ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY

Size: px
Start display at page:

Download "ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY"

Transcription

1 ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY

2 CHROMATOGRAPHY Week 9-10 Reading Assignment: Chapter 7. Bioseparations Science & Engineering, Harrison, R; Todd, P; Rudge, S.C and Petrides, D,P

3 CHROMATOGRAPHY Use in separation, purification & identification of compounds before quantitative analysis is taken up. BASIS:Selective distribution of component in a mixture between 2 immiscible phases in intimate contact with each other 1 stationary phase & 1 mobile phase APPLICATION: Separation of biomolecules, fine & specialty chemicals ANALITICAL TOOLS To determine chemical compositions of sample PREPARATIVE TOOLS To PURIFY & COLLECT 1/ more components of sample

4

5 SEPARATION PRINCIPLES Solutes in solution/ volatiles in gas are placed in MOBILE PHASE & passed over a selected adsorbent material [stationary phase] The solutes/ volatiles have differential AFFINITY for the adsorbent material & thus, separation occurs. MOBILE PHASE: Continuous flow of a carrier liquid/ gas STATIONARY PHASE: A bed of solids/ immobilized liquid

6

7

8 STATIONARY PHASE: LIQUID CHROMATOGRAPHY SILICA BASED RESINS: Uncoated/ coated silica ION-EXCHANGE RESINS: Cation/ anion exchangers POLYMER-BASED RESINS: Synthetic/ natural polymers

9 SILICA-BASED RESINS UNCOATED SILICA i. Compatible with water or organic solvent ii. Serves as a good reversible adsorbent for hydrophilic compounds iii. Organic solvent used as mobile phase, and water is added as the chromatography progresses iv. Not typically stable at extremes of Ph v. Available with high surface area and small particle size; being very rigid; does not collapse under high pressures vi. Denature some proteins and irreversibly bind others vii. Used for purification of many commercial biotechnology products COATED SILICA i. Particles coated with longchain alkanes ii. Has a high affinity for hydrophobic molecules, which increases as the chain length of the bonded alkane increases. iii. Many varieties of the same chain length phase polymerized, simple monolayer and end-capped

10 STYRENE DIVINYLBENZENE: i. Very stable at ph extremes ii. Support for ion exchange chromatography because of its stability and rigidity AGAROSE: i. Can be crosslinked to form a reasonably rigid bead that is capable of tolerating pressures up to 4 bar. POLYMER-BASED RESINS POLYACRYLAMIDE: i. Used less often, not used as a polymer solid but as hydrogel and used as a size exclusion gel ii. The crosslinking in polyacrylamide can be controlled by the amount of bisacrylamide added in suspension mixture DEXTRAN i. Less rigid and used in size exclusion ii. Can be formed with very large pores iii. Capable of including antibody molecules and virus particles NATURAL POLYMERS: i. Used in hydrogel for a low pressure chromatography resins. ii. Naturally hydrophillic iii. Compatible with proteins and other biomaterials

11 Resins that have been derivatived with an ionic group Most commonly used ionic groups: a. Sulfoxyl (SO3-) - most acidic b. Carboxyl (COO-) c. Diethylaminoethyl (DEAE) (2C2H5N+HC2H5) d. Quaternary ethylamine (QAE) (4CHN+) - most basic ION-EXCHANGE RESINS CATION EXCHANGERS: i. Acidic ion exchanger ii. Carry a negative charge iii. Attract positive counterions ANION EXCHANGERS: i. Basic ion exchangers ii. Carry a positive charge iii. Attract negative counterions

12 STATIONARY PHASE: GAS CHROMATOGRAPHY SOLID PHASE: i. Most uses for separation of low MW compounds and gases ii. Common SP: silica, alumina, molecular sieves such as zeolites, cabosieves, carbon blacks LIQUID PHASE: i. Over 300 different phases are widely available ii. Grouped liquid phases: Non-polar, polar, intermediate and special phases iii. Polymer liquid phase Non-polar phase i. Primarily separated according to their volatilities ii. Elution order varies as the boiling points of analytes iii. Common phases: dimethylpolysiloxane, dimethylphenylpolysiloxane Polar phase i. Contain polar functional groups ii. Separation based on their volatilities and polar-polar interaction iii. Common phases: polyethylene glycol Intermediate phase i. Common phase: 14% cyanopropyl phenyl polysiloxane

