Supplemental Information. In Situ Electrochemical Production. of Ultrathin Nickel Nanosheets. for Hydrogen Evolution Electrocatalysis

Size: px
Start display at page:

Download "Supplemental Information. In Situ Electrochemical Production. of Ultrathin Nickel Nanosheets. for Hydrogen Evolution Electrocatalysis"

Transcription

1 Chem, Volume 3 Supplemental Information In Situ Electrochemical Production of Ultrathin Nickel Nanosheets for Hydrogen Evolution Electrocatalysis Chengyi Hu, Qiuyu Ma, Sung-Fu Hung, Zhe-Ning Chen, Daohui Ou, Bin Ren, Hao Ming Chen, Gang Fu, and Nanfeng Zheng

2 Figure S1. Structural characterization of -Ni(OH) 2. (a, b) SEM, (c) TEM images and (d) XRD pattern of -Ni(OH) 2 grown on carbon cloth. Intensity (a.u.) Ni-BDT (degree) Figure S2. XRD pattern of the as-prepared Ni-BDT (the two broad peaks come from carbon cloth). S1

3 Figure S3. Experimental and simulated Raman spectra of Ni-BDT. (Inset: model used for simulation) The peak assignment was shown in Table S1. Ni-BDT Ni 3p Intensity (a.u.) Ni 2p 3/2 Ni LMM O 1s S 2p S 2s C 1s Figure S4. XPS survey spectrum of Ni-BDT. Binding Energy (ev) S2

4 Figure S5. (a) Cyclic voltammetry curves of Ni(OH) 2, Ni-BDT and Ni-BDT-A in the region of V vs. RHE. The differences in current density variation ( J=J a-j c) at an overpotential of 0.15 V plotted against scan rate fitted to a linear regression enables the estimation of C dl. Figure S6. (a-c) SEM images at 0h, 1h and 12h of the activation process of Ni-BDT. (d) EDS spectra of the catalysts in (a-c). S3

5 Figure S7. (a) Thickness distribution of Ni-BDT-A from TEM. (b) HAADF-STEM image and EDS elemental mapping images of Ni-BDT-A. (c) HRTEM image of Ni-BDT-A. Figure S8. (a) AFM image, (b) corresponding height profile and (c) thickness distribution of Ni- BDT. (d) AFM image, (e) corresponding height profile and (f) thickness distribution of Ni-BDT-A. S4

6 Ni-BDT Ni-BDT-A Normalized Intensity Raman Shift / cm -1 Figure S9. Raman spectra of Ni-BDT and Ni-BDT-A. Figure S10. (a) XPS survey spectra, (b) Ni 2p region, (c) S 2p region and (d) fitting results of S 2p region of Ni-BDT and Ni-BDT-A. S5

7 Figure S11. Electrochemical in-situ XAS of Ni-BDT. (a) Ni K-edge XANES, (b) k-space, and (c) Fourier transformed R-space of Ni-BDT during HER activation. The cathodic current was set as 50 ma cm -2 during the activation. The in-situ XAS measurement was performed at 0.5h, 1h and 1.5h at the voltage of -1 V to keep the situation of reduction and to avoid the disturbance of bubbles that interfered the measurement. Figure S12. Experimental and simulated XAFS spectra of Ni-BDT and Ni-BDT-A catalysts at the Ni K-edge. The χ(k) data weighted by k 3 and Fourier transformed (FT) to R-space (the k-space ranging from 3 to 10.5 Å 1 ) to isolate the EXAFS contributions from each coordination shell. The quantified fitting results are shown in Table S2. S6

8 Figure S13. (a) EXAFS spectra and (b) HER performance of Ni-BDT-A catalysts after exposing to air at room temperature for different time. The catalysts were easily oxidized by air to form Ni(OH) 2 due to the ultrathin structure, resulting in the decrease of HER activity Ni(OH) 2 Ni-BDT-A air 24h j (ma cm -2 ) mf cm mf cm Scan Rate (mv/s) Figure S14. Double-layer capacitance of pristine Ni(OH) 2 and Ni-BDT-A derived Ni(OH) 2 (air oxidation for 24h). S7

