Name: Student ID Number: Section Number:

Size: px
Start display at page:

Download "Name: Student ID Number: Section Number:"

Transcription

1 Name: Student ID Number: Section Number: VERSION A KEY Some useful constants and relationships: Specific heat capacities (in J/g. K): H 2 O (l) = 4.184; Al (s) = 0.900; Cu (s) = 0.387; Steel (s) = J = 1 L. atm 1 atm = 760 Torr 1J = 1kg. m 2 /s 2 1 ev = x J R = Ideal gas constant: L. atm. mol -1. K -1 = J. mol -1. K -1 Avogadro constant: x mole -1 Planck's constant = h = x J. s c = speed of light: 3.00 x 10 8 m/s R H = x 10-2 nm -1 C 2 = second radiation constant = 1.44 x 10-2 K. m q = C p mδt Tλ max = 1 5 C Emitted power (W) 2 = (constant)t 4 Surface area (m 2 ) e = mc 2 c = λν 1 λ = R 1 H 2 n 1 2 E = hν E = hc Z 2 E(in Joules) = n 2 λ n 2

2 1. Draw a Lewis structure for the one most important resonance form of the cyanate ion, NCO - and show the formal charges (6 pts). 3 points for correct Lewis structure, 3 points for correct indication of -1 formal charge on the singly bonded O atom. OK if they put 0 formal charges on N and C. This one was worked out in detail on pg. 312 of the text. 2. Circle the compound(s) that have a dipole moment (9 pts): PF 5 SF 4 PF 3 BF 3 CCl 4 CHCl 3 SF 4, PF 3, CHCl 3 3 pts each, all or nothing 3. In the ideal tetrahedral geometry, all bond angles are Is the H-N-H bond angle in NH 3 greater than or less than this value (circle one)? (5 pts) Less than (actual value is 107 ) 5 pts all or nothing 4. Draw valid VSEPR structures for the following compounds and indicate the idealized structure describing the geometry of the atoms. The first one is done for you. (30 pts) SnCl 2 PCl 4 + CH 2 F 2 IBr 3 V-shaped Tetrahedral Tetrahedral T-shaped ANSWER: 5 pts for each correct structure (focus on electron counts), 5 pts for each description of shape

3 Name: Student ID Number: Section Number: VERSION B KEY Some useful constants and relationships: Specific heat capacities (in J/g. K): H 2 O (l) = 4.184; Al (s) = 0.900; Cu (s) = 0.387; Steel (s) = J = 1 L. atm 1 atm = 760 Torr 1J = 1kg. m 2 /s 2 1 ev = x J R = Ideal gas constant: L. atm. mol -1. K -1 = J. mol -1. K -1 Avogadro constant: x mole -1 Planck's constant = h = x J. s c = speed of light: 3.00 x 10 8 m/s R H = x 10-2 nm -1 C 2 = second radiation constant = 1.44 x 10-2 K. m q = C p mδt Tλ max = 1 5 C Emitted power (W) 2 = (constant)t 4 Surface area (m 2 ) e = mc 2 c = λν 1 λ = R 1 H 2 n 1 2 E = hν E = hc Z 2 E(in Joules) = n 2 λ n 2

4 1. Draw a Lewis structure for the one most important resonance form of the thiocyanate ion, NCS - and show the formal charges (6 pts). 3 points for correct Lewis structure, 3 points for correct indication of -1 formal charge on the doubly bonded S atom. Note this is different from NCO- because O is more electronegative than N, and S is less electronegative than N. OK if they put (0) formal charges on S and C. See pg. 312 of the text. 2. Circle the compound(s) that have no dipole moment (9 pts): PF 5 SF 4 PF 3 BF 3 CCl 4 CHCl 3 PF 5, BF 3, CCl 4 3 pts each, all or nothing 3. In the ideal tetrahedral geometry, all bond angles are Is the H-N-H bond angle in NH 3 less than or greater than this value (circle one)? (5 pts) Less than (actual value is 107 ) 5 pts all or nothing 4. Draw valid VSEPR structures for the following compounds and indicate the idealized structure describing the geometry of the atoms. The first one is done for you. (30 pts) SnCl 2 BF 3 CH 3 Cl ICl 2 - V-shaped Trigonal planar Tetrahedral Linear ANSWER: 5 pts for each correct structure (focus on electron counts), 5 pts for each description of shape

