Workshop Overview & Charge, Science Examples, Instrumentation R&D. Bill Schlotter Feb. 9, 2015

Size: px
Start display at page:

Download "Workshop Overview & Charge, Science Examples, Instrumentation R&D. Bill Schlotter Feb. 9, 2015"

Transcription

1 Workshop Overview & Charge, Science Examples, Instrumentation R&D Bill Schlotter Feb. 9, 2015

2 Outline Workshop Charge Workshop Format Breakout activities Scientific Opportunity Example From workshops to transformational science at LCLS-II Planning for Instruments at LCLS-II

3 Our Charge

4 Ensuring LCLS-II will be useful for our science The strength of the Scientific Opportunities we develop and refine over the next two days will guide the capabilities developed for LCLS-II X-ray Parameters Instrumentation Methods Our workshop will form the basis for a document describing the most important Scientific Opportunities at LCLS-II. Our workshop will inform the instrumentation developed for LCLS-II

5 Workshop Charge (Identifying Science) To identify the most important science opportunities (transformational, grand challenge level) that can uniquely be addressed using capabilities of LCLS-II (high rep rate <5 kev, 1-25 kev at 120 Hz) Near-term science consistent with LCLS-II baseline Future science consistent with potential LCLS-II upgrades Succinct statement of why this science is transformational What are important outstanding questions in your field? Why have they not been answered (what is impeding progress, why now, why LCLS-II)? What is the potential broader impact if we can answer these questions (why are they important)? Plenary speakers will outline selected important science areas setting the stage for the breakout discussions.

6 Workshop Charge (Experiments, Parameters, Alternatives?) Map out experimental approach and key requirements for: Beamline optics, endstation(s), detectors, lasers, sample injectors etc. Identify key capabilities, consistent with nominal LCLS-II baseline (and upgrades secondary) Photon flux, pulse duration, rep rate, tuning, polarization, etc. Compare experimental approach to current state-of-the art & assess alternative approaches Can the experimental approach leverage existing instrumentation/expertise? What R&D is required? Can the science be done with other existing sources? (e.g. diffraction-limited synchrotrons, table-top HHG, etc.) Breakout sessions will identify priority science opportunities linked to LCLS-II & outline experimental approaches and parameters

7 Workshop Format

8 Material Physics Workshop Format Day 1 (Monday) Morning: Introduction Plenary Speakers Afternoon: Lunch Plenary Speakers Breakout Sessions Dinner Homework Day 2 (Tuesday) Morning: Plenary Speakers Breakout Sessions Afternoon: Lunch Breakout Sessions Breakout Closeout Depart Breakouts: All are encouraged to present ideas template provided Each breakout will deliver a summary at the closeout session Scribes will take notes and collect presented materials for internal use only.

9 Breakout List Topics Magnetism & spin dynamics Correlated materials & charge-collective modes Materials physics nanoscale structure, domains, grain boundaries Co-Leaders Hermann Durr, Peter Fischer Z.X. Shen, Tom Devereaux, Zahid Hussain Aymeric Robert, David Reis, Steve Kevan Each breakout will be introduced in more detail this afternoon

10 Breakout Contribution Template Everyone is encouraged to contribute a scientific opportunity for LCLS-II Template slides provide a guide for input. It s not to late to start!

11 Breakout Deliverables Summary slides for closeout that address the charge Written notes addressing the charge with respect to scientific impact and relevance to LCLS-II Answers to the LCLS-II parameters questions Notes from breakout discussion (scribe) Collection of slides (on a memory stick) presented at the breakout. (scribe)

12 Breakout discussion FAQ Q: LCLS-II sounds great, but it can t answer the most important questions in my field...should I go home? A: You should stay. Focus on the key pieces where LCLS-II can provide unique insight. Q: I have this great idea, but it requires 10fs synchronization between the optical and x-ray pulses, and the spec is <20fs. A: Requirements outside of the nominal should provide a clearly justified scientific opportunity. Develop meaningful scientific advances starting with <20 fs (nominal) synchronization and working toward the target synchronization. Q: I can do my experiment at LCLS today. At LCLS-II, I would do the same thing just a 1000 time faster. Is that really unique? A: It depends, but if you need one year of LCLS-I beamtime which you obviously can t get to make progress on your experiment and one shift at LCLS-II would do the same then YES that is unique.