13

14 PARTICLE & PRESSURE DROP IN FIXED BEDS Pressure drop is given by the Darcy equation:

15 From Blake-Kozeny equation, k gives a function of resin particles size and void friction

16 Darcy equation applies for rigid particles, such as silica. When the stationary phase particle size is decreased, the pressure drop in the column increases as the inverse square. These increases requires pressure additional power in pumping, as well as more specialized requirements for the construction of the columns and its seals

17 CHROMATOGRAM DESCRIPTION

18 CHROMATOGRAM Response of a detector vs time, shown when various components come off a column RETENTION TIME, tr The time at which a component elutes from a column

19 CHROMATOGRAPHY COLUMN DYNAMICS PLATE MODELS HEIGHT OF EQUIVALENT THEORETICAL PLATE (HETP), H: Where L = Length of the column N = Number of plates

20 From Gaussian peaks: THE PLATE COUNT (N) can be expressed as the squared average retention time divided by the variance of the peak Where w = peak width at the base tr = average retention time

21 PEAK WIDTH is used in the definition of resolution, Rs measure of the extent of separation of two peaks in chromatography Where tr1, tr2 = average retention time for separands 1 & 2 w1, w2 = peak width (time) for separands 1 & 2

22 Chromatography column mass balance with negligible dispersion Mass balance for chromatography: ci = concentration of solute i in the mobile phase = [C]i, qi = concentration of solute i in the stationary phase averaged over an adsorbent particle = [CS]i, ε = void fraction (mobile phase volume/total column volume), commonly 0.3 to 0.4 in fixed beds, v = mobile phase superficial velocity (flow rate divided by the empty column cross-sectional area, Q/A), Deff= effective dispersivity of the solute in the column, t = time, x = longitudinal distance in the column; x = 0 at column inlet

23 Using an equilibrium isotherm relationship in the form qi =f(ci), EQ. (1) becomes: Where Where qi (ci) is the slope of the equilibrium isotherm at concentration ci.

24 If we let: Then EQ. (2) becomes: Thus, the expression for ui given by EQ. (3) is the effective velocity of component i through the packed column.

25 1. All process volumes are scaled-up in direct proportion to the sample volumes Process volumes include the column bed, wash, and elution volumes. 2. Column length is held constant Column volume is increased by increasing column diameter or by having a number of columns operating in parallel 3. Linear (or superficial) velocity is held constant Because column length is held constant, volumetric flow rate increases proportionally with sample volume. Total separation time remains roughly constant in scale-up. 4. Sample composition is held constant Critical factors include concentration, viscosity, ph and ionic strength

26 BASIC DESIGN CALCULATIONS Typically account for changes in bed height & diameter, linear & volumetric flow rate, and particle size. General approach for scale up is to based on keeping the resolution, Rs constant For linear gradient elution ion exchange & hydrophobic interaction chromatography,

27 To remove the volume term from the expression for Rs,

28 Thus, for scale-up with constant resolution from scale 1 to scale 2 for the same product and the same column void fraction, the scale-up equation is: Thus, as the particle size increases on scale-up, the flow rate relative to the column volume must decrease and/or the gradient slope must decrease to maintain constant resolution, which seems correct intuitively.

29 Easy to develop lab scale processes that use the same resin and same gradient for the commercial process scale In practice only the ratio between column volume and flow rate need be addressed When the bed height can be maintained on scale-up, the mobile phase linear velocity remains the same, and the column is simply scaled by diameter

Liquid Chromatography

Liquid Chromatography Liquid Chromatography 1. Introduction and Column Packing Material 2. Retention Mechanisms in Liquid Chromatography 3. Method Development 4. Column Preparation 5. General Instrumental aspects 6. Detectors

More information

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing)

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Chromatography Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Invention of Chromatography Mikhail Tswett invented chromatography

More information

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A.