5 Name: Student ID Number: Section Number: VERSION C KEY Some useful constants and relationships: Specific heat capacities (in J/g. K): H 2 O (l) = 4.184; Al (s) = 0.900; Cu (s) = 0.387; Steel (s) = J = 1 L. atm 1 atm = 760 Torr 1J = 1kg. m 2 /s 2 1 ev = x J R = Ideal gas constant: L. atm. mol -1. K -1 = J. mol -1. K -1 Avogadro constant: x mole -1 Planck's constant = h = x J. s c = speed of light: 3.00 x 10 8 m/s R H = x 10-2 nm -1 C 2 = second radiation constant = 1.44 x 10-2 K. m q = C p mδt Tλ max = 1 5 C Emitted power (W) 2 = (constant)t 4 Surface area (m 2 ) e = mc 2 c = λν 1 λ = R 1 H 2 n 1 2 E = hν E = hc Z 2 E(in Joules) = n 2 λ n 2

6 1. Draw a Lewis structure for the one most important resonance form of the ion NO 2 + and show the formal charges (6 pts). 3 points for correct Lewis structure, 3 points for correct indication of +1 formal charge on the N atom. Plus 1 formal charge on N because O is more electronegative than N. OK if they put (0) formal charges on O. This was homework problem 10.9 of the text. 2. Circle the compound(s) that have a dipole moment (9 pts): PF 3 SF 4 PF 5 BF 3 CCl 4 CHCl 3 PF 3, SF 4, CHCl 3 3 pts each, all or nothing 3. In the ideal tetrahedral geometry, all bond angles are Is the H-N-H bond angle in NH 3 less than or greater than this value (circle one)? (5 pts) Less than (actual value is 107 ) 5 pts all or nothing 4. Draw valid VSEPR structures for the following compounds and indicate the idealized structure describing the geometry of the atoms. The first one is done for you. (30 pts) SnCl 2 SF 4 IF 5 XeF 4 V-shaped See-saw or saw-horse Square pyramid Square planar ANSWER: 5 pts for each correct structure (focus on electron counts), 5 pts for each description of shape

Name: Student ID Number: Section Number:

Name: Student ID Number: Section Number: Chem 6A 2011 (Sailor) QUIZ #7 Name: Student ID Number: Section Number: VERSION A KEY Some useful constants and relationships: Specific heat capacities (in J/g. K): H 2 O (l) = 4.184; Al (s) = 0.900; Cu

More information

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model Molecular Geometry Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized Electron

More information

Practice Worksheet for Lewis Structures (Mahaffy Ch )

Practice Worksheet for Lewis Structures (Mahaffy Ch ) Practice Worksheet for Lewis Structures (Mahaffy Ch. 10.1 10.5 ) 1. Main concepts Lewis Structures a. Connectivity b. Bonds & Lone pairs c. Electron Geometry & Molecular Shape d. Resonance Structures Formal

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Form J. Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004

Form J. Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004 Form J Chemistry 1441-023 Name (please print) Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004 Instructions: 1. This exam consists of 27 questions. 2. No scratch paper is allowed.

More information

Homework 08 VSEPR. The active ingredient in some oral anesthetics used in sore throat sprays. What is the molar mass of phenol?

Homework 08 VSEPR. The active ingredient in some oral anesthetics used in sore throat sprays. What is the molar mass of phenol? HW08 VSEPR This is a preview of the published version of the quiz Started: Oct 21 at 11:14am Quiz Instruc ons Homework 08 VSEPR Question 1 Consider the structural formula of phenol. The active ingredient

More information

VSEPR. Valence Shell Electron Pair Repulsion Theory

VSEPR. Valence Shell Electron Pair Repulsion Theory VSEPR Valence Shell Electron Pair Repulsion Theory Vocabulary: domain = any electron pair or bond (single, double or triple) is considered one domain. bonding pair = shared pair = any electron pair that

More information

At the end of this lesson, students should be able to :

At the end of this lesson, students should be able to : At the end of this lesson, students should be able to : (a) Explain Valence Shell Electron Pair Repulsion theory (VSEPR) (b) Draw the basic molecular shapes: linear, planar, tetrahedral, and octahedral.