13 Build from previous work! SLAC/LBNL 2008 BES Document are available on the workshop website

14 Scientific Opportunity An Example

15 Understanding Multi-electron Photo-Catalytic Systems Science Challenge/Opportunity Understanding natural and artificial photo-catalysts on natural time scales and under operating conditions Critically missing is a complete characterization of the electronic and atomic structure of rare/transient intermediate states responsible for key steps in catalysis (e.g. water splitting) Significance & Impact Deeper understanding of natural photo-catalysts is essential to design efficient, robust, chemically selective catalytic systems from earth-abundant elements Optimization of artificial systems requires characterization of their dynamics under operating conditions Challenges & LCLS-II Strengths Important grand challenge level scientific question LCLS-II connection Sub-nm resolution, chemical specificity, dynamics. Tunable ultrafast soft X-rays at high rep rate will enable chemically-specific characterization of rare transient intermediate states (occupied, unoccupied and collective states) via time-resolved RIXS. Two-color, tailored laser excitation, wet RIXS endstation S 4 H +, e - S 0 S hn 1 O 2 e - H +, e - hn S 3 hn hn H +, e - S 2 O 2 Evolving Catalyst Mn 4 CaO 5 4-photon, 4-electron catalyst with dynamics spanning sub-psec to msec. Critical S 4 state is metastable and has eluded characterization with present methods/sources. Baseline and future upgrade Your Name Workshop (Chemistry, Materials, life Sciences) Breakout Session

16 energy loss (ev) Experimental Approach Techniques(s) Dynamic electronic structure of transition-metal catalysts. Chemical specificity to transition-metal and ligand(s) Time-resolved RIXS, two-color spectroscopy, stimulated Raman, multidimensional spectroscopy Tools High-resolution (100 mev), high-throughput RIXS spectrometer for solution-phase samples (jets or droplets for shot-to-shot sample replacement. Suitable designs are presently available that represent a modest advance beyond current instruments. Two-color and multidimensional spectroscopy requires independently tunable pulses from FEL (DE ~0-500 ev), and optics for manipulating them. Alternatives Synchrotron approaches rely on largely static measurements of crytrapped states. Not all intermediates can be cryo-trapped, and fixed samples are susceptible to damage as significant accumulated photons are required. Your Name Take Credit! Time resolved RIXS, twocolor spectroscopy. Alternatives discussion 1 MLCT 3 MLCT N-1s DE hν out Resonant Inelastic X-ray Scattering (RIXS, X-ray Raman) Occupied & unoccupied states Charge transfer Multi-particle excitations Specific and quantitative parameter requirements incident energy (ev) static N K-edge RIXS map - S o (BESSY Wernet, Huse et al.)

17 From this workshop Through instrumentation To important science at LCLS-II

18 Toward Science at LCLS-II Delivering effective capabilities for science requires parallel effort Science Scientific opportunities are identified through the workshop, and through ongoing activities of science working groups, and captured in a science document R&D R&D and planning for LCLS-II instrumentation is ongoing at the LCLS facility, and will be guided and prioritized in large part by science opportunities and needs identified for LCLS-II LCLS-II LCLS-II beam parameters are optimized by the LCLS-II project with guidance from scientific drivers.

19 Input for R&D The LCLS operating facility will guide instrumentation for LCLS-II. R&D is underway in many areas X-ray Detectors Pump Lasers Data Acquisition Sample Delivery LCLS-II accelerator parameters being developed and priorities Bi-weekly discussion between with LCLS & LCLS- II to inform and drive progress in these areas. Polarization Control Seeding

20 LCLS-II & Instrumentation

21 LCLS-II Operating Facility Layout NEH FEH Cu Linac H3 H4 H4.5 H5 H6 NEH FEH SC Linac H1 H2 4 GeV, 0.3 ma, 1.2MW H kev (120kW) H4 H4.5 H5 H6 Polarization currently under evaluation Soft x-ray undulator is linear horizontal. Option for elliptical polarization control requires strong scientific support Hard x-ray undulator has option for either linear vertical or linear horizontal.

22 Soft x-ray instrumentation at LCLS-II As part of the LCLS-II project, a single soft x-ray beamline (200eV-1250eV) will be built. The current soft x-ray beamlines in hutches 1 and 2 will be removed. Scientific opportunities will drive additional instrumentation Monochromatic beamline High resolution x-ray emission spectrometers Reaction-microscope system Pulsed magnetic field systems Upgraded or new end station systems

23 Instrumentation plan for LCLS-II Space for instruments at LCLS-II is constrained by the layout of the Near and Far Experiment Halls. Significant reconfiguration and development of the NEH instruments is expected. Control Rooms Future Instrument Space Future Instrument Space

24 Hard x-ray instrumentation The hard x-ray instruments will remain in the same location for LCLS-II with ancillary upgrades necessary for LCLS-II compatibility All four hard x-ray instruments can use the LCLS-II beam XPP, XCS and MEC can operate at photon energies as high as 25keV at lower repetition rates because a mirror upgrade project that is currently underway. Because of a mirror upgrade the CXI instrument will be capable of delivering focused beam at higher repetition rate. Future detector, pump laser and DAQ upgrade options are part of the current LCLS facility development.