9 Figure S15. (a) SEM image and (b) EDS spectrum of Ni-BDT-A soaked in 0.1 mm Zn(NO 3) 2 solution for 30 s and then washed by deionized water. (c) HER activity of Ni-BDT-A before and after soaking in 0.1 mm Zn(NO 3) 2 solution and H 2O for 30 s with the protection of N 2. Figure S16. (a) HER activity of Ni-BDT-A and (b) Ni foam in 1 M KOH and tetramethylammonium hydroxide (TMAOH) electrolyte. j (ma cm -2 ) Ni foam Ni foam Na 2 S 10s Ni foam Na 2 S 40s Ni foam Na 2 S 100s E (V vs. RHE) E (V vs. RHE) Figure S17. HER activity of Ni foam before and after soaking in 1 mm Na 2S aqueous solution for different time at open circuit potential. S8

10 Figure S18. SEM images and EDS of Ni thiolate synthesized by using 1,2-benzenedithiol as ligand (a, c) before and (b, d) after electrochemical activation. Figure S19. SEM images and EDS of Ni thiolate synthesized by using 1,3-benzenedithiol as ligand (a, c) before and (b, d) after electrochemical activation. S9

11 Figure S20. HER polarization curves of (a) Ni-12BDT and (b) Ni-13BDT before and after activation. Figure S21. (a) LSV plots of Ni(OH) 2 and Ni-BDT-A in 1 M KOH electrolyte with and without 0.33 M urea. (b) Optical image of urea electrolysis device. (c) LSV plots of urea electrolysis using Ni(OH) 2 or Ni-BDT-A as both HER and UOR catalysts in 1 M KOH and 0.33 M urea. (d) Chonopotentiometry of urea electrolysis using Ni-BDT-A as both HER and UOR catalyst at a constant current density of 20 ma cm -2 (without ir compensation). All polarization curves were ir corrected. S10

12 Figure S22. SEM images of (a, b) NiFe-BDT and (c, d) NiFe-BDT-A. EDS of (e) NiFe-BDT and (f) NiFe-BDT-A. Figure S23. Polarization curves for (a) HER and (b) OER of NiFe-BDT before and after activation. S11

13 Table S1. Theoretical frequencies of selected fundamental vibrational bands of Ni-BDT within the frequency range of cm -1. Peak position (cm -1 ) 170 m Ni-S Assignment 227 w Ni-S C-S 303 m Ni-S C-S 344 s Ni-S + ring 544 w C-S Ni-S 753 m C-S + ring 768 m C-S + ring Abbreviation:, stretching;, in-plane ring deformation; β, in-plane bending Relative intensity: s (strong); m (medium); w (weak) Table S2. EXAFS fitting parameters of Ni-BDT and Ni-BDT-A. Sample Shell CN R / Å Δσ 2 / x10-3 Å 2 ΔE0 / ev Ni foil Ni-Ni ± ± ±0.2 Ni-BDT Ni-S 3.6± ± ± ±0.6 Ni-BDT-A Ni-S 1.3± ± ± ±1.4 Ni-Ni 4.9± ± ± ±1.4 CN, coordination number; R, bonding distance; Δσ 2, Debey-Waller factor; ΔE 0, inner potential shift, 2 amplitude reduction factor S 0 was set as 0.8 for all the samples. Table S3. Comparison of the electrocatalytic HER performance of Ni-BDT-A with 2D metal organic polymers reported recently. Catalyst Electrode Loading Electrolyte (mv)@ (mv)@ Tafel slop Reference (mg cm -2 ) 10 ma cm ma cm -2 (mv/dec) Ni-BDT-A CC 0.3 1M KOH This work Co-BHT GC H 2SO 4 ph 1.3 ~ [29] mol Co cm -2 Co-THT GC H 2SO 4 ph 1.3 ~ mol Co cm -2 Co-BTT GC H 2SO 4 ph 1.3 ~550 [30] mol Co cm -2 Ni-THT GC 0.5M H 2SO [31] GC 0.05M KOH ~570 S12