More information

CHEM 101 Fall 08 Exam III(a)

CHEM 101 Fall 08 Exam III(a) CHEM 101 Fall 08 Exam III(a) On the answer sheet (scantron) write you name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on your

More information

Structures, Shapes and Polarity. of Molecules. Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity

Structures, Shapes and Polarity. of Molecules. Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity Structures, Shapes and Polarity Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity of Molecules Do now: Brainstorm what you know/remember about these L2 concepts

More information

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion.

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. VSEPR & Geometry Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. Lewis structures are not intended to show the 3-dimensional structure (i.e. shape or geometry)

More information

Shapes of Molecules and Hybridization

Shapes of Molecules and Hybridization Shapes of Molecules and Hybridization A. Molecular Geometry Lewis structures provide us with the number and types of bonds around a central atom, as well as any NB electron pairs. They do not tell us the

More information

AP Chemistry- Practice Bonding Questions for Exam

AP Chemistry- Practice Bonding Questions for Exam AP Chemistry- Practice Bonding Questions for Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a correct Lewis structure for

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10. The Shapes of Molecules 10-1

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10. The Shapes of Molecules 10-1 Chapter 10 The Shapes of Molecules 10-1 The Shapes of Molecules 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory and Molecular Shape 10.3

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

CHEM 101 Fall 09 Final Exam (a)

CHEM 101 Fall 09 Final Exam (a) CHEM 101 Fall 09 Final Exam (a) On the answer sheet (scantron) write your name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on

More information

3. Which of the following elements is primarily responsible for the photochemical smog? Chemistry 12, Exam III, Form A, April 4, 2001

3. Which of the following elements is primarily responsible for the photochemical smog? Chemistry 12, Exam III, Form A, April 4, 2001 Chemistry 12, Exam III, Form A, April 4, 2001 In all questions involving gases, assume that the ideal-gas laws hold, unless the question specifically refers to the non-ideal behavior. 1. It takes 21.3

More information

CHEMISTRY 102B Hour Exam III. Dr. D. DeCoste T.A. Show all of your work and provide complete answers to questions 16 and (45 pts.

CHEMISTRY 102B Hour Exam III. Dr. D. DeCoste T.A. Show all of your work and provide complete answers to questions 16 and (45 pts. CHEMISTRY 102B Hour Exam III April 28, 2016 Dr. D. DeCoste Name Signature T.A. This exam contains 17 questions on 8 numbered pages. Check now to make sure you have a complete exam. You have one hour and

More information

MOLECULAR ORBITAL DIAGRAM KEY

MOLECULAR ORBITAL DIAGRAM KEY 365 MOLECULAR ORBITAL DIAGRAM KEY Draw molecular orbital diagrams for each of the following molecules or ions. Determine the bond order of each and use this to predict the stability of the bond. Determine

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University Introduction: In chemistry, the three dimensional shape of a molecule is as important as the

More information

Chemical Bonding. Types of Bonds. Ionic Bonding. Resonance Structures. Molecular Geometries. VSEPR Basic Shapes 3-D Notation Hybridization (Lab)

Chemical Bonding. Types of Bonds. Ionic Bonding. Resonance Structures. Molecular Geometries. VSEPR Basic Shapes 3-D Notation Hybridization (Lab) Chemical Bonding Types of Bonds Ionic Bonding Lewis Structures Covalent Bonding Resonance Structures Octet Rule Polar Molecules Molecular Geometries VSEPR Basic Shapes 3-D Notation Hybridization (Lab)