25 Summary We are charged to develop important science opportunities unique to LCLS-II at the startup of LCLS-II and beyond. Breakout group deliverables will develop into the Scientific Opportunities Document The R&D on instrumentation at LCLS along with the development of the LCLS-II project are underway in parallel now is the time to begin refining the instrumentation plan.

26 Questions & Discussion

27 END

High Energy Upgrade: LCLS-II-HE High Repetition Rate Soft X-rays Hard X-rays

High Energy Upgrade: LCLS-II-HE High Repetition Rate Soft X-rays Hard X-rays High Energy Upgrade: LCLS-II-HE High Repetition Rate Soft X-rays Hard X-rays Electronic & nuclear coupling Emergent properties Materials heterogeneity lattice spin charge orbital LCLS-II-HE provides: Ultrafast

More information

Breakout Session Deliverables

Breakout Session Deliverables Workshop Charge Identify most important science drivers (transformational, grand challenge level) that can uniquely be addressed using capabilities of LCLS-II (high rep rate

More information

High energy upgrade: LCLS-II-HE new insight to structural dynamics at the atomic scale

High energy upgrade: LCLS-II-HE new insight to structural dynamics at the atomic scale High energy upgrade: LCLS-II-HE new insight to structural dynamics at the atomic scale Ultrafast coherent X-rays ~1 Ångstrom (~12 kev) High repetition rate 4 GeV 8 GeV (SCRF linac) +20 cryomodules Dynamics

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

Free-electron lasers as sources of extremely brilliant x-ray radiation (Introduction European XFEL)

Free-electron lasers as sources of extremely brilliant x-ray radiation (Introduction European XFEL) Free-electron lasers as sources of extremely brilliant x-ray radiation () Winter School of Synchrotron Radiation, Liptovsky Jan, Slovakia, Feb 01 04, 2011 Thomas Tschentscher thomas.tschentscher@xfel.eu

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

XRD endstation: condensed matter systems

XRD endstation: condensed matter systems XRD endstation: condensed matter systems Justine Schlappa SCS Instrument Beamline Scientist Hamburg, January 24, 2017 2 Outline Motivation Baseline XRD setup R&D setup Two-color operation and split&delay

More information

Vertical Polarization Option for LCLS-II. Abstract

Vertical Polarization Option for LCLS-II. Abstract SLAC National Accelerator Lab LCLS-II TN-5-8 March 5 Vertical Polarization Option for LCLS-II G. Marcus, T. Raubenheimer SLAC, Menlo Park, CA 95 G. Penn LBNL, Berkeley, CA 97 Abstract Vertically polarized

More information

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Wei-Sheng Lee Stanford Institute of Material and Energy Science (SIMES) SLAC & Stanford University Collaborators

More information

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design Operated by Los Alamos National Security, LLC, for the U.S. Department of Energy MaRIE (Matter-Radiation Interactions in Extremes) MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design B. Carlsten, C.

More information

The European XFEL in Hamburg: Status and beamlines design

The European XFEL in Hamburg: Status and beamlines design UVX 2010 (2011) 63 67 DOI: 10.1051/uvx/2011009 C Owned by the authors, published by EDP Sciences, 2011 The European XFEL in Hamburg: Status and beamlines design J. Gaudin, H. Sinn and Th. Tschentscher

More information

Progress Report on the LCLS XFEL at SLAC

Progress Report on the LCLS XFEL at SLAC Progress Report on the LCLS XFEL at SLAC L F DiMauro 1, J Arthur 2, N Berrah 3, J Bozek 2, J N Galayda 2 and J Hastings 2 1 The Ohio State University, Department of Physics, Columbus, OH 43210 USA 2 Stanford

More information

Greenfield FELs. John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL

Greenfield FELs. John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL Greenfield FELs John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL BESAC Subcommittee on BES 20-year Facility Road Map February 22-24, 2003 What is a Greenfield FEL? High-gain FELs are

More information

SLAC National Accelerator Laboratory. Persis S. Drell Director August 30, 2010

SLAC National Accelerator Laboratory. Persis S. Drell Director August 30, 2010 SLAC National Accelerator Laboratory Persis S. Drell Director August 30, 2010 SLAC Mission Explore the ultimate structure and dynamics of matter in the domains of energy, space and time at the smallest

More information

Hirohito Ogasawara, Dennis Nordlund, Anders Nilsson

Hirohito Ogasawara, Dennis Nordlund, Anders Nilsson Pump-probe Ultrafast Surface Chemistry (PES, XES) station for Real Time Electronic Structure Mapping of Catalytic Reactions: Instrumentation Hirohito Ogasawara, Dennis Nordlund, Anders Nilsson Stanford

More information

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 T. Plath, L. L. Lazzarino, Universität Hamburg, Hamburg, Germany K. E. Hacker, T.U. Dortmund, Dortmund, Germany Abstract We present a conceptual study