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A. Instrumental Analysis II Course Code: CH3109 Chromatographic &Thermal Methods of Analysis Part 1: General Introduction Prof. Tarek A. Fayed What is chemical analysis? Qualitative analysis (1) Chemical

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

Introduction to Chromatography

Introduction to Chromatography Introduction to Chromatography Dr. Sana Mustafa Assistant Professor Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. What is Chromatography? Derived from the Greek

More information

Introduction to Chromatographic Separations

Introduction to Chromatographic Separations Introduction to Chromatographic Separations Analysis of complex samples usually involves previous separation prior to compound determination. Two main separation methods instrumentation are available:

More information

HPLC Background Chem 250 F 2008 Page 1 of 24

HPLC Background Chem 250 F 2008 Page 1 of 24 HPLC Background Chem 250 F 2008 Page 1 of 24 Outline: General and descriptive aspects of chromatographic retention and separation: phenomenological k, efficiency, selectivity. Quantitative description

More information

Chapter 23 Introduction to Analytical Separations

Chapter 23 Introduction to Analytical Separations Chapter 23 Introduction to Analytical Separations Homework Due Monday April 24 Problems 23-1, 23-2, 23-7, 23-15, 23-27, 23-29, 23-32 Analytical Separations: Universal approach to analyzing complex mixtures

More information

Chromatography Outline

Chromatography Outline Chem 2001 Summer 2004 Outline What is? The Chromatogram Optimization of Column Performance Why Do Bands Spread? Gas High-Performance Liquid Ion-Exchange 2 What is? In chromatography, separation is achieved

More information

Chromatography. Intro basic terminology types Partition and Adsorption C Ion-Exchange C Gel Filtration (aka Exclusion or Molecular Sieve) C Affinity C

Chromatography. Intro basic terminology types Partition and Adsorption C Ion-Exchange C Gel Filtration (aka Exclusion or Molecular Sieve) C Affinity C Chromatography Intro basic terminology types Partition and Adsorption C Ion-Exchange C Gel Filtration (aka Exclusion or Molecular Sieve) C Affinity C Extremely varied and widely used methodology for separation

More information

Liquid Chromatography

Liquid Chromatography Liquid Chromatography 1. Introduction and Column Packing Material 2. Retention Mechanisms in Liquid Chromatography 3. Method Development 4. Column Preparation 5. General Instrumental aspects 6. Detectors

More information

What is Chromatography?

What is Chromatography? What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated extraction. It is believed that the separation

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS CHAPTER 25: Opener Aa CHAPTER 25: Opener Ab CHAPTER 25: Opener B 25-1 Ion-Exchange

More information

Gas Chromatography. Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid

Gas Chromatography. Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid Gas Chromatography Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid Principles Instrumentation Applications 18-1 Retention Volumes Volumes rather than times

More information

Chromatographic Methods: Basics, Advanced HPLC Methods

Chromatographic Methods: Basics, Advanced HPLC Methods Chromatographic Methods: Basics, Advanced HPLC Methods Hendrik Küpper, Advanced Course on Bioinorganic Chemistry & Biophysics of Plants, summer semester 2018 Chromatography: Basics Chromatography a physical

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography High Performance Liquid Chromatography What is HPLC? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube packed with a tiny particles (stationary phase).

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L2 Page1 Instrumental Chemical Analysis Chromatography (General aspects of chromatography) Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester,

More information

Chromatographic Separation

Chromatographic Separation What is? is the ability to separate molecules using partitioning characteristics of molecule to remain in a stationary phase versus a mobile phase. Once a molecule is separated from the mixture, it can

More information

Chromatography. What is Chromatography?

Chromatography. What is Chromatography? Chromatography What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify the mixture or components. Mixture

More information

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction. LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set Extraction Problem #1 1. Devise a scheme to be able to isolate organic acids, bases

More information

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas GAS CHROMATOGRAPHY Mobile phase is a gas! Stationary phase could be anything but a gas Gas Chromatography (GC) GC is currently one of the most popular methods for separating and analyzing compounds. This

More information

Ion Chromatography. Anion Exchange. Chromatography Ion Exchange Theory. Dr. Shulamit Levin

Ion Chromatography. Anion Exchange. Chromatography Ion Exchange Theory. Dr. Shulamit Levin Ion Exchange Chromatography Chromatographic Process BA Mobile phase Stationary Phase A Shula Levin Bioforum B Distribution: K = C s/c m B shulal@zahav.net.il http://shulalc.co.il/ A Elution through the

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Chromatographic Separations KAM021 2016 Dr. A. Jesorka, 6112, aldo@chalmers.se Introduction to Chromatographic Separations Theory of Separations -Chromatography Terms Summary: Chromatography

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

Ion Chromatography (IC)

Ion Chromatography (IC) Ion Chromatography (IC) Purpose: This module provides an introduction to Ion Chromatography (IC). In this module the basic theory and applications of IC will be presented at a level that assumes a basic