More information

Unit-3 Chemical Bonding Practice Exam

Unit-3 Chemical Bonding Practice Exam Name: Class: _ Date: _ Unit-3 Chemical Bonding Practice Exam Multiple Choice - NO CALCULATORS, show your work and justify your answers. 1. The concentration of a red colored solution of cobalt ions needs

More information

: O: (1) (2) (3) (4) Page 1 of 6 : : : : : : (8) H H

: O: (1) (2) (3) (4) Page 1 of 6 : : : : : : (8) H H Experiment #12 MOLECULAR MODELS An aspect of chemistry, which traditionally proves to be difficult to many students, is the visualization of compounds, ions, and molecules in three dimensional space. In

More information

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link Announcements 1. Exam #3: Thursday, Dec. 6 th, 7:00-8:15pm (Conflict: 5:15-6:30pm) No calculators allowed 2. Activity 3: Making Models of Molecules lab write-up due tomorrow in discussion 3. Lon-capa HW

More information

1. Sodium nitrite is an ionic compound containing a polyatomic ion. Answer the following questions relative to nitrite.

1. Sodium nitrite is an ionic compound containing a polyatomic ion. Answer the following questions relative to nitrite. Ch 10-11 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis SCCH 161 Homework 3 1. Give the number of lone pairs around the central atom and the molecular geometry of CBr 4. Answer: Carbon has 4 valence electrons and bonds to four bromine atoms (each has 7 VE s).

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University, Fall 2014 Introduction: In chemistry, the three dimensional shape of a molecule is as important

More information

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons #60 Notes Unit 8: Bonding Ch. Bonding I. Bond Character Bonds are usually combinations of ionic and covalent character. The electronegativity difference is used to determine a bond s character. Electronegativity

More information

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Experiment 15 The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Attempts to understand and predict the shapes of molecules using either the valencebond theory or

More information

Chapter 9 The Shapes of Molecules Cocaine

Chapter 9 The Shapes of Molecules Cocaine Chapter 9 The Shapes of Molecules 1 Cocaine 10.1 Depicting Molecules & Ions with Lewis Structures 2 Number of Covalent Bonds 3 The number of covalent bonds can be determined from the number of electrons

More information

10-1. The Shapes of Molecules, chapter 10

10-1. The Shapes of Molecules, chapter 10 10-1 The Shapes of Molecules, chapter 10 The Shapes of Molecules; Goals 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory 10.3 Molecular

More information

Name Unit Three MC Practice March 15, 2017

Name Unit Three MC Practice March 15, 2017 Unit Three: Bonding & Molecular Geometry Name Unit Three MC Practice March 15, 2017 1. What is the hybridization of the oxygen atom in water? a) sp b) sp 2 c) sp 3 d) It is not hybridized 2. When a double

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Isostructural species are those which have the same shape and hybridisation. Among the given species identify the isostructural pairs. (i) [NF 3 and BF 3 ] [BF

More information

AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4. (Questions 1-13) Choose the letter that best answers the question or completes the statement.

AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4. (Questions 1-13) Choose the letter that best answers the question or completes the statement. NAME: AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4 (Questions 1-13) Choose the letter that best answers the question or completes the statement. (Questions 1-2) Consider atoms of the following elements.

More information

5 Polyatomic molecules

5 Polyatomic molecules s manual for Burrows et.al. Chemistry 3 Third edition 5 Polyatomic molecules Answers to worked examples WE 5.1 Formal charges in N 2 (on p. 221 in Chemistry 3 ) Use formal charges to decide whether oxygen

More information

Chemistry and the material world Lecture 3

Chemistry and the material world Lecture 3 Chemistry and the material world 123.102 Lecture 3 Electronic bookkeeping we need a way of finding out in which proportions two or more atoms make up a molecule is it CH 3 or CH 4 or CH 5? counting valence

More information

Would you expect SeF6 to be soluble in water? Yes No Explain your answer in terms of the shape and polarity of SeF6.