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation SESAME-JSPS School November 14-16, 2011 Amman, Jordan Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation Shin-ichi Adachi (Photon Factory,

More information

The Linac Coherent Light Source II (LCLS II) at SLAC

The Linac Coherent Light Source II (LCLS II) at SLAC The Linac Coherent Light Source II (LCLS II) at SLAC Overview The Linac Coherent Light Source (LCLS) will be the world s first free-electron laser at Ångström wavelengths (XFEL). It will be the first high

More information

The MEC endstation at LCLS New opportunities for high energy density science

The MEC endstation at LCLS New opportunities for high energy density science The MEC endstation at LCLS New opportunities for high energy density science Singapore, fttp-5, April 20th, 2011 Bob Nagler BNagler@slac.stanford.edu SLAC national accelerator laboratory 1 Overview Motivation

More information

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale Jan Lüning Outline Scientific motivation: Random magnetization processes Technique: Lensless imaging by Fourier Transform holography Feasibility:

More information

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC-PUB-14159 SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC National Accelerator Laboratory: 2575 Sand Hill Road, Menlo

More information

Radiation Safety at LCLS: The Photon Beam s Maximum Capability and Material Damage Potential

Radiation Safety at LCLS: The Photon Beam s Maximum Capability and Material Damage Potential SLAC-PUB-15708 August 2013 Radiation Safety at LCLS: The Photon Beam s Maximum Capability and Material Damage Potential J.M. Bauer *1, J.C. Liu 1, A.A. Prinz 2, and S.H. Rokni 1 1 Radiation Protection

More information

X-Ray Spectroscopy at LCLS

X-Ray Spectroscopy at LCLS LCLS proposal preparation workshop for experiments at XPP, June 21, 2008, SLAC, Menlo Park, CA ħω ħω e - X-Ray Spectroscopy at LCLS Uwe Bergmann SSRL Stanford Linear Accelerator Center bergmann@slac.stanford.edu

More information

An Adventure in Marrying Laser Arts and Accelerator Technologies

An Adventure in Marrying Laser Arts and Accelerator Technologies An Adventure in Marrying Laser Arts and Accelerator Technologies Dao Xiang Beam Physics Dept, SLAC, Stanford University Feb-28-2012 An example sample Probe (electron) Pump (laser) Typical pump-probe experiment

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

Undulator radiation from electrons randomly distributed in a bunch

Undulator radiation from electrons randomly distributed in a bunch Undulator radiation from electrons randomly distributed in a bunch Normally z el >> N u 1 Chaotic light Spectral property is the same as that of a single electron /=1/N u Temporal phase space area z ~(/

More information

Femtosecond X-Ray Experiments

Femtosecond X-Ray Experiments Femtosecond X-Ray Experiments Christian Bressler FXE Hamburg, January 25, 2017 FXE Workshop Dec 2016: Users overall very happy with implemented components 2 Scientific Instrument FXE The FXE scientific

More information

X-Ray Emission Spectrometer Design with Single-Shot. Pump-Probe and Resonant Excitation Capabilities. Katherine Spoth

X-Ray Emission Spectrometer Design with Single-Shot. Pump-Probe and Resonant Excitation Capabilities. Katherine Spoth X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities Katherine Spoth Office of Science, Science Undergraduate Laboratory Internship (SULI) State University

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 Performance Metrics of Future Light Sources Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 http://www-ssrl.slac.stanford.edu/aboutssrl/documents/future-x-rays-09.pdf special acknowledgment to John Corlett,

More information

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays David A. Reis PULSE Institute, Departments of Photon Science and Applied Physics, Stanford University SLAC National Accelerator

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten

Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten Institut für Experimentelle Physik STI Round-Table Meeting, Hamburg, 22. - 24. Juni 2004 Outline motivation: why short pulses and the XFEL

More information

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory 4GLS Status Susan L Smith ASTeC Daresbury Laboratory Contents ERLP Introduction Status (Kit on site ) Plan 4GLS (Conceptual Design) Concept Beam transport Injectors SC RF FELs Combining Sources May 2006

More information

Radiological safety studies for the TeraFERMI beamline at

Radiological safety studies for the TeraFERMI beamline at Radiological safety studies for the TeraFERMI beamline at FERMI@elettra K.Casarin 1, L. Fröhlich 2, G.Tromba 1, A.Vascotto 1 1 Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy 2 Deutsches Elektronen-Synchrotron

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team -

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - First Lasing below 7nm Wavelength at FLASH/DESY, Hamburg Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - email: joerg.rossbach@desy.de FLASH: The first FEL user facility for

More information

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team Short Pulse, Low charge Operation of the LCLS Josef Frisch for the LCLS Commissioning Team 1 Normal LCLS Parameters First Lasing in April 10, 2009 Beam to AMO experiment August 18 2009. Expect first user

