital Diagrams and Electron Configuration AP Chemistry Ms. Ye Name Date Block An Electron s Address: Orbital Diagrams and Electron Configuration Information: Energy Levels and Sublevels As you know, in his solar system model Bohr proposed that

More information

A bit of review. Atoms are made of 3 different SUB-ATOMIC PARTICLES: 1. ELECTRONS 2. PROTONS 3. NEUTRONS

A bit of review. Atoms are made of 3 different SUB-ATOMIC PARTICLES: 1. ELECTRONS 2. PROTONS 3. NEUTRONS Chemistry in Action A bit of review Chemistry is the study of MATTER and ENERGY. Matter is anything that has MASS. All matter is made of super small particles called ATOMS. Atoms are made of 3 different

More information

Chapter #2 The Periodic Table

Chapter #2 The Periodic Table Chapter #2 The Periodic Table Mendeleeve (1834 1907), arranged the elements within a group in order of their atomic mass. He noted repeating patterns in their physical and chemical properties Periodic

More information

Unit 7 Study Guide: Name: KEY Atomic Concepts & Periodic Table

Unit 7 Study Guide: Name: KEY Atomic Concepts & Periodic Table Unit 7 Study Guide: Name: KEY Atomic Concepts & Periodic Table Focus Questions for the unit... How has the modern view of the atom changed over time? How does a chemist use symbols and notation to communicate

More information

Unit 2 Periodic Table

Unit 2 Periodic Table 2-1 Unit 2 Periodic Table At the end of this unit, you ll be able to Describe the origin of the periodic table State the modern periodic law Key the periodic table according to metals vs. nonmetals and

More information