14 Table S4. Comparison of the electrocatalytic HER performance of Ni-BDT-A with metal sulfide electrocatalysts in alkaline electrolyte reported recently. Catalyst Electrode Loading Electrolyte Tafel slop Reference (mg cm -2 ) 10 ma cm ma cm -2 (mv/dec) Ni-BDT-A CC 0.3 1M KOH This work Ni 3S 2 Ni foam 1.6 1M KOH 223 [48] NiCo 2S 4 Ni foam 1M KOH ~ [49] CoMn-S@NiO CC 1M KOH ~ [50] NiS Ni foam 1 1M KOH ~ [51] Ni 3S 2 Ni foam 1M KOH [52] MoS 2/Ni 3S 2 Ni foam 9.7 1M KOH [53] Ni-MoS 2 CC M KOH [54] MoS x FTO M KOH [55] Ni foam 1M KOH ZnCoS GCE M KOH [56] NiCoS Ti foil 0.3 1M KOH [57] Table S5. Comparison of the electrocatalytic HER performance of Ni-BDT-A with metal/metal oxide electrocatalysts in alkaline electrolyte reported recently. Catalyst Electrode Loading Electrolyte (mv)@ (mv)@ Tafel slop Reference (mg cm -2 ) 10 ma cm ma cm -2 (mv/dec) Ni-BDT-A CC 0.3 1M KOH This work Ni/NiO-CNT GC M KOH [13] Ni foam 8 1M KOH 95 Ni/NiO-Cr 2O 3 Ni foam 8 1M KOH 150 (no ir) [14] Ni foam 24 1M KOH 115 (no ir) Ni/NiO Ni foam M KOH ~120 ~ [15] Ni-Mo Ti foil 1 1M NaOH 80 [12] 2-cycle NiFeOx CFP 1.6 1M KOH 220 [58] Co/CoO GC M KOH 232 [59] Ni foam 2.1 1M KOH ~210 S13

Supplementary Figure 1. (a) XRD pattern of NCUNs. The red lines present the standard nickel hydroxide hydrate (JCPDS No ) peaks, the blue

Supplementary Figure 1. (a) XRD pattern of NCUNs. The red lines present the standard nickel hydroxide hydrate (JCPDS No ) peaks, the blue Supplementary Figure 1. (a) XRD pattern of NCUNs. The red lines present the standard nickel hydroxide hydrate (JCPDS No. 22-0444) peaks, the blue lines demonstrate the standard cobalt hydroxide (JCPDS

More information

Supporting Information

Supporting Information Supporting Information Hierarchical FeNiP @ Ultrathin Carbon Nanoflakes as Alkaline Oxygen Evolution and Acidic Hydrogen Evolution Catalyst for Efficient Water Electrolysis and Organic Decomposition Bowei

More information

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Supporting Information for Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Haiqing Zhou a,1, Fang Yu a,1, Jingying Sun a, Ran He a, Shuo Chen

More information

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall Supplementary Information for High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting Yu et al. Supplementary Figure 1. A typical TEM image of as-prepared FeP/Ni

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Fig. S1 XRD patterns of a-nifeo x

More information

Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water

Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This ournal is The Royal Society of Chemistry 2014 Supporting Information Electrodeposited nickel-sulfide films as competent

More information

Supplementary Information for

Supplementary Information for Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 Supplementary Information for Cu Nanowires Shelled with NiFe Layered Double

More information

Achieving Stable and Efficient Water Oxidation by Incorporating NiFe. Layered Double Hydroxide Nanoparticles into Aligned Carbon.