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation Two-Stage Chirped-Beam SASE-FEL for High ower Femtosecond X-Ray ulse Generation C. Schroeder*, J. Arthur^,. Emma^, S. Reiche*, and C. ellegrini* ^ Stanford Linear Accelerator Center * UCLA 12-10-2001 LCLS-TAC

More information

Thurs. June 16 - Plenary (Bldg. 53 Panofsky Auditorium)

Thurs. June 16 - Plenary (Bldg. 53 Panofsky Auditorium) Research Opportunities in Photochemistry, Solar Energy & Advanced X-ray Methods June 16-17, 2016 National Accelerator Laboratory Menlo Park, CA Agenda Thurs. June 16 - Plenary (Bldg. 53 Panofsky Auditorium)

More information

FEL WG: Summary. SLAC National Accelerator Lab. Kwang-Je Kim (Part I, Mo-Tu) Joe Bisognano (Part II, Th) Future Light Source WS 2010: FEL WG

FEL WG: Summary. SLAC National Accelerator Lab. Kwang-Je Kim (Part I, Mo-Tu) Joe Bisognano (Part II, Th) Future Light Source WS 2010: FEL WG FEL WG: Summary Kwang-Je Kim (Part I, Mo-Tu) Joe Bisognano (Part II, Th) Future Light Source WS 2010: FEL WG March 1-5, 2010 SLAC National Accelerator Lab Menlo Park, CA The submitted manuscript has been

More information

SOFT X-RAY MATERIAL INSTRUMENT (SXR)

SOFT X-RAY MATERIAL INSTRUMENT (SXR) SOFT X--RAY MATERIAL INSTRUMENT ((SXR)) SUMMARY OF THE TECHNICAL DESIGN DRAFT 3-3-09 This document is derived from the SXR Technical Design Report, July 2008, prepared for the LCLS by the SXR consortium.

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

Small Quantum Systems Scientific Instrument

Small Quantum Systems Scientific Instrument Small Quantum Systems Scientific Instrument WP-85 A. De Fanis, T. Mazza, H. Zhang, M. Meyer European XFEL GmbH TDR_2012: http://www.xfel.eu/documents/technical_documents XFEL Users Meeting 2014, January

More information

Inline Spectrometer as Permanent Optics at the X-ray Correlation Spectroscopy Instrument to Support Seeding Operation

Inline Spectrometer as Permanent Optics at the X-ray Correlation Spectroscopy Instrument to Support Seeding Operation Inline Spectrometer as Permanent Optics at the X-ray Correlation Spectroscopy Instrument to Support Seeding Operation Amber L. Gray Office of Science, Science Undergraduate Laboratory Internship (SULI)

More information

SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL

SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Date: 6/17/13 A. EXPERIMENT TITLE: Development of Electron Radiography for Material Science B. PROPOSERS & REQUESTED FACILITY:

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

Developments for the FEL user facility

Developments for the FEL user facility Developments for the FEL user facility J. Feldhaus HASYLAB at DESY, Hamburg, Germany Design and construction has started for the FEL user facility including the radiation transport to the experimental

More information

SLS Symposium on X-Ray Instrumentation

SLS Symposium on X-Ray Instrumentation SLS Symposium on X-Ray Instrumentation Tuesday, December 7, 2010 10:00 to 12:15, WBGB/019 10:00 The optics layout of the PEARL beamline P. Oberta, U. Flechsig and M. Muntwiler 10:30 Instrumentation for

More information

Update on and the Issue of Circularly-Polarized On-Axis Harmonics

Update on and the Issue of Circularly-Polarized On-Axis Harmonics Update on FERMI@Elettra and the Issue of Circularly-Polarized On-Axis Harmonics W. Fawley for the FERMI Team Slides courtesy of S. Milton & Collaborators The FERMI@Elettra Project FERMI@Elettra is a single-pass

More information

Investigations on warm dense plasma with PHELIX facility

Investigations on warm dense plasma with PHELIX facility 2 nd EMMI Workshop on Plasma Physics with Intense Laser and Heavy Ion Beams, May 14-15, Moscow Investigations on warm dense plasma with PHELIX facility S.A. Pikuz Jr., I.Yu. Skobelev, A.Ya. Faenov, T.A.

