MANUFACTURING OF MICROPOROUS CERAMIC MEMBRANES FOR ENVIRONMENTAL APPLICATIONS I. CO 2 -free power plants II. Fuel cells

Size: px
Start display at page:

Download "MANUFACTURING OF MICROPOROUS CERAMIC MEMBRANES FOR ENVIRONMENTAL APPLICATIONS I. CO 2 -free power plants II. Fuel cells"

Transcription

1 Mitglied der Helmholtz-Gemeinschaft Innovation for Sustainable Production i-sup 2008 Congrescentrum Oud Sint-Jan, Brugge April 2008 MANUFACTURING OF MICROPOROUS CERAMIC MEMBRANES FOR ENVIRONMENTAL APPLICATIONS I. CO 2 -free power plants II. Fuel cells Tim Van Gestel, Wilhelm A. Meulenberg, Hans Peter Buchkremer Forschungszentrum Jülich GmbH Institute of Energy Research Materials Synthesis and Processing (IEF-1) D Jülich

2 Membrane research topics in IEF-1 Focus on energy-related applications : 1 Development of porous and dense membranes for application in CO 2 -free power plants dense membranes for O 2 /N 2 separation microporous membranes for CO 2 /H 2 separation 2 Development of porous and dense membranes for application in advanced Solid Oxide Fuel Cells (SOFC s) porous anode and cathode layers dense electrolyte membrane Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

3 Microporous membranes for CO 2 separation Example: Metal-supported Membranes for H 2 /CO 2 -Separation Separation membrane Detail: H 2 CO 2 Pore size ~ 0.5 nm 3. Interlayer 2. Interlayer 1. Interlayer (metallic) Pore size 3-10 nm metallic substrate * bar = 200 nm Gas Molecule H 2 CO 2 N 2 d kin in nm 0,29 0,33 0,36 * bar = 10 µm Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

4 Microporous membranes for CO 2 separation Example: Multilayer-Membrane on ceramic ZrO 2 substrate 3% Y 2 microporous toplayer (Pore size < 1 nm) Sol-Gel Method: γ-al 2 mesoporous layer (Pore size ~ 5 nm) Nano-Particle sol Particle size ~ 6 nm Sol-Gel Method: Colloidal Particle Sol Particle size ~ 30 nm 8Y 2 macroporous layer (Pore size ~ 100 nm) 8Y 2 substrate (Pore size ~ 1 µm) * bar = 10 µm Suspension Method: Particle size ~ 350 nm - Vacuum slip-casting - Dip-coating - Screen-printing Powder Method: Warm-pressing Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

5 Microporous membranes for CO 2 separation Substrate preparation - Warmpressing Warmpressing 8Y 2 Substrate + Sintering (1200 ºC) Large-scale Support: Preparation with Standard IEF-1 Technology for Solid Oxide Fuel Cells SOFC s (25 x 25 cm) Lab-scale Support for R & D: Polishing with diamant particles for improving Surface roughness (4 x 4 cm) Particle size: 3-5 µm Average Pore size: ~ 1 µm pore volume (mm³/g) Pore size distribution Substrate (Firing 1200 C, Hg-porosimetry) 0,0 0,5 1,0 1,5 2,0 2,5 3,0 pore size (mm) Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

6 Macroporous Interlayer Suspension coating 8Y 2 macroporous layer 8Y 2 substrate 8Y 2 macroporous layer * bar = 100 µm * bar = 1 µm abundance Particle size distribution Coating liquid (8Y 2 Suspension, Tosoh corp.) pore volume (mm³/g) Pore size distribution Membrane material (Firing 1100 C, Hg-porosimetry) particle size (nm) pore size (nm) Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

7 Mesoporous interlayer Sol-gel coating 8Y 2 mesoporous layer 8Y 2 mesoporous layer 8Y 2 macroporous layer 8Y 2 substrate 8Y 2 macroporous layer * bar = 10 µm * bar = 1 µm abundance Particle size distribution Coating liquid (Colloidal 8Y 2 Sol) pore volume (cm³/g) 0,30 0,25 0,20 0,15 0,10 0,05 Pore size distribution Membrane material (Firing 500 C, N 2 -ads./desorption) particle size (nm) 0, pore size (nm) Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