Achieving Stable and Efficient Water Oxidation by Incorporating NiFe. Layered Double Hydroxide Nanoparticles into Aligned Carbon. Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2015 Achieving Stable and Efficient Water Oxidation by Incorporating NiFe Layered Double Hydroxide

More information

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A Robust and Highly Active Copper-Based Electrocatalyst for Hydrogen Production

More information

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Electronic Supplementary Material Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Jiaqing Zhu 1, Zhiyu Ren 1 ( ), Shichao Du 1, Ying Xie 1, Jun Wu 1,2, Huiyuan

More information

Supporting Information for

Supporting Information for Supporting Information for Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping towards Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst Supporting Information Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst for the Hydrogen Evolution Reaction Mingjie Zang, [a] Ning Xu, [a] Guoxuan Cao, [a] Zhengjun Chen, [a] Jie Cui, [b]

More information

Supporting Information

Supporting Information Supporting Information NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn Air Batteries Jie Yin, Yuxuan Li, Fan Lv, Qiaohui Fan, Yong-Qing Zhao, Qiaolan Zhang, Wei Wang, Fangyi Cheng,

More information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water Supplementary Information Carbon Quantum Dots/NiFe Layered Double Hydroxide Composite as High Efficient Electrocatalyst for Water Oxidation Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information NiSe 2 Pyramids Deposited on N-doped Graphene Encapsulated

More information

Supporting Information

Supporting Information Supporting Information Universal, In-Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High Temperature Pulse Shaomao Xu 1, (a), Yanan Chen 1, (a), Yiju Li 1, (a), Aijiang Lu 1, Yonggang

More information

Supporting Information

Supporting Information Supporting Information Defect-Rich 2D Material Networks for Advanced Oxygen Evolution Catalysts Bowei Zhang, Zhiyuan Qi, # Zishan Wu, Yu Hui Lui, Tae-Hoon Kim, # Xiaohui Tang, Lin Zhou, # Wenyu Huang,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/3/e1602215/dc1 Supplementary Materials for Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution Changdeuck Bae, Thi Anh Ho, Hyunchul

More information

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting Supporting Information Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting Xin Xiao, Dekang Huang, Yongqing Fu, Ming Wen, Xingxing Jiang, Xiaowei Lv, Man Li, Lin Gao,

More information

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium Supporting Information Revelation of the Excellent Intrinsic Activity of MoS2 NiS MoO3 Nanowires for Hydrogen Evolution Reaction in Alkaline Medium Chuanqin Wang a,b, Bin Tian b, Mei Wu b, Jiahai Wang

More information

A General Approach to Ultrathin NiM (M = Fe, Co, Mn) Hydroxide Nanosheets as High-Performance Low-Cost. Electrocatalysts for Overall Water Splitting

A General Approach to Ultrathin NiM (M = Fe, Co, Mn) Hydroxide Nanosheets as High-Performance Low-Cost. Electrocatalysts for Overall Water Splitting Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting information for A General Approach to Ultrathin NiM (M = Fe,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Three-dimensional amorphous tungsten-doped

More information

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for Flexible Zn-Air Batteries Kyle Marcus, 1,# Kun Liang, 1,# Wenhan Niu, 1,# Yang Yang 1,* 1 NanoScience Technology Center, Department

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Supplementary Figure 1 SEM image for the bulk LCO.

Supplementary Figure 1 SEM image for the bulk LCO. Supplementary Figure 1 SEM image for the bulk LCO. S1 Supplementary Figure 2 TEM and HRTEM images of LCO nanoparticles. (a)-(c) TEM, HRTEM images, and SAED pattern for the 60 nm LCO, respectively. (d)-(f)

More information

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially Supporting Information Electropolymerization of aniline on nickel-based electrocatalysts substantially enhances their performance for hydrogen evolution Fuzhan Song, Wei Li, Guanqun Han, and Yujie Sun*

More information

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles Supporting Information Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles with Superior Electrochemical Performance for Supercapacitors Shude Liu a, Kalimuthu Vijaya Sankar