More information

FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II

FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II G. Marcus, Y. Ding, P. Emma, Z. Huang, T. Raubenheimer, L. Wang, J. Wu SLAC, Menlo Park, CA 9, USA Abstract The design and performance of the LCLS-II

More information

ERL FACILITY AT CERN FOR APPLICATIONS

ERL FACILITY AT CERN FOR APPLICATIONS ERL FACILITY AT CERN FOR APPLICATIONS Erk Jensen (CERN) Big thanks to contributors: A. Bogacz (JLAB), O. Brüning, R. Calaga, V. Chetvertkova, E. Cormier (CELIA), R. Jones, M. Klein, A. Valloni, D. Pellegrini,

More information

Damage to Molecular Solids Irradiated by X-ray Laser Beam

Damage to Molecular Solids Irradiated by X-ray Laser Beam WDS'11 Proceedings of Contributed Papers, Part II, 247 251, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Damage to Molecular Solids Irradiated by X-ray Laser Beam T. Burian, V. Hájková, J. Chalupský, L. Juha,

More information

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

Report on the XFEL STI Round Table Workshop

Report on the XFEL STI Round Table Workshop Report on the XFEL STI Round Table Workshop June 22-24th, 2004 background workshop XFEL preparatory phase Jochen R. Schneider DESY Approaching the European XFEL Facility Steering Committee chairman: H.

More information

Radiation Protection Considerations for the Cryogenic In-Vacuum Undulator of the EMIL Project at BESSY

Radiation Protection Considerations for the Cryogenic In-Vacuum Undulator of the EMIL Project at BESSY Radiation Protection Considerations for the Cryogenic In-Vacuum Undulator of the EMIL Project at BESSY Yvonne Bergmann, Klaus Ott Helmholtz- Zentrum Berlin BESSY II Radiation Protection Department yvonne.bergmann@helmholtz-berlin.de

More information

Synchrotron Methods in Nanomaterials Research

Synchrotron Methods in Nanomaterials Research Synchrotron Methods in Nanomaterials Research Marcel MiGLiERiNi Slovak University of Technology in Bratislava and Centre for Nanomaterials Research, Olomouc marcel.miglierini@stuba.sk www.nuc.elf.stuba.sk/bruno

More information

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000 The ORION Facility at SLAC Bob Siemann AAC Workshop, June 15, 2000 1. Introduction 2. The ORION Workshop 3. What s Next? 4. Concluding Remarks http://www-project.slac.stanford.edu/orion/ Introduction Advanced

More information

New Electron Source for Energy Recovery Linacs

New Electron Source for Energy Recovery Linacs New Electron Source for Energy Recovery Linacs Ivan Bazarov 20m Cornell s photoinjector: world s brightest electron source 1 Outline Uses of high brightness electron beams Physics of brightness High brightness

More information

PHYS Introduction to Synchrotron Radiation

PHYS Introduction to Synchrotron Radiation C. Segre (IIT) PHYS 570 - Spring 2018 January 09, 2018 1 / 20 PHYS 570 - Introduction to Synchrotron Radiation Term: Spring 2018 Meetings: Tuesday & Thursday 13:50-15:05 Location: 213 Stuart Building Instructor:

More information

Superconducting RF Accelerators: Why all the interest?

Superconducting RF Accelerators: Why all the interest? Superconducting RF Accelerators: Why all the interest? William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT The HEP prespective ILC PROJECT X Why do we need RF

More information

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I Light Source I Takashi TANAKA (RIKEN SPring-8 Center) Light Source I Light Source II CONTENTS Introduction Fundamentals of Light and SR Overview of SR Light Source Characteristics of SR (1) Characteristics

More information

Trends in X-ray Synchrotron Radiation Research

Trends in X-ray Synchrotron Radiation Research Trends in X-ray Synchrotron Radiation Research Storage rings Energy Recovery Linacs (ERL) Free Electron Lasers Jochen R. Schneider DESY Development of the brilliance of X-ray sources Since the discovery

More information

X-TOD Update. Facility Advisory Committee Photon Breakout Session. October 30, 2007

X-TOD Update. Facility Advisory Committee Photon Breakout Session. October 30, 2007 XTOD Update Facility Advisory Committee Photon Breakout Session LCLS Layout Linac Undulator Hall FEE (Front-End-Enclosure) Diagnostics SOMS HOMS X-Ray Tunnel FEH (Far Experimental Hall) NEH (Near Experimental

More information

Ultrafast Single-Shot X-Ray Emission Spectrometer Design. Katherine Spoth

Ultrafast Single-Shot X-Ray Emission Spectrometer Design. Katherine Spoth Ultrafast Single-Shot X-Ray Emission Spectrometer Design Katherine Spoth O ce of Science, Science Undergraduate Laboratory Internship (SULI) State University of New York at Bu alo SLAC National Accelerator

More information

ELISS

ELISS ELISS 2016 22. 8. 2016 Study nature in smaller spatial and shorter time scales Spatial resolution d = 0.61 λ NA Motivation Phys. Today 65, 9, 44 (2012) Temporal resolution ~pulse duration in pump-probe