More information

II. CHROMATOGRAPHIC SEPARATION

II. CHROMATOGRAPHIC SEPARATION II. CHROMATOGRAPHIC SEPARATION 9. The theory of chromatographic method Principle of separation, separation efficiency, number of theoretical plates, selectivity, resolution, sorbent capacity, stationary

More information

Isolation & Purification of Proteoglycans (PGs) and Glycosaminoglycans (GAGs) PEG Trainee Lecture July 23, 2012

Isolation & Purification of Proteoglycans (PGs) and Glycosaminoglycans (GAGs) PEG Trainee Lecture July 23, 2012 Isolation & Purification of Proteoglycans (PGs) and Glycosaminoglycans (GAGs) PEG Trainee Lecture July 23, 2012 Most Common Extraction Procedure for PGs 4 M Guanidine-HCl Detergents such as 2% CHAPS or

More information

Chromatography. writing in color

Chromatography. writing in color Chromatography writing in color Outlines of Lecture Chromatographic analysis» Principles and theory.» Definition.» Mechanism.» Types of chromatography.» Uses of Chromatography. In 1906 Mikhail Tswett used

More information

Protein separation and characterization

Protein separation and characterization Address:800 S Wineville Avenue, Ontario, CA 91761,USA Website:www.aladdin-e.com Email USA: tech@aladdin-e.com Email EU: eutech@aladdin-e.com Email Asia Pacific: cntech@aladdin-e.com Protein separation

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Chromatographie Methods

Chromatographie Methods Chromatographie Methods Fifth Edition A. BRAITHWAITE Department of Physical Sciences Nottingham Trent University and F. J. SMITH Department of Chemistry and Chemical Engineering University of Paisley BLACKIE

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography Emqal module: M0925 - Quality parameters and optimization in is a separation technique used for quantification of mixtures of analytes Svein.mjos@kj.uib.no Exercises and lectures can be found at www.chrombox.org/emq

More information

HPLC COLUMNS WILEY-VCH. Theory, Technology, and Practice. Uwe D. Neue with a contribution from M. Zoubair El Fallah

HPLC COLUMNS WILEY-VCH. Theory, Technology, and Practice. Uwe D. Neue with a contribution from M. Zoubair El Fallah HPLC COLUMNS Theory, Technology, and Practice Uwe D. Neue with a contribution from M. Zoubair El Fallah WILEY-VCH New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS Preface ix 1 Introduction

More information

CHROMATOGRAPHY AND MASS SPECTROMETER

CHROMATOGRAPHY AND MASS SPECTROMETER 22 CHROMATOGRAPHY AND MASS SPECTROMETER 22.1 INTRODUCTION We know that the biochemistry or biological chemistry deals with the study of molecules present in organisms. These molecules are called as biomolecules

More information

GC Instruments. GC Instruments - Columns

GC Instruments. GC Instruments - Columns GC Instruments 1 Fairly simple instrumentation Maintaining constant average pressure is important! Pressure controls flow rate T influences retention (k ) Flow rate monitoring Changing flow rate changes

More information

Chapter content. Reference

Chapter content. Reference Chapter 7 HPLC Instrumental Analysis Rezaul Karim Environmental Science and Technology Jessore University of Science and Technology Chapter content Liquid Chromatography (LC); Scope; Principles Instrumentation;

More information

AND ADSORPTION /// 7 /// LIQUID CHROMATOGRAPHY. Liquid chromatography and adsorption processes are based on

AND ADSORPTION /// 7 /// LIQUID CHROMATOGRAPHY. Liquid chromatography and adsorption processes are based on /// 7 /// LIQUID CHROMATOGRAPHY AND ADSORPTION Liquid chromatography and adsorption processes are based on the differential affinity of various soluble molecules for specific types of solids. In these

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #24 Special Applications: Chromatographic Retention Time and Environmental Properties (Skoog, nothing)

More information

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine Webcast Notes Type your questions in the Submit Question box, located below the slide window You can enlarge the slide window at any time by clicking on the Enlarge Slides button, located below the presentation

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #24 Special Applications: Chromatographic Retention Time and Environmental Properties (Skoog, nothing)

More information

Volatile organic compounds (VOCs):

Volatile organic compounds (VOCs): Volatile organic compounds (VOCs): Organic chemicals with a high vapour pressure at room temperature. High vapour pressure results from a low boiling point. The World Health Organization (WHO) defined