8 Microporous toplayer Sol-Gel Coating 8Y 2 microporous layer 8Y 2 microporous layer 8Y 2 mesoporous layer 8Y 2 double mesoporous layer 8Y 2 mesoporous layer 8Y 2 macroporous layer * bar = 1 µm * bar = 200 nm Particle size distribution Coating liquid (8Y 2 Nano-Particle Sol) 0,030 0,025 Pore size distribution Membrane material (Firing 450 C, N 2 -ads./desorption) pore volume (cm³/g) 0,020 0,015 0,010 0,005 0, pore size (nm) Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

9 Microporous toplayer Sol-Gel Coating 8Y 2 microporous double-layer 8Y 2 mesoporous double-layer * bar = 1 µm * bar = 200 nm Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

10 Microporous toplayer Sol-Gel Coating 8Y 2 microporous double-layer 8Y 2 mesoporous double-layer 8Y 2 macroporous layer * bar = 1 µm Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

11 Overview subsequent membrane coating steps Particle size 8Y 2 Suspension Particle size Colloidal 8Y 2 Sol Particle size Polymeric 8Y 2 Nano-Sol average particle size 350 nm average particle size 40 nm average particle size 6 nm abundance abundance particle size (nm) particle size (nm) macroporous layer mesoporous layer microporous layer * bar = 1 µm Pore size ~ 90 nm (1200ºC) Phase structure: Cubic * bar = 200 nm Pore size ~ 6-7 nm (500ºC) Phase structure: Cubic * bar = 200 nm Pore size ~ 1 nm (450ºC) Phase structure: Cubic Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

12 Membrane research topics in IEF-1 Focus on energy-related applications : 1 Development of porous and dense membranes for application in CO 2 -free power plants dense membranes for O 2 /N 2 separation microporous membranes for CO 2 /H 2 separation 2 Development of porous and dense membranes for application in advanced Solid Oxide Fuel Cells (SOFC s) porous anode and cathode layers dense electrolyte membrane Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

13 Standard FZ-Jülich SOFC (La,Sr)Mn cathode (La,Sr)Mn /8Y 2 cathode layer 8Y 2 electrolyte layer NiO/8Y 2 anode layer * bar = 10 µm NiO/8Y 2 substrate Planar configuration ( 20 cm x 20 cm) Anode supported concept with thin-film electrolyte I = ~ 1.5 A/cm 2 at 800ºC and 0.7 V (single cell); ~ 1.1 A/cm 2 (stack) Demonstrated 60-cell stack with 13 kw; in progress 20 kw system Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

14 Novel membranes for advanced SOFC s dense 8Y 2 electrolyte membrane on porous NiO/8Y 2 substrate * bar = 10 µm Conventional preparation method: (1) Deposition of macroporous membrane starting from ZrO 2 powder suspension (2) Sintering of macroporous membrane at high temperature (1400 C, 5h) Proposed alternative preparation method: (1) Deposition of membrane starting from ZrO 2 nano-particles (e.g. Coating with ultra-fine suspension or sol) (2) Sintering at lower temperature (objective < 1100 C) (3) Possibility to apply steel substrate, reduction of production cost Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

15 Novel membranes for advanced SOFC s Coating with ultra-fine suspension 8Y 2 mesoporous electrolyte membrane made from ultra-fine suspension (particle size = 80 nm) Surface 8Y 2 layer 8Y 2 /NiO anode layer 8Y 2 /NiO substrate * bar = 10 µm Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

16 Novel membranes for advanced SOFC s Coating with ultra-fine suspension 8Y 2 mesoporous membrane made from ultrafine suspension (particle size = 80 nm) Surface 8Y 2 layer 8Y 2 membrane layer made from colloidal and polymer sol 8Y 2 /NiO anode layer * bar = 2 µm Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

17 Novel membranes for advanced SOFC s Coating with ultra-fine suspension 8Y 2 mesoporous membrane made from ultrafine suspension (particle size = 80 nm) 8Y 2 membrane layer made fromsurface colloidal 8Yand 2 -ZrO polymer 2 layer sol anode layer substrate Application of developed mesoporous and microporous membrane coating technology for making thin and continuous electrolyte layers on standard SOFC substrate with a coarse structure * bar = 10 µm Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

18 Novel membranes for advanced SOFC s Coating with ultra-fine suspension Surface 8Y 2 layer after firing at 600 C 8Y 2 layer anode layer * bar = 1 µm Coating with ultra-fine suspension and sol * bar = 200 nm Surface 8Y 2 layer after firing at 600 C * bar = 1 µm * bar = 200 nm Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