More information

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires with Controllable Overpotential Bin Liu 1, Hao Ming Chen, 1 Chong Liu 1,3, Sean C. Andrews 1,3, Chris Hahn 1, Peidong Yang 1,2,3,* 1 Department

More information

Supporting Information for

Supporting Information for Supporting Information for Iridium-tungsten Alloy Nanodendrites as ph-universal Water Splitting Electrocatalysts Fan Lv, Jianrui Feng, Kai Wang, Zhipeng Dou, Weiyu Zhang, Jinhui Zhou, Chao Yang, Mingchuan

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Phosphorus-Doped CoS 2 Nanosheet Arrays as

More information

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Electronic Supplementary Material Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Mohammad Al-Mamun 1, Huajie Yin 1, Porun

More information

Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co 3 O 4 Nanosheets as a Highly Selective Anode Catalyst

Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co 3 O 4 Nanosheets as a Highly Selective Anode Catalyst Supporting information for Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co 3 O 4 Nanosheets as a Highly Selective Anode Catalyst Lei Dai, 1 Qing Qin, 1 Xiaojing Zhao,

More information

η (mv) J (ma cm -2 ) ma cm

η (mv) J (ma cm -2 ) ma cm J (ma cm -2 ) 250 200 150 100 50 0 253 mv@10 ma cm -2-50 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 η (mv) Supplementary Figure 1 Polarization curve of NiSe. S1 FeO x Fe-Se Intensity (a. u.) 720 717 714 711

More information

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information High Wettable and Metallic NiFe-Phosphate/Phosphide

More information

Supporting Information

Supporting Information Supporting Information A General Strategy for the Synthesis of Transition-Metal Phosphide/N-doped Carbon Frameworks for Hydrogen and Oxygen Evolution Zonghua Pu, Chengtian Zhang, Ibrahim Saana Amiinu,

More information

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary information for Self-assembled Two-dimensional Copper Oxide

More information

Film: A Pseudocapacitive Material with Superior Performance

Film: A Pseudocapacitive Material with Superior Performance Supporting Information for Three-Dimentional Porous NanoNi/Co(OH) 2 Nanoflake Composite Film: A Pseudocapacitive Material with Superior Performance X. H. Xia, J. P. Tu*, Y. Q. Zhang, Y. J. Mai, X. L. Wang*,

More information

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction Supporting Information Electronic Modulation of Electrocatalytically Active Center of Cu 7 S 4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction Qun Li, Xianfu Wang*, Kai Tang,

More information

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT.

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT. 1 Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT sample. (a, b TEM images of CNT; (c EDS of CNT. Cobalt is not detected in the original CNT sample (Note: The accidentally

More information

Supplementary Information

Supplementary Information Supplementary Information Ni 2 P(O)/Fe 2 P(O) Interface Can Boost Oxygen Evolution Electrocatalysis Peng Fei Liu, Xu Li, Shuang Yang, Meng Yang Zu, Porun Liu, Bo Zhang, Li Rong Zheng, # Huijun Zhao, and

More information

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid Supporting Information Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid Teng Wang, Yanru Guo, Zhenxing Zhou, Xinghua Chang, Jie Zheng *,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. a) SEM image of Cu foil after electropolishing (5 µm scale bar). SEM images of Cu foils treated with H 2 plasma at 100W for 2 minutes b) as prepared and

More information

Supporting Informantion

Supporting Informantion Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Informantion Hierarchical Whisker-on-sheet NiCoP with Adjustable Surface structure

More information

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced Supporting Information Dominating Role of Aligned MoS 2 /Ni 3 S 2 Nanoarrays Supported on 3D Ni Foam with Hydrophilic Interface for Highly Enhanced Hydrogen Evolution Reaction Jiamu Cao a, Jing Zhou a,

More information

B.E. (ev)