More information

Biochemistry. Biochemical Techniques HPLC

Biochemistry. Biochemical Techniques HPLC Description of Module Subject Name Paper Name 12 Module Name/Title 13 1. Objectives 1.1. To understand the basic concept and principle of 1.2. To understand the components and techniques of 1.3. To know

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

Polymer analysis by GPC-SEC. Technical Note. Introduction

Polymer analysis by GPC-SEC. Technical Note. Introduction Polymer analysis by GPC-SEC Technical Note Introduction Gel Permeation Chromatography (GPC), also referred to as Size Exclusion Chromatography (SEC) is a mode of liquid chromatography in which the components

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 3 Chromatographic Method Lecture - 1 Introduction and Basic

More information

Gel Permeation Chromatography - GPC

Gel Permeation Chromatography - GPC Isolation and Separation Methods J. Poustka, VŠCHT Praha, ÚAPV 2014, http://web.vscht.cz/poustkaj Gel Permeation Chromatography - GPC Separation and clean-up method Group separation of compounds with similar

More information

Remember - Ions are more soluble in water than in organic solvents. - Neutrals are more soluble in organic solvents than in water.

Remember - Ions are more soluble in water than in organic solvents. - Neutrals are more soluble in organic solvents than in water. IN-CLASS PROBLEMS SEPARATION SCIENCE CROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set - Extraction 1. Devise a way to separate the materials in the following sample by performing an

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis Watch this lesson online: https://edrolo.com.au/vce/subjects/chemistry/vce-chemistry/aos-1-chemical-analysis/chromatography-hplc-glc/column-chromatography/#watch CHEMISTRY Unit 3, Area of Study 1: Chemical

More information

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. Chromatography Primer Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. At its heart, chromatography is a technique

More information

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography)

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) Ch.28 HPLC 28.1 Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) High Performance (Pressure) LC Glass column st.steel (high

More information

Gas Chromatography. Introduction

Gas Chromatography. Introduction Gas Chromatography Introduction 1.) Gas Chromatography Mobile phase (carrier gas) is a gas - Usually N 2, He, Ar and maybe H 2 - Mobile phase in liquid chromatography is a liquid Requires analyte to be

More information

1. Ion exchange chromatography

1. Ion exchange chromatography 1. Ion exchange chromatography Ion Exchange Chromatography Most popular method for the separation or purification of charged molecules. In cation exchange chromatography, positively charged molecules are

More information

INSTITUTE OF MEDICAL BIOCHEMISTRY FIRST FACULTY OF MEDICINE, CHARLES UNIVERSITY IN PRAGUE. Chromatography. in biochemistry

INSTITUTE OF MEDICAL BIOCHEMISTRY FIRST FACULTY OF MEDICINE, CHARLES UNIVERSITY IN PRAGUE. Chromatography. in biochemistry INSTITUTE OF MEDICAL BIOCHEMISTRY FIRST FACULTY OF MEDICINE, CHARLES UNIVERSITY IN PRAGUE Chromatography in biochemistry Prof. RNDr. Věra Pacáková, CSc. Faculty of Natural Sciences, Charles University

More information

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents No. 089 SEPARATION REPORT Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS Table of Contents 1. Introduction 1 2. Column Specification 1 3. Features of Packing Materials

More information

Chromatography and Functional Group Analysis

Chromatography and Functional Group Analysis Chromatography Chromatography separates individual substances from a mixture. - to find out how many components there are - to match the components with known reference materials - to use additional analytical

More information

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5 Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH 5730-6730 Analysis Topic 5 Chromatography! Group of separation techniques based on partitioning (mobile phase/stationary phase). Two immiscible

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

https://www.chemicool.com/definition/chromatography.html

https://www.chemicool.com/definition/chromatography.html CHROMATOGRAPHY 1 Chromatography - a physical method of mixture separation in which the components to be separated are distributed between two phases, one of which is stationary (stationary phase) while

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 Two types in general use: -packed (stationary phase) -open tubular or capillary determine selectivity and efficiency of the sample. Column Materials Column

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation What type of samples are common? Sample preparation 1 2 Number of samples? Time spent on different operations during LC analyses 3 4 Sources of error Aims Sample has to be representative Sample has to

More information

DEFINITION CHROMATOGRAPHY

DEFINITION CHROMATOGRAPHY Chromatography DEFINITION CHROMATOGRAPHY The separation of a mixture by distribution of its components between a mobile and stationary phase over time mobile phase = solvent stationary phase = column packing