19 Novel membranes for advanced SOFC s Coating with ultra-fine suspension (+ firing 1300 C) Surface 8Y 2 layer after firing at 1300 C Standard 1400 C * bar = 10 µm Coating with ultra-fine suspension and sol (+ firing 1300 C) * bar = 2 µm Surface 8Y 2 layer after firing at 1300 C Standard 1400 C * bar = 10 µm * bar = 2 µm Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

20 Novel membranes for advanced SOFC s 8Y 2 dense electrolyte membrane layer (1300 C) 8Y 2 /NiO anode layer * bar = 1 µm Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

21 Novel membranes for advanced SOFC s 8Y 2 dense electrolyte membrane layer (1300 C) anode layer substrate Application of developed mesoporous and microporous membrane coating technology for making thin and continuous electrolyte layers on standard SOFC substrate with a coarse structure * bar = 10 µm Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

22 Novel membranes for advanced SOFC s 8Y 2 dense electrolyte membrane layer (1200 C) anode layer substrate Standard firing 1400 C previous example 1300 C * bar = 10 µm this example 1200 C Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

23 Novel membranes for advanced SOFC s 8Y 2 dense electrolyte membrane layer (1200 C) anode layer substrate Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

24 Novel membranes for advanced SOFC s Surface Coating with 8Y 2 Oultra-fine 3 /NiO suspension anode layer (on standard SOFC substrate) Coating with ultra-fine suspension and sol Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

25 Novel membranes for advanced SOFC s Surface 8Y 2 porous membrane after firing at 600 C Coating with ultra-fine suspension Coating with ultra-fine suspension and sol Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

26 Novel membranes for advanced SOFC s Coating with ultra-fine suspension Surface 8Y 2 membrane after firing at 1200 C Coating with ultra-fine suspension and sol Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

27 Novel membranes for advanced SOFC s Detail 8Y 2 membrane after firing at 1200 C Coating with ultra-fine suspension Coating with ultra-fine suspension and sol Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

28 State of the art - Conclusion Current gas separation membranes aremadeof SiO 2 materials, having an insufficient (hydro)thermal stability for application in power plant streams Current solid oxide fuel cells are made by unwanted high-temperature sinter treatments In this work : Manufacturing of novel nano-structured ZrO 2 membranes Widely accepted material for long-term operation in gas separation Densification material at a lower temperature for SOFC manufacturing In progress : Optimization of the membrane pore size (target: high H 2 /CO 2 selectivity) Manufacturing SOFC s for current density characterization Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

29 Acknowledgement : Funding by Helmholtz Association of German Research Centers Helmholtz Alliance MEM-BRAIN SEM images made by Dr. Doris Sebold IEF-1 Institute of Energy Research IEF-1 Van Gestel, Meulenberg, Buchkremer, Brugge

Materials development for inorganic membrane layers at ECN

Materials development for inorganic membrane layers at ECN Materials development for inorganic membrane layers at ECN B.C. Bonekamp Presented at XXV EMS Summerschool, Leuven, Belgium, September ECN-M--09-062 May Materials Development for Inorganic Membrane Layers

More information

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode Electrophoretic Deposition - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode no redox differs from electrolytic in several ways deposit

More information

Porous silicon as base material of MEMS-compatible fuel cell components

Porous silicon as base material of MEMS-compatible fuel cell components Porous silicon as base material of MEMS-compatible fuel cell components José Geraldo Alves Brito Neto Tokyo University of Science - Faculty of Science and Technology Department of Mechanical Engineering

More information

Physical properties of porous membranes. Membranes D f S BET [m 2 /g] d peak [nm]

Physical properties of porous membranes. Membranes D f S BET [m 2 /g] d peak [nm] The Sol-Gel Preparation and Characterization of Nanoporous Silica Membrane with Controlled Pore Size T. Fujii, T. Izumi, Dept. of Food Sci., Niigata Univ. of Pharm. & Appl. Life Sci., Niitsu, Niigata 956-8603,

More information

Synthesis of Zeolite Composite Membranes for CO2 Separation

Synthesis of Zeolite Composite Membranes for CO2 Separation Synthesis of Zeolite Composite Membranes for CO2 Separation April. 10. 2003 Sang Hoon Hyun, Dong Wook Shin, Young Eun Lee, Moon Hee Han*, and Churl Hee Cho* School of Materials Science & Engineering Yonsei