More information

Yuantao Ding 8/25/2015

Yuantao Ding 8/25/2015 Generating Femtosecond to Sub-Femtosecond X-ray pulses in free-electron lasers Yuantao Ding 8/25/2015 SLAC National Accelerator Laboratory Outline Introduction/motivation SASE FELs: Few-fs x-rays with

More information

The BESSY - FEL Collaboration

The BESSY - FEL Collaboration The BESSY - FEL Collaboration Planning the Revolution for Research with soft X-Rays Photon Energy Range : 20 ev up to 1 kev λ/λ 10-2 to 10-4 Peak Power: 1mJ in 200 fs >> 5 GW Time Structure: 200 fs (

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

Linac optimisation for the New Light Source

Linac optimisation for the New Light Source Linac optimisation for the New Light Source NLS source requirements Electron beam requirements for seeded cascade harmonic generation LINAC optimisation (2BC vs 3 BC) CSR issues energy chirp issues jitter

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of Polarization control experiences in single pass seeded FELs Carlo Spezzani on behalf of the FERMI team & the storage ring FEL group Outline Introduction Storage Ring FEL test facility characterization

More information

X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transitions and frustrated magnets

X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transitions and frustrated magnets X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transitions and frustrated magnets H. Nojiri, IMR Tohoku Univ., Sendai Japan http:spin100.imr.tohoku.ac.jp

More information

French-Ukrainian workshop Kevin Dupraz 1 ELI-NP-GBS. Extreme Light Infrastructure Nuclear Physics Gamma Beam Source

French-Ukrainian workshop Kevin Dupraz 1 ELI-NP-GBS. Extreme Light Infrastructure Nuclear Physics Gamma Beam Source 1 ELI-NP-GBS Extreme Light Infrastructure Nuclear Physics Gamma Beam Source The 3 ELI s pillars 2 ELI-Beamlines In Czech Republic: Ultra-short and intense beams for interdisciplinary applications. ELI-NP

More information

Working Group 8 Laser Technology for Laser-Plasma Accelerators Co-leaders Bill White & Marcus Babzien

Working Group 8 Laser Technology for Laser-Plasma Accelerators Co-leaders Bill White & Marcus Babzien Working Group 8 Laser Technology for Laser-Plasma Accelerators Co-leaders Bill White & Marcus Babzien Working Group 8: Overview Relatively small group this year: 8 oral / 3 poster presentations For 2016

More information

XFEL User Meeting, Hamburg, Jan 28, 2015

XFEL User Meeting, Hamburg, Jan 28, 2015 Femtosecond X-Ray Experiments at the European XFEL Christian Bressler, Femtosecond X-ray Experiments (FXE) Instrument European XFEL XFEL User Meeting, Hamburg, Jan 28, 2015 Experiment Hall Integration

More information

The Second Half Year 2017 PAL-XFEL Call for Proposals

The Second Half Year 2017 PAL-XFEL Call for Proposals The Second Half Year 2017 PAL-XFEL Call for Proposals Summary Information for Submitting Proposals We encourage scientists from all over the world to submit applications for beam time proposal to utilize

More information

Pushing the limits of laser synchrotron light sources

Pushing the limits of laser synchrotron light sources Pushing the limits of laser synchrotron light sources Igor Pogorelsky National Synchrotron Light Source 2 Synchrotron light source With λ w ~ several centimeters, attaining XUV region requires electron

More information

Ultrafast nanoscience with ELI ALPS

Ultrafast nanoscience with ELI ALPS Ultrafast nanoscience with ELI ALPS Péter Dombi Wigner Research Centre for Physics, Budapest & Max Planck Institute of Quantum Optics, Garching Overview ultrafast (femtosecond/attosecond) dynamicsin metal

More information

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem D.T Palmer and R. Akre Laser Issues for Electron RF Photoinjectors October 23-25, 2002 Stanford Linear Accelerator

More information

The Compact Light Source. Jeff Rifkin Vice-President Lyncean Technologies, Inc.

The Compact Light Source. Jeff Rifkin Vice-President Lyncean Technologies, Inc. The Compact Light Source Jeff Rifkin Vice-President Lyncean Technologies, Inc. Outline Introduction to the Compact Light Source A look at the hardware Recent results of the CLS Conclusion 2 History The

More information

Harmonic Lasing Self-Seeded FEL

Harmonic Lasing Self-Seeded FEL Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov FEL seminar, DESY Hamburg June 21, 2016 In a planar undulator (K ~ 1 or K >1) the odd harmonics can be radiated on-axis (widely used in SR

More information

First operation of a Harmonic Lasing Self-Seeded FEL

First operation of a Harmonic Lasing Self-Seeded FEL First operation of a Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov ICFA workshop, Arcidosso, Italy, 22.09.2017 Outline Harmonic lasing Harmonic lasing self-seeded (HLSS) FEL Experiments