Would you expect SeF6 to be soluble in water? Yes No Explain your answer in terms of the shape and polarity of SeF6. COLLATED QUESTIONS Lewis structures and shapes (up to six electron pairs about the central atom for molecules and polyatomic ions, including those with multiple bonds), polarity of molecules. 2017:3 (c)

More information

Fill in the chart below to determine the valence electrons of elements 3-10

Fill in the chart below to determine the valence electrons of elements 3-10 Chemistry 11 Atomic Theory IV Name: Date: Block: 1. Lewis Diagrams 2. VSEPR Lewis Diagrams Lewis diagrams show the bonding between atoms of a molecule. Only the outermost electrons of an atom (called electrons)

More information

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results.

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results. Predicting the Shape of a Molecule (Student textbook page 236) 11. What molecular shape is represented by each of the following VSEPR notations? a. AX 3 b. AX 5 E You need to assign a molecular shape that

More information

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction ionic compound- a metal reacts with a nonmetal Ionic bonds form when an atom that

More information

KWANTLEN UNIVERSITY COLLEGE DEPARTMENT OF CHEMISTRY

KWANTLEN UNIVERSITY COLLEGE DEPARTMENT OF CHEMISTRY KWANTLEN UNIVERSITY COLLEGE DEPARTMENT OF CHEMISTRY Final Examination: CHEM 1110 Name: Student Number: December 17, 2001 Time: 3 hours INSTRUCTIONS: 1. All calculations must be shown in order to receive

More information

LESSON 10. Glossary: Molecular Geometry. a quantitative measure of the degree of charge separation in a molecule. Dipole moment

LESSON 10. Glossary: Molecular Geometry. a quantitative measure of the degree of charge separation in a molecule. Dipole moment LESSON 10 Glossary: Molecular Geometry Dipole moment Electronegativity Molecular geometry Pi bond Polar covalent bond Sigma bond Valence-shell electronpair repulsion (VSEPR) model a quantitative measure

More information

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas.

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. CHEMICAL BONDING Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. 1.Electrons can be from one atom to another forming. Positive ions (cations) are formed when

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 1 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 1 1 / 29 Outline István Szalai (Eötvös University) Lecture 1 2 / 29 Lewis Formulas

More information

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling Bonding/Lewis Dots Lecture Page 1 of 12 Date Bonding What is Coulomb's Law? Energy Profile: Covalent Bonds Electronegativity and Linus Pauling 2.1 H 1.0 Li 0.9 Na 0.8 K 0.8 Rb 0.7 Cs 0.7 Fr 1.5 Be 1.2

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Chapter 9 Molecular Geometries. and Bonding Theories

Chapter 9 Molecular Geometries. and Bonding Theories Chapter 9 Molecular Geometries and Bonding Theories Coverage of Chapter 9 9.1 All 9.2 All 9.3 All 9.4 All 9.5 Omit Hybridization Involving d Orbitals 9.6 All 9.7 and 9.8 Omit ALL MOLECULAR SHAPES The shape

More information

CHM2045 F13--Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHM2045 F13--Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHM2045 F13--Exam #2 2013.10.18 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A valid Lewis structure of cannot be drawn without violating the

More information

Unit 4: Presentation C Molecular Shapes and Dipole Moments

Unit 4: Presentation C Molecular Shapes and Dipole Moments New Jersey Center for Teaching and Learning Slide 1 / 30 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

N = 727 Mean = 68% Diff T-Test P-Value SI 223 (31%) 71% No SI 504 (69%) 66% Test 2 - Letter Grade Distribution by SI Attendance

N = 727 Mean = 68% Diff T-Test P-Value SI 223 (31%) 71% No SI 504 (69%) 66% Test 2 - Letter Grade Distribution by SI Attendance CHEM 200/202 Exam 2 N = 727 Mean = 68% Diff T-Test P-Value SI 223 (31%) 71% No SI 504 (69%) 66% 5%

More information

Chemistry 1A, Spring 2009 KEY Midterm 2, Version March 9, 2009 (90 min, closed book)

Chemistry 1A, Spring 2009 KEY Midterm 2, Version March 9, 2009 (90 min, closed book) Name: SID: TA Name: Chemistry 1A, Spring 2009 KEY Midterm 2, Version March 9, 2009 (90 min, closed book) There are 20 Multiple choice questions worth 2.5 points each. There are 3, multi-part, short answer