More information

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer Stanford University Michael Shandalov1, Shriram Ramanathan2, Changhyun Ko2 and Paul McIntyre1 1Department of Materials Science and Engineering, Stanford University 2Division of Engineering and Applied

More information

Batteries (Electrochemical Power Sources)

Batteries (Electrochemical Power Sources) Batteries (Electrochemical Power Sources) 1. Primary (single-discharge) batteries. => finite quantity of the reactants 2. Secondary or rechargeable batteries => regeneration of the original reactants by

More information

Supplementary Information. Experimental Methods

Supplementary Information. Experimental Methods Extremely thin Pd-silica mixed-matrix membranes with nano-dispersion for improved hydrogen permeability Masakoto Kanezashi, Mitsunori Sano, Tomohisa Yoshioka, and Toshinori Tsuru Department of Chemical

More information

CEITEC/Central European Institute of Technology BUT

CEITEC/Central European Institute of Technology BUT GENERAL PRESENTATION Complete denomination: Brno University of Technology, Central European Institute of Technology Location (city, country): Brno, Czech Republic Technicka 10, 61600 Brno, CR Director:

More information

Introduction to Reflectometry and Small Angle Scattering under Grazing Incidence

Introduction to Reflectometry and Small Angle Scattering under Grazing Incidence Mitglied der Helmholtz-Gemeinschaft Introduction to Reflectometry and Small Angle Scattering under Grazing Incidence E. Kentzinger Jülich Center for Neutron Science and Peter Grünberg Institut Jülich Research

More information

Hydrothermal Stability Analysis of Carbonised Template Molecular Sieve Silica Membranes

Hydrothermal Stability Analysis of Carbonised Template Molecular Sieve Silica Membranes Refereed Proceedings Separations Technology VI: New Perspectives on Very Large-Scale Operations Engineering Conferences International Year 2004 Hydrothermal Stability Analysis of Carbonised Template Molecular

More information

FUNDAMENTALS OF INORGANIC MEMBRANE SCIENCE AND TECHNOLOGY

FUNDAMENTALS OF INORGANIC MEMBRANE SCIENCE AND TECHNOLOGY Membrane Science and Technology Series, 4 FUNDAMENTALS OF INORGANIC MEMBRANE SCIENCE AND TECHNOLOGY Edited by A.J. Burggraaf Laboratory of Inorganic Materials Science, Faculty of Chemical Technology, University

More information

Technologies and Approaches of CO 2 Capture

Technologies and Approaches of CO 2 Capture Southwest Regional Partnership Project Technologies and Approaches of CO 2 Capture Liangxiong Li, Brian McPherson, Robert Lee Petroleum Recovery Research Center New Mexico Institute of Mining and Technology,

More information

Repetition: Ion Plating

Repetition: Ion Plating Repetition: Ion Plating Substrate HV (bis ca. 1kV) Optional ionization system Source Ionized filling gas Source material, ionized or neutral Repetition: Ion Plating Ion Species Separated ion source Ions

More information

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Supporting Information Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Kamran Khajehpour,* a Tim Williams, b,c Laure Bourgeois b,d and Sam Adeloju a

More information

not to be confused with using the materials to template nanostructures

not to be confused with using the materials to template nanostructures Zeolites as Templates: continued Synthesis: Most zeolite syntheses are performed by using template-synthesis not to be confused with using the materials to template nanostructures templates are often surfactants

More information

Nano-Composites for Next-Generation Electrochemical Devices

Nano-Composites for Next-Generation Electrochemical Devices Nano-Composites for Next-Generation Electrochemical Devices Dr. Jason D. Nicholas Chemical Engineering & Materials Science Dept. Michigan State University, East Lansing, MI http://www.egr.msu.edu/nicholasgroup/index.html

More information

Electrolytes for Fuel Cells

Electrolytes for Fuel Cells Electrolytes for Fuel Cells Tom Zawodzinski Materials Science and Technology Division Los Alamos National Laboratory Air-Breather Fuel Cell Stack Systems Laptop Demo DCH/Enable Prototype Small Battery

More information

Membrane Performance Forecast

Membrane Performance Forecast Membrane Performance Forecast Interested in Membranes? Liquid Selectivity in s ea cr Zeta potential analysis with SurPASS 3 from Anton Paar opens up new possibilities in the characterization of membranes