More information

LIQUID CHROMATOGRAPHY

LIQUID CHROMATOGRAPHY LIQUID CHROMATOGRAPHY RECENT TECHNIQUES HPLC High Performance Liquid Chromatography RRLC Rapid Resolution Liquid Chromatography UPLC Ultra Performance Liquid Chromatography UHPLC Ultra High Pressure Liquid

More information

CEE 697z Organic Compounds in Water and Wastewater

CEE 697z Organic Compounds in Water and Wastewater Print version CEE 697z Organic Compounds in Water and Wastewater NOM Characterization Ran Zhao Lecture #6 Dave Reckhow - Organics In W & WW Outline Introduction of NOM Water treatment processes for NOM

More information

CHEM 429 / 529 Chemical Separation Techniques

CHEM 429 / 529 Chemical Separation Techniques CHEM 429 / 529 Chemical Separation Techniques Robert E. Synovec, Professor Department of Chemistry University of Washington Lecture 1 Course Introduction Goal Chromatography and Related Techniques Obtain

More information

Chapter 33. High-Performance Liquid Chromatography

Chapter 33. High-Performance Liquid Chromatography Chapter 33 High-Performance Liquid Chromatography 1 High-performance liquid chromatography (HPLC) is the most versatile and widely used type of elution chromatography. The technique is used by scientists

More information

Separation Methods Based on Distributions in Discrete Stages (02/04/15)

Separation Methods Based on Distributions in Discrete Stages (02/04/15) Separation Methods Based on Distributions in Discrete Stages (02/04/15) 1. Chemical Separations: The Big Picture Classification and comparison of methods 2. Fundamentals of Distribution Separations 3.

More information

Cellufine Butyl Cellufine Phenyl

Cellufine Butyl Cellufine Phenyl Hydrophobic Interaction Chromatography Media Cellufine Butyl Cellufine Phenyl Technical Data Sheet Introduction For purification of proteins and macromolecules Hydrophobic Interaction Chromatography (HIC)

More information

CHIRAL SEPARATION USING THIN LAYER CHROMATOGRAPHY

CHIRAL SEPARATION USING THIN LAYER CHROMATOGRAPHY CHIRAL SEPARATION USING THIN LAYER CHROMATOGRAPHY Chiral Chromatography Chiral - adjective: not superimposable on its mirror image: used to describe a molecule whose arrangement of atoms is such that it

More information

Experiment UPHPLC: Separation and Quantification of Components in Diet Soft Drinks

Experiment UPHPLC: Separation and Quantification of Components in Diet Soft Drinks Experiment UPHPLC: Separation and Quantification of Components in Diet Soft Drinks bjective: The purpose of this experiment is to quantify the caffeine content of a diet soda sample using Ultra-High Performance

More information

Gel Permeation Chromatography (GPC) or Size Exclusion Chromatography (SEC)

Gel Permeation Chromatography (GPC) or Size Exclusion Chromatography (SEC) Gel Permeation Chromatography (GPC) or Size Exclusion Chromatography (SEC) Size Exclusion Chromatography (SEC) is a non-interaction based separation mechanism in which compounds are retained for different

More information

Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools

Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools Mark Langella WISTA The most modern and sophisticated methods of separating mixtures that the organic chemist has available

More information

LC Technical Information

LC Technical Information LC Technical Information Method Transfer to Accucore.6 μm Columns Containing solid core particles, which are engineered to a diameter of.6μm and a very narrow particle size distribution; Accucore HPLC

More information

Analytical Technologies in Biotechnology Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 3 Chromatographic methods Lecture - 2 Basic Concepts in Chromatography

More information

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications Chapter 27: Gas Chromatography Principles Instrumentation Detectors Columns and Stationary Phases Applications GC-MS Schematic Interface less critical for capillary columns Several types of Mass Specs

More information

2. a) R N and L N so R L or L R 2.