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Chemical Bonding Outline 1. Lewis Dot Structures 2. Bonds 3. Formal Charges 4. VSEPR (Molecular Geometry and Hybridzation) 5. Common Resonance Structures and Dimerization Review 1. Lewis Dot Structures

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

Chemical Bonding AP Chemistry Ms. Grobsky

Chemical Bonding AP Chemistry Ms. Grobsky Chemical Bonding AP Chemistry Ms. Grobsky What Determines the Type of Bonding in Any Substance? Why do Atoms Bond? The key to answering the first question are found in the electronic structure of the atoms

More information

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar CHM 111 Chapters 7 and 8 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the

More information

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations.

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations. Name: Period: Date: What Is VSEPR? Exploring The Valence Shell Electron Pair Repulsion (VSEPR) model. Go to the Purdue University website to explore VSEPR theory. http://www.chem.purdue.edu/gchelp/vsepr/structur2.html

More information

electronegativity difference greater than or equal to Ionic Bonding occurs between a metal and a nonmetal when there is an

electronegativity difference greater than or equal to Ionic Bonding occurs between a metal and a nonmetal when there is an Chemistry Unit 4 Review Packet Sweeeeeeeettt ANSWER KEY For the following compounds identify the bond types as one of the following: Ionic, Metallic, Polar Covalent, Non Polar Covalent, and Moderately

More information

Time: 3 hours INSTRUCTIONS:

Time: 3 hours INSTRUCTIONS: Time: 3 hours INSTRUCTIONS: 1. Show all calculations in order to receive any credit. 2. A periodic table will be given to you. 3. Rough work should be done on the back of the pages. 4. Be sure this exam

More information

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to:

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to: Objectives The objectives of this laboratory are to: Molecular Geometry Write Lewis structure representations of the bonding and valence electrons in molecules. Use the VSEPR model to predict the molecular

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

Chemistry 1A, Spring 2009 Midterm 2, Version March 9, 2009 (90 min, closed book)

Chemistry 1A, Spring 2009 Midterm 2, Version March 9, 2009 (90 min, closed book) Name: SID: TA Name: Chemistry 1A, Spring 2009 Midterm 2, Version March 9, 2009 (90 min, closed book) There are 20 Multiple choice questions worth 2.5 points each. There are 3, multi-part short answer questions.

More information

CHAPTER 8 BONDING: GENERAL CONCEPTS

CHAPTER 8 BONDING: GENERAL CONCEPTS Advanced Chemistry Name Hour Advanced Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 8 BONDING: GENERAL CONCEPTS Day Plans for the day Assignment(s)

More information

1. How many grams of Cr can be produced by the reaction of 44.1 g of Cr 2 O 3 with 35.0 g of Al according to the following chemical reaction?

1. How many grams of Cr can be produced by the reaction of 44.1 g of Cr 2 O 3 with 35.0 g of Al according to the following chemical reaction? Final Exam Revision 1. How many grams of Cr can be produced by the reaction of 44.1 g of Cr 2 O 3 with 35.0 g of Al according to the following chemical reaction? 2Al + Cr 2 O 3 Al 2 O 3 + 2Cr Ans: 30.2

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding positive and negative ions form an ionic lattice, in which each cation is surrounded

More information

INSTRUCTIONS: (1) Write your name in the blank titled "NAME" on the scantron form provided.

INSTRUCTIONS: (1) Write your name in the blank titled NAME on the scantron form provided. INSTRUCTIONS: (1) Write your name in the blank titled "NAME" on the scantron form provided. (2) Write your section number in the blank titled "SUBJECT" on the scantron form. (3) Write your Student ID number

More information

INSTRUCTIONS: (1) Write your name in the blank titled "NAME" on the scantron form provided.