More information

Solutions for Assignment-6

Solutions for Assignment-6 Solutions for Assignment-6 Q1. What is the aim of thin film deposition? [1] (a) To maintain surface uniformity (b) To reduce the amount (or mass) of light absorbing materials (c) To decrease the weight

More information

Effect of dipping number on the fabricated silica ceramic membranes via sol dip-coating method

Effect of dipping number on the fabricated silica ceramic membranes via sol dip-coating method 7, Issue 1 (2017) 19-24 Journal of Advanced Research in Applied Sciences and Engineering Technology Journal homepage: www.akademiabaru.com/araset.html ISSN: 2462-1943 Effect of dipping number on the fabricated

More information

Advanced Analytical Chemistry Lecture 12. Chem 4631

Advanced Analytical Chemistry Lecture 12. Chem 4631 Advanced Analytical Chemistry Lecture 12 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Nanotechnology Fabrication Methods.

Nanotechnology Fabrication Methods. Nanotechnology Fabrication Methods. 10 / 05 / 2016 1 Summary: 1.Introduction to Nanotechnology:...3 2.Nanotechnology Fabrication Methods:...5 2.1.Top-down Methods:...7 2.2.Bottom-up Methods:...16 3.Conclusions:...19

More information

Aalborg Universitet. Transport phenomena in gas-selective silica membranes Boffa, Vittorio. Creative Commons License Unspecified

Aalborg Universitet. Transport phenomena in gas-selective silica membranes Boffa, Vittorio. Creative Commons License Unspecified Aalborg Universitet Transport phenomena in gas-selective silica membranes Boffa, Vittorio Creative Commons License Unspecified Publication date: 2016 Link to publication from Aalborg University Citation

More information

Nano-sized ceria abrasive for advanced polishing applications in IC manufacturing

Nano-sized ceria abrasive for advanced polishing applications in IC manufacturing Nano-sized ceria abrasive for advanced polishing applications in IC manufacturing Joke De Messemaeker, Stijn Put, Daniël Nelis, Dirk Van Genechten, Paul Lippens, Yves Van Rompaey and Yvan Strauven Umicore

More information

SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS. Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France

SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS. Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France Outline IV - FORMATION OF SOLIDS FROM SOLUTIONS 1) Glass

More information

Hydrothermal stability of a new hybrid membrane in dehydration applications

Hydrothermal stability of a new hybrid membrane in dehydration applications Hydrothermal stability of a new hybrid membrane in dehydration applications Jaap Vente Approach Four way competences: Materials research System development Process design Implementation facilitation Five

More information

Generation of Hydrogen Peroxide In ORR Over Low Loadings of Pt/C Catalysts

Generation of Hydrogen Peroxide In ORR Over Low Loadings of Pt/C Catalysts Generation of Hydrogen Peroxide In ORR Over Low Loadings of Pt/C Catalysts Raja Swaidan The Cooper Union Advisor: Dr. Branko N. Popov Electrochemical Engineering 26 July 2007 Overview of Research Studied

More information

Characterization of microporous silica-based membranes by calorimetric analysis Boffa, Vittorio; Yue, Yuanzheng

Characterization of microporous silica-based membranes by calorimetric analysis Boffa, Vittorio; Yue, Yuanzheng Aalborg Universitet Characterization of microporous silica-based membranes by calorimetric analysis Boffa, Vittorio; Yue, Yuanzheng Published in: 6th Black Sea Conference on Analytical Chemistry - Book

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

Toshinori Tsuru, Hiroaki Shintani, Tomohisa Yoshioka, Masashi Asaeda

Toshinori Tsuru, Hiroaki Shintani, Tomohisa Yoshioka, Masashi Asaeda 9/26/2006 (1/15) A bimodal catalytic membrane having a hydrogen-permselective silica layer on a bimodal catalytic support: Preparation and application to the steam reforming of methane Toshinori Tsuru,

More information

Introduction Fuel Cells Repetition

Introduction Fuel Cells Repetition Introduction Fuel Cells Repetition Fuel cell applications PEMFC PowerCell AB, (S1-S3) PEMFC,1-100 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the

More information

Experimental details. General

Experimental details. General Experimental details General TiO 2 P25 was purchased from Degussa; methyl methacrylate (MMA, 99%), 2,2 -azobis(2- methylpropionamidine) dihydrochloride (97%), titanium (IV) isopropoxide (97%), concentrated