B.E. (ev) a C 1s C=C b O 1s C-O C-O/C=N C=O/C-N O-C=O C=O Co-O 291 289 287 285 283 B.E. (ev) 540 538 536 534 532 530 528 B.E. (ev) Supplementary Figure 1. XPS C 1s and O 1s spectra of the Co-NG. Supplementary Figure

More information

Supporting Information. for Water Splitting. Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan

Supporting Information. for Water Splitting. Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan Supporting Information Co 3 O 4-δ Quantum Dots as a Highly Efficient Oxygen Evolution Reaction Catalyst for Water Splitting Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan

More information

Supporting Information

Supporting Information Supporting Information Mo- and Fe-modified Ni(OH) 2 /NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction Yanshuo Jin a, Shangli Huang b, Xin Yue a, Hongyu Du c,

More information

Supplementary Figure 1. TEM analysis of Co0.5 showing (a) a SAED pattern, and (b-f) bright-field images of the microstructure. Only two broad rings

Supplementary Figure 1. TEM analysis of Co0.5 showing (a) a SAED pattern, and (b-f) bright-field images of the microstructure. Only two broad rings Supplementary Figure 1. TEM analysis of Co0.5 showing (a) a SAED pattern, and (bf) brightfield images of the microstructure. Only two broad rings were observed in the SAED pattern, as expected for amorphous

More information

Supporting Information

Supporting Information Supporting Information Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation** Jian Bao, Xiaodong Zhang,* Bo Fan, Jiajia Zhang, Min Zhou, Wenlong

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information Synthesis of Amorphous Boride Nanosheets

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Magnesium-Regulated Oxygen Vacancies

More information

Achieving Selective and Efficient Electrocatalytic Activity for CO 2 Reduction Using Immobilized Silver Nanoparticles

Achieving Selective and Efficient Electrocatalytic Activity for CO 2 Reduction Using Immobilized Silver Nanoparticles Supporting Information Achieving Selective and Efficient Electrocatalytic Activity for CO 2 Reduction Using Immobilized Silver Nanoparticles Cheonghee Kim, a Hyo Sang Jeon, a,b Taedaehyeong Eom, c Michael

More information

Boosting the hydrogen evolution performance of ruthenium clusters. through synergistic coupling with cobalt phosphide

Boosting the hydrogen evolution performance of ruthenium clusters. through synergistic coupling with cobalt phosphide Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Boosting the hydrogen evolution

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information Bis(aminothiolato)nickel Nanosheet as a Redox Switch for Conductivity

More information

of (002) plane on the surfaces of porous N-doped carbon nanotubes for

of (002) plane on the surfaces of porous N-doped carbon nanotubes for Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Growth of MoSe 2 nanosheet arrays with small size and expanded

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 017 Supporting Information Self-Supported Nickel Phosphosulphide Nanosheets

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information A Cu 2 Se-Cu 2 O Film Electrodeposited on Titanium Foil as a Highly Active

More information

Bimetallic Thin Film NiCo-NiCoO as Superior Bifunctional Electro- catalyst for Overall Water Splitting in Alkaline Media

Bimetallic Thin Film NiCo-NiCoO as Superior Bifunctional Electro- catalyst for Overall Water Splitting in Alkaline Media Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supportting Information for Bimetallic Thin Film NiCo-NiCoO 2 @NC as Superior

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Construction of hierarchical Ni-Co-P

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Experimental section Materials: Ti mesh (TM) was provided

More information

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors Supporting Information Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for High-Rate Supercapacitors Miao Gao, Wei-Kang Wang, Xing Zhang, Jun Jiang, Han-Qing Yu CAS Key Laboratory of

More information

unique electronic structure for efficient hydrogen evolution

unique electronic structure for efficient hydrogen evolution Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Atom-scale dispersed palladium in conductive

More information

Electronic supplementary information. Amorphous carbon supported MoS 2 nanosheets as effective catalyst for electrocatalytic hydrogen evolution