INSTRUCTIONS: (1) Write your name in the blank titled NAME on the scantron form provided. INSTRUCTIONS: (1) Write your name in the blank titled "NAME" on the scantron form provided. (2) Write your section number in the blank titled "SUBJECT" on the scantron form. (3) Write your Student ID number

More information

Molecular Geometry & Polarity

Molecular Geometry & Polarity Molecular Geometry & Polarity Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Table of Contents 8.1 Types of Chemical Bonds 8.2 Electronegativity 8.3 Bond Polarity and Dipole Moments 8.4 Ions: Electron Configurations and Sizes 8.5 Energy

More information

Name (printed): Signature:

Name (printed): Signature: CHEM Lab Section Number: Name (printed): Signature: This exam consists of 36 questions all of equal value for a total of 225 points. Make sure that your test has all of the pages. Please read each problem

More information

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups.

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups. Chapter 10 Lecture Chapter 10 Bonding and Properties of Solids and Liquids 10.3 Shapes of Molecules and Ions (VSEPR Theory) Learning Goal Predict the three-dimensional structure of a molecule or a polyatomic

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Chapter 16 Covalent Bonding

Chapter 16 Covalent Bonding Chemistry/ PEP Name: Date: Chapter 16 Covalent Bonding Chapter 16: 1 26; 28, 30, 31, 35-37, 40, 43-46, Extra Credit: 50-53, 55, 56, 58, 59, 62-67 Section 16.1 The Nature of Covalent Bonding Practice Problems

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 18 B) 0.55

More information

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs AP Chemistry - Problem Drill 13: Lewis Structures and VSPER No. 1 of 10 1. Lewis structure is used to model covalent bonds of a molecule or ion. Covalent bonds are a type of chemical bonding formed by

More information

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Molecular Geometry Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Lewis Theory of Molecular Shape and Polarity

More information

Activity Formal Charge and VSEPR Theory for Expanded Octets

Activity Formal Charge and VSEPR Theory for Expanded Octets Activity 201 7 Formal Charge and VSEPR Theory for Expanded Octets Directions: This Guided Learning Activity (GLA) goes over formal charge and the structures of molecules with expanded octets. Part A introduces

More information

51. Pi bonding occurs in each of the following species EXCEPT (A) CO 2 (B) C 2 H 4 (C) CN (D) C 6 H 6 (E) CH 4

51. Pi bonding occurs in each of the following species EXCEPT (A) CO 2 (B) C 2 H 4 (C) CN (D) C 6 H 6 (E) CH 4 Name AP Chemistry: Bonding Multiple Choice 41. Which of the following molecules has the shortest bond length? (A) N 2 (B) O 2 (C) Cl 2 (D) Br 2 (E) I 2 51. Pi bonding occurs in each of the following species

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 12 CHEMICAL BONDING Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons? REVIEW: VALENCE ELECTRONS 13 CHEMICAL BONDING What are valence electrons? Which groups on the periodic table readily give up electrons? What group readily accepts electrons? CHEMICAL BONDS: What are chemical

More information

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline CHAPTER 5: Bonding Theories - Explaining Molecular Geometry Chapter Outline 5.1 Molecular Shape 5.2 Valence-Shell Electron-Pair Repulsion Theory (VSEPR) 5.3 Polar Bonds and Polar Molecules» What Makes

More information

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule Molecular Structure Topics 3-D structure shape (location of atoms in space) Molecular Geometry Valence Bond Theory Hybrid Orbitals Multiple Bonds VSEPR (Valence Shell Electron Pair Repulsion) Valence Bond

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

What Do Molecules Look Like?

What Do Molecules Look Like? What Do Molecules Look Like? The Lewis Dot Structure approach provides some insight into molecular structure in terms of bonding, but what about 3D geometry? Recall that we have two types of electron pairs:

More information

Chemistry 105: General Chemistry I Dr. Gutow and Dr. Matsuno Spring 2004 Page 1

Chemistry 105: General Chemistry I Dr. Gutow and Dr. Matsuno Spring 2004 Page 1 Page 1 1) Name You are to keep this copy of the test. Your name is in case you leave it behind. 2) Use only a #2 pencil on the answer sheet. 3) Before starting the exam fill in your student ID# (not your