More information

Network of Excellence

Network of Excellence Network of Excellence IN SItu study and DEvelopment of processes involving nano PORous Solids Priority 3 NMP research area3.4.1.1 www. pores.gr Goals of the inside-pores The goal of the INSIDE-PORES is

More information

A1308. Combined experimental and modeling study of interaction between LSCF and CGO in SOFC cathodes

A1308. Combined experimental and modeling study of interaction between LSCF and CGO in SOFC cathodes A1308 Combined experimental and modeling study of interaction between LSCF and CGO in SOFC cathodes Rémi Costa (1), Roberto Spotorno (1), Claudia Repetto (1), Zeynep Ilhan (1,2) and Vitaliy Yurkiv (1,2)

More information

Polarization analysis and microstructural characterization of SOFC anode and electrolyte supported cells

Polarization analysis and microstructural characterization of SOFC anode and electrolyte supported cells Polarization analysis and microstructural characterization of SOFC anode and electrolyte supported cells Lanzini A., Leone P., Santarelli M., Asinari P., Calì M. Dipartimento di Energetica. Politecnico

More information

Development of Innovative Gas Separation Membranes through Sub- Nanoscale Material Control

Development of Innovative Gas Separation Membranes through Sub- Nanoscale Material Control Development of Innovative Gas Separation Membranes through Sub- Nanoscale Material Control Investigators Research Institute of Innovative Technology for the Earth (RITE) Yuichi Fujioka Group Leader, Chief

More information

Sol-Gel Methods. Hydrolysis Condensation Gelation Ageing Drying Densification

Sol-Gel Methods. Hydrolysis Condensation Gelation Ageing Drying Densification Sol-Gel Methods Sol-gel process: Hydrolysis Condensation Gelation Ageing Drying Densification Powders: microcrystalline, nanocrystalline, amorphous Monoliths, Coatings, Films, Fibers Aerogels Glasses,

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

CHAPTER 5 SURFACE TOPOGRAPHY STUDIES ON ELECTROPHORETICALLY DEPOSITED CHITOSAN ON POLYCAPROLACTONE MICRO FIBROUS SUBSTRATES

CHAPTER 5 SURFACE TOPOGRAPHY STUDIES ON ELECTROPHORETICALLY DEPOSITED CHITOSAN ON POLYCAPROLACTONE MICRO FIBROUS SUBSTRATES 89 CHAPTER 5 SURFACE TOPOGRAPHY STUDIES ON ELECTROPHORETICALLY DEPOSITED CHITOSAN ON POLYCAPROLACTONE MICRO FIBROUS SUBSTRATES 5.1 INTRODUCTION Synthetic bio polymers such as PCL, poly (glycolic acid)

More information

Advanced characterization: the key factor for standardization at nm-scale. Olha Sereda

Advanced characterization: the key factor for standardization at nm-scale. Olha Sereda Advanced characterization: the key factor for standardization at nm-scale Olha Sereda osr@csem.ch about CSEM Our mission Development and transfer of microtechnologies to the industrial sector in order

More information

Gas Permeation Study Using Porous Ceramic Membranes

Gas Permeation Study Using Porous Ceramic Membranes Energy and Environment Research; Vol. 4, No. 3; 2014 ISSN 1927-0569 E-ISSN 1927-0577 Published by Canadian Center of Science and Education Gas Permeation Study Using Porous Ceramic Membranes Mohammed N.

More information

Chapter - 8. Summary and Conclusion

Chapter - 8. Summary and Conclusion Chapter - 8 Summary and Conclusion The present research explains the synthesis process of two transition metal oxide semiconductors SnO 2 and V 2 O 5 thin films with different morphologies and studies

More information

SEPARATION BY BARRIER

SEPARATION BY BARRIER SEPARATION BY BARRIER SEPARATION BY BARRIER Phase 1 Feed Barrier Phase 2 Separation by barrier uses a barrier which restricts and/or enhances the movement of certain chemical species with respect to other

More information

Solution-processable graphene nanomeshes with controlled

Solution-processable graphene nanomeshes with controlled Supporting online materials for Solution-processable graphene nanomeshes with controlled pore structures Xiluan Wang, 1 Liying Jiao, 1 Kaixuan Sheng, 1 Chun Li, 1 Liming Dai 2, * & Gaoquan Shi 1, * 1 Department