More information

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future !!! #! ! # Compton Scattering Effect and Physics of Compton Photon Beams Compton Photon Sources around the World, Present and Future Compton X-ray Sources: Facilities, Projects and Experiments Compton

More information

Tracking chemical reactions using combined time-resolved x- ray spectroscopies and scattering

Tracking chemical reactions using combined time-resolved x- ray spectroscopies and scattering Tracking chemical reactions using combined time-resolved x- ray spectroscopies and scattering Workshop on MXAN code for XANES analysis IP PAS, Warsaw, Poland April 8, 2014 Alexander Britz and Tadesse Assefa

More information

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB ERL as a X-ray Light Source Contents Introduction Light sources landscape General motivation

More information

The Free Electron Laser: Properties and Prospects 1

The Free Electron Laser: Properties and Prospects 1 The Free Electron Laser: Properties and Prospects 1 Gunnar Ingelman and Kai Siegbahn Uppsala University Abstract: Novel electron accelerator techniques can be used to create free electron lasers in a wide

More information

David Martin High Precision Beamline Alignment at the ESRF IWAA, Grenoble 3-7 October 2016

David Martin High Precision Beamline Alignment at the ESRF IWAA, Grenoble 3-7 October 2016 David Martin High Precision Beamline Alignment at the ESRF IWAA, Grenoble 3-7 October 2016 OVERVIEW The ESRF has just completed the Phase I Upgrade programme. The Phase I Upgrade programme was centered

More information

Charge for WG2 (Optics and Beams)

Charge for WG2 (Optics and Beams) Charge for WG2 (Optics and Beams) Georg H. Hoffstaetter (Cornell University / Physics) on behalf of the conveners of WG2: Vladimir Litvinenko (BNL / Accelerator Physics) Hywel Owen (Daresbury / ASTeC)

More information

TECHNICAL ADVISORY COMMITTEE (TAC) REPORT 3. May 19-20, 2000

TECHNICAL ADVISORY COMMITTEE (TAC) REPORT 3. May 19-20, 2000 July 17, 2000 TECHNICAL ADVISORY COMMITTEE (TAC) REPORT 3 TAC Committee Members: Bill Colson (Chair, NPS) Dave Attwood (LBL) Jerry Hastings (BNL) Pat O Shea (UMD) Ross Schlueter (LBL) Ron Ruth (SLAC) The

More information

Few-Body HIgS

Few-Body HIgS Few-Body Physics @ HIgS Werner Tornow Duke University & Triangle Universities Nuclear Laboratory Outline High-Intensity Gamma-ray Source (HIgS) A=3 g- 3 He three-body breakup with double polarization Outlook

More information

Length of beam system = 910m. S. Reiche X var = ~50m ~ 650m / Y. Kim FEL-KY ~150m. ~60m. LaserHutch2 (access during operation)

Length of beam system = 910m. S. Reiche X var = ~50m ~ 650m / Y. Kim FEL-KY ~150m. ~60m. LaserHutch2 (access during operation) Laser Laser HHG Diagnostic ATHOS PORTHOS ARAMIS THz-Pump P A U L S C H E R R E R I N S T I T U T Length of beam system = 910m &'!( Test & Commissioning steps (A,B,C) A11 Conv. Gun & Injector A12 LINAC

More information

BIG A Gamma Ray Source at FACET-II

BIG A Gamma Ray Source at FACET-II BIG A Gamma Ray Source at FACET-II Laser-Driven Radiation Sources for Nuclear Applications, GWU, December 13-15, 2015 Carsten Hast SLAC Outline FACET-II in a Nutshell BIG: Beams of Intense Gamma-Rays at

More information

LCLS-II Capabilities & Overview LCLS-II Science Opportunities Workshop. Tor Raubenheimer (P. Emma) February 9 th, 2015

LCLS-II Capabilities & Overview LCLS-II Science Opportunities Workshop. Tor Raubenheimer (P. Emma) February 9 th, 2015 LCLS-II Capabilities & Overview LCLS-II Science Opportunities Workshop Tor Raubenheimer (P. Emma) February 9 th, 2015 Outline 1. Overall machine goals and layout 2. Primary parameters Nominal X-ray wavelength

More information

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM LCLS-II TN-15-41 11/23/2015 J. Qiang, M. Venturini November 23, 2015 LCLSII-TN-15-41 1 Introduction L C L S - I I T E C H N I C

More information

Electron Beam Polarimetry at JLab Hall C Dave Gaskell PST 2009 September 7, 2009

Electron Beam Polarimetry at JLab Hall C Dave Gaskell PST 2009 September 7, 2009 Electron Beam Polarimetry at JLab Hall C Dave Gaskell PST 2009 September 7, 2009 1. Møller Polarimeter 2. Compton Polarimeter 3. Summary JLab Polarimetry Techniques Three different processes used to measure

More information