Electronic supplementary information. Amorphous carbon supported MoS 2 nanosheets as effective catalyst for electrocatalytic hydrogen evolution Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information Amorphous carbon supported MoS 2 nanosheets as effective

More information

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Electronic Supplementary Information A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Jilei Liu,, Minghua Chen, Lili Zhang, Jian Jiang, Jiaxu Yan, Yizhong

More information

Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang *

Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang * Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang * Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 114 Roger Adams Laboratory, MC-712, 600

More information

Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for ph-insensitive Hydrogen Evolution Reactions

Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for ph-insensitive Hydrogen Evolution Reactions Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for ph-insensitive Hydrogen Evolution Reactions Majid Asnavandi +, Bryan H. R. Suryanto +, Wanfeng Yang, Xin Bo and Chuan Zhao* School of Chemistry,

More information

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels Supporting Information Engineering Two-Dimensional Mass-Transport Channels of MoS 2 Nanocatalyst towards Improved Hydrogen Evolution Performance Ge Wang a, Jingying Tao a, Yijie Zhang a, Shengping Wang

More information

Atomic H-Induced Mo 2 C Hybrid as an Active and Stable Bifunctional Electrocatalyst Supporting Information

Atomic H-Induced Mo 2 C Hybrid as an Active and Stable Bifunctional Electrocatalyst Supporting Information Atomic H-Induced Mo 2 C Hybrid as an Active and Stable Bifunctional Electrocatalyst Supporting Information Xiujun Fan, * Yuanyue Liu, ς Zhiwei Peng, Zhenhua Zhang, # Haiqing Zhou, Xianming Zhang, Boris

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information Aligned Cobalt-Based Co@CoO x Nanostructures for Efficient Electrocatalytic

More information

Cloth for High-Efficient Electrocatalytic Urea Oxidation

Cloth for High-Efficient Electrocatalytic Urea Oxidation Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information In-situ Growth of Single-Layered α-ni(oh) 2 Nanosheets

More information

Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes. Shizhang Qiao ( 乔世璋 )

Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes. Shizhang Qiao ( 乔世璋 ) Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes Shizhang Qiao ( 乔世璋 ) s.qiao@adelaide.edu.au The University of Adelaide, Australia 18 19 January 216, Perth 1.

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Synthesis of 1T-MoSe 2 ultrathin

More information

Supporting Information. Facile in situ synthesis of carbon quantum dots/graphene heterostructure

Supporting Information. Facile in situ synthesis of carbon quantum dots/graphene heterostructure Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2019 Supporting Information Facile in situ synthesis of carbon quantum dots/graphene heterostructure

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Ultrasmall Ni/NiO Nanoclusters on Thiol Functionalized and Exfoliated Graphene Oxide Nanosheets for Durable Oxygen Evolution Reaction Akhtar Munir, Tanveer-ul-Haq, Ahsanulhaq Qurashi,

More information

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supporting Information Trifunctional Ni-N/P-O-codoped graphene electrocatalyst

More information

Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water

Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water Supporting Information Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water Jian Zhao, a,b,c,d Phong D. Tran,* a,c Yang Chen, a,c Joachim

More information

Supporting Information

Supporting Information Supporting Information Nest-like NiCoP for Highly Efficient Overall Water Splitting Cheng Du, a Lan Yang, a Fulin Yang, a Gongzhen Cheng a and Wei Luo a,b* a College of Chemistry and Molecular Sciences,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Pt-like catalytic behavior of MoNi

More information

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting Supporting Information for Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting Zhengfei Dai,,, Hongbo Geng,,, Jiong Wang, Yubo Luo, Bing Li, ǁ Yun Zong, ǁ Jun Yang, Yuanyuan

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy The 4 th SUNBEAM Workshop Structural and Electronic properties of platinum nanoparticles studied by in situ x-ray x diffraction and in situ x-ray x absorption spectroscopy Hideto Imai Fundamental and Environmental

More information

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Supplemental Materials for Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Wenchao Sheng, a MyatNoeZin Myint, a Jingguang G.