2. a) R N and L N so R L or L R 2. 1. Use the formulae on the Some Key Equations and Definitions for Chromatography sheet. a) 0.74 (remember that w b = 1.70 x w ½ ) b) 5 c) 0.893 (α always refers to two adjacent peaks) d) 1.0x10 3 e) 0.1

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography STANDARDBASE techniques: High Performance Liquid Chromatography Drenthe College, The Netherlands 1. Introduction HPLC. High Performance Liquid Chromatography High Performance Liquid Chromatography (HPLC)

More information

2501 High Performance Liquid Chromatography

2501 High Performance Liquid Chromatography 2501 High Performance Liquid Chromatography High Performance Liquid Chromatography Scheme Chp25:: 1 High Performance Liquid Chromatography Components of HPLC High Performance Liquid Chromatography Scheme

More information

HPLC Workshop 16 June 2009 What does this do? Chromatography Theory Review Several chromatographic techniques Even though each method utilizes different techniques to separate compounds, the principles

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 1 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

Applications and Properties of New Polymeric Mixed Mode Cation Exchange Chromatography Media

Applications and Properties of New Polymeric Mixed Mode Cation Exchange Chromatography Media Applications and Properties of New Polymeric Mixed Mode Cation Exchange Chromatography Media Nandu Deorkar*, Wei Guo, Bob Buss, Joe Mladosich and Paul Bouis Mallinckrodt Baker Inc. 1904 J.T. Baker Way

More information

Chromatographic Methods of Analysis Section - 4 : Ion Exchange Chrom. Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section - 4 : Ion Exchange Chrom. Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section - 4 : Ion Exchange Chrom. Prof. Tarek A. Fayed Ion Exchange Chromatography (IEC) In this type of chromatography, the solid stationary phase )organic resin) is

More information

Downstream Processing Prof. Mukesh Doble Department Of Biotechnology Indian Institute of Technology, Madras. Lecture - 33 HPLC

Downstream Processing Prof. Mukesh Doble Department Of Biotechnology Indian Institute of Technology, Madras. Lecture - 33 HPLC Downstream Processing Prof. Mukesh Doble Department Of Biotechnology Indian Institute of Technology, Madras Lecture - 33 HPLC Today, we are going to talk about the HPLC. HPLC is an analytical tool, which

More information

SEPARATIONS ESSENTIALS IN MODERN HPLC. 2University of Bucharest, Bucharest, Romania

SEPARATIONS ESSENTIALS IN MODERN HPLC. 2University of Bucharest, Bucharest, Romania ESSENTIALS IN MODERN HPLC SEPARATIONS Serban C. Moldoveanu1, Victor David2 'R.J. Reynolds Tobacco Co., Winston-Salem, NC, USA 2University of Bucharest, Bucharest, Romania ELSEVIER AMSTERDAM BOSTON HEIDELBERG

More information

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26 Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. Instructor s Manual CHAPTE 26 26-1. (a) Elution is a process in which species are washed through a chromatographic column by

More information

Chapter 1. Chromatography. Abdul Muttaleb Jaber

Chapter 1. Chromatography. Abdul Muttaleb Jaber Chapter 1 Chromatography Abdul Muttaleb Jaber What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated

More information

Analysis - HPLC A.136. Primesep 5 µm columns B.136

Analysis - HPLC A.136. Primesep 5 µm columns B.136 Primesep 5 µm columns Primesep columns feature double functionality of the bonding i.e : alkyl chain with anionic or cationic group, chelating group. This feature creates unique selectivities when using

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

Chromatography and other Separation Methods

Chromatography and other Separation Methods Chromatography and other Separation Methods Probably the most powerful class of modern analytical methods for analyzing mixture of components---and even for detecting a single component in a complex mixture!

More information

Chemistry Instrumental Analysis Lecture 31. Chem 4631

Chemistry Instrumental Analysis Lecture 31. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 31 High Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) Solvent Delivery

More information

T.A Nouf Alshareef KAU-Faculty of Science- Biochemistry department Analytical biochemistry lab (Bioc 343) 2012

T.A Nouf Alshareef KAU-Faculty of Science- Biochemistry department Analytical biochemistry lab (Bioc 343) 2012 T.A Nouf Alshareef KAU-Faculty of Science- Biochemistry department Analytical biochemistry lab (Bioc 343) 2012 nf.shareef@hotmil.com False colour scanning electron micrograph of Sephadex beads. Background

More information

CHEM340 Tutorial 4: Chromatography

CHEM340 Tutorial 4: Chromatography CHEM340 Tutorial 4: Chromatography 1. The data in the table below was obtained from a chromatogram obtained with a 10 cm liquid chromatography column. Under the conditions used, the compound uracil is

More information

Chemistry Gas Chromatography: Separation of Volatile Organics

Chemistry Gas Chromatography: Separation of Volatile Organics Chemistry 3200 Gas chromatography (GC) is an instrumental method for separating volatile compounds in a mixture. A small sample of the mixture is injected onto one end of a column housed in an oven. The

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information