More information

6 Shapes of molecules and intermolecular forces Answers to practice questions. OCR Chemistry A. Question Answer Marks Guidance

6 Shapes of molecules and intermolecular forces Answers to practice questions. OCR Chemistry A. Question Answer Marks Guidance 1 (a) (i) HI, HBr, HCl, HF 1 (a) (ii) CF 4, CH 3 I, CH 2 Br 2, CHCl 2 F 1 (b) (i) CO 2 and HCN: linear H 2 O and SCl 2 : non-linear BF 3 and SO 3 : trigonal planar NH 3 and H 3 O + : pyramidal AlCl 4 and

More information

Ch 13: Covalent Bonding

Ch 13: Covalent Bonding Ch 13: Covalent Bonding Section 13: Valence-Shell Electron-Pair Repulsion 1. Recall the rules for drawing Lewis dot structures 2. Remember the special situations: - Resonance structures - ormal charges

More information

Chemistry 1A, Spring 2007 Midterm Exam 2 March 5, 2007 (90 min, closed book)

Chemistry 1A, Spring 2007 Midterm Exam 2 March 5, 2007 (90 min, closed book) Chemistry 1A, Spring 2007 Midterm Exam 2 March 5, 2007 (90 min, closed book) Name: KEY SID: TA Name: 1.) Write your name on every page of this exam. 2.) This exam has 40 multiple choice questions. Fill

More information

CHM1045 Exam 3 Chapters 5, 8, & 9

CHM1045 Exam 3 Chapters 5, 8, & 9 1. Which of the following conditions will never result in a decrease in the internal energy of a system? CHM1045 Exam 3 Chapters 5, 8, & 9 a. System loses heat and does work on the surroundings. b. System

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Sample Exercise 9.1 (p. 347) Use the VSEPR model to predict the molecular geometries of a) O 3 b) SnCl 3 - Practice Exercise 1 (9.1) Consider the AB 3 molecules and ions: PCl 3, SO 3, AlCl 3, SO 3 2-,

More information

Chemistry 1B Fall 2012 Lectures Chemistry 1B. Fall Lectures Classical theories of bonding and molecular geometry (ch 13)

Chemistry 1B Fall 2012 Lectures Chemistry 1B. Fall Lectures Classical theories of bonding and molecular geometry (ch 13) Chemistry 1B Fall 2012 1 Classical theories of bonding and molecular geometry (ch 13) Lewis electron-dot structures Bond energies and ΔH (back to pp. 606-610, much of this in Chem 1C) Valence State Electron-Pair

More information

Name (printed): Signature:

Name (printed): Signature: CHEM Lab Section Number: Name (printed): Signature: This exam consists of 36 questions all of equal value for a total of 225 points. Make sure that your test has all of the pages. Please read each problem

More information

Chemistry 1B Fall 2012

Chemistry 1B Fall 2012 Chemistry 1B Fall 2012 Lectures 10-11-12 1 Classical theories of bonding and molecular geometry (ch 13) Lewis electron-dot structures Bond energies and ΔH (back to pp. 606-610, much of this in Chem 1C)

More information

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape Chem 103, Section F0F Unit VI - Compounds Part II: Covalent Compounds Lecture 17 Using the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory to predict molecular shapes Molecular shape and polarity

More information

Contents. 1. Basic Concepts. 2. The Covalent Bond. 3. The Valence-Shell Electron-Pair Repulsion Models 4. Bond theories. 5. The Metallic Bond.

Contents. 1. Basic Concepts. 2. The Covalent Bond. 3. The Valence-Shell Electron-Pair Repulsion Models 4. Bond theories. 5. The Metallic Bond. Chemical Bonding (II) Topic 4. Chemical Bonding (II) (II) 1 Contents 1. Basic Concepts. a) Molecular parameters b) Lewis Dot Symbols 2. The Covalent Bond a) Polar Covalent Bond b) Formal Charge c) Exceptions

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory Copyright Cengage Learning. All rights reserved. 10 1 Molecular geometry is the general shape of a molecule, as determined by the relative positions

More information