More information

bifunctional electrocatalyst for overall water splitting

bifunctional electrocatalyst for overall water splitting Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Hierarchical Ni/NiTiO 3 derived from NiTi LDHs: a bifunctional electrocatalyst

More information

Reviewers' Comments: Reviewer #1 (Remarks to the Author)

Reviewers' Comments: Reviewer #1 (Remarks to the Author) Reviewers' Comments: Reviewer #1 (Remarks to the Author) The manuscript reports the synthesis of a series of Mo2C@NPC-rGO hybrid HER electrocatalysts by employing the precursor of PMo12 (H3PMo12O40)-PPy/rGO

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Nickel Cobalt Phosphides Quasi-Hollow Nanocubes as an Efficient

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information Three-Dimensional Flexible Electrode Derived

More information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries Supporting Information Hierarchical Mesoporous/Macroporous Perovskite La 0.5 Sr 0.5 CoO 3-x Nanotubes: a Bi-functional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen

More information

Electronic Supplementary Material. Methods. Synthesis of reference samples in Figure 1(b) Nano Res.

Electronic Supplementary Material. Methods. Synthesis of reference samples in Figure 1(b) Nano Res. Electronic Supplementary Material Shaped Pt Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction Jun Gu 1,, Guangxu

More information

Nitrogen and sulfur co-doped porous carbon derived from human hair as. highly efficient metal-free electrocatalyst for hydrogen evolution reaction

Nitrogen and sulfur co-doped porous carbon derived from human hair as. highly efficient metal-free electrocatalyst for hydrogen evolution reaction Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Nitrogen and sulfur co-doped porous

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201502134 Stable Metallic 1T-WS 2 Nanoribbons Intercalated with Ammonia

More information

Chemicals. Nickel foam (NF, thickness 1.6 mm, bulk density 0.45 g cm -3, porosity

Chemicals. Nickel foam (NF, thickness 1.6 mm, bulk density 0.45 g cm -3, porosity Supplementary Methods Chemicals. Nickel foam (NF, thickness 1.6 mm, bulk density 0.45 g cm -3, porosity 95%), stainless steel mesh (300 mesh, bulk density 0.25 g cm -3, wire diameter 0.04 mm, open area

More information

Insights into Interfacial Synergistic Catalysis over Catalyst toward Water-Gas Shift Reaction

Insights into Interfacial Synergistic Catalysis over Catalyst toward Water-Gas Shift Reaction Supporting Information Insights into Interfacial Synergistic Catalysis over Ni@TiO2-x Catalyst toward Water-Gas Shift Reaction Ming Xu, 1 Siyu Yao, 2 Deming Rao, 1 Yiming Niu, 3 Ning Liu, 1 Mi Peng, 2

More information

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Supplementary Information. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts

Supplementary Information. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts Supplementary Information Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts Wei Wei 1, 4,, Ying Tao 1, 4,, Wei Lv 2,, Fang-Yuan Su 2, Lei Ke 2, Jia Li 2, Da-Wei Wang 3, *, Baohua

More information

nanowires self-supported on copper foam as a highly efficient 3D

nanowires self-supported on copper foam as a highly efficient 3D Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Rapid synthesis of ultralong Fe(OH) 3 :Cu(OH) 2 core-shell nanowires self-supported

More information

Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction

Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction Jingfang Zhang,, Jieyu Liu,, Lifei Xi,, Yifu Yu, Ning Chen, Weichao Wang,,, *

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information Ultrathin and High-Ordered CoO Nanosheet

More information

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Electronic supplementary information Self-Supported Three-Dimensional Mesoporous Semimetallic

More information

CdS layer as a superior electrocatalyst for hydrogen evolution

CdS layer as a superior electrocatalyst for hydrogen evolution Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Ni 3 S 2 @MoO 3 core/shell arrays on Ni foam modified with Ultrathin CdS layer as a superior electrocatalyst

More information