More information

Synthesis and Characterization of high-performance ceramic materials for hightemperature

Synthesis and Characterization of high-performance ceramic materials for hightemperature Synthesis and Characterization of high-performance ceramic materials for hightemperature CO 2 capture and hydrogen production. Location: Institute for Energy Technology (IFE), Kjeller, Norway Department

More information

Preparation of Colloidal Sols and Gels

Preparation of Colloidal Sols and Gels Preparation of Colloidal Sols and Gels Objective This laboratory examines the preparation of silica suspensions and gels by the sol-gel processing of silicate solution under hydrolytic conditions using

More information

Application of Hierarchical Titanate and Titania nanotubes in Dye Sensitized Solar Cells Dmitry V. Bavykin and Frank C. Walsh

Application of Hierarchical Titanate and Titania nanotubes in Dye Sensitized Solar Cells Dmitry V. Bavykin and Frank C. Walsh Application of Hierarchical Titanate and Titania nanotubes in Dye Sensitized Solar Cells Dmitry V. Bavykin and Frank C. Walsh Energy Technology and Materials Engineering Research Groups School of Engineering

More information

Synthesis of uranium oxides by Complex Sol-Gel Processes (CSGP)

Synthesis of uranium oxides by Complex Sol-Gel Processes (CSGP) Synthesis of uranium oxides by Complex Sol-Gel Processes (CSGP) A.Deptula, M.Brykala, W.Lada, T.Olczak, D.Wawszczak Institute of Nuclear Chemistry and Technology Sol-Gel Laboratory Warsaw, Poland G.Modolo,

More information

Characterisation of mesopores - ortho-positronium lifetime measurement as a porosimetry technique

Characterisation of mesopores - ortho-positronium lifetime measurement as a porosimetry technique Characterisation of mesopores - ortho-positronium lifetime measurement as a porosimetry technique S. Thraenert 1, E. M. Hassan 1, D. Enke 2, R. Krause-Rehberg 1 Martin-Luther-Universität Halle-Wittenberg

More information

Institut für Energie und Umwelttechnik e.v.

Institut für Energie und Umwelttechnik e.v. Institut für Energie und Umwelttechnik e.v. Continuous synthesis of highly-specific nanopowder on the pilot-plant scale Tim Hülser Successful R&I 2015, Düsseldorf Duisburg, North-Rhine-Westphalia, Germany

More information

Towards selective test protocols for accelerated in situ degradation of PEM electrolysis cell components

Towards selective test protocols for accelerated in situ degradation of PEM electrolysis cell components Towards selective test protocols for accelerated in situ degradation of PEM electrolysis cell components 1 st International Conference on Electrolysis - Copenhagen Thomas Lickert, Claudia Schwarz, Patricia

More information

All-Chemical-Solution Coated Conductors at Deutsche Nanoschicht GmbH

All-Chemical-Solution Coated Conductors at Deutsche Nanoschicht GmbH chemistry meets energy All-Chemical-Solution Coated Conductors at Deutsche Nanoschicht GmbH Michael Baecker; Martina Falter; Ron Feenstra; Brygida Wojtyniak; Jan Bennewitz; Jan Kunert; Mark O. Rikel Deutsche

More information

GENERAL ENGINEERING AND RESEARCH. Nano Capsule CMP Slurries: Enabling Localized Control of Chemical Exposure

GENERAL ENGINEERING AND RESEARCH. Nano Capsule CMP Slurries: Enabling Localized Control of Chemical Exposure GENERAL ENGINEERING AND RESEARCH National Science Foundation SBIR Phase II Nano Capsule CMP Slurries: Enabling Localized Control of Chemical Exposure Robin V. Ihnfeldt, Ph.D. July 11, 2016 Outline Introduction

More information

Synthesis of a Zeolite Column with a Monolithic Microhoneycomb Structure Using the Ice Template Method

Synthesis of a Zeolite Column with a Monolithic Microhoneycomb Structure Using the Ice Template Method Synthesis of a Zeolite Column with a Monolithic Microhoneycomb Structure Using the Ice Template Method Shin R. Mukai, Shinya Murata, Kazufusa Onodera and Izumi Yamada *1 Graduate School of Engineering,

More information

SUPPORTING INFORMATION. Preparation of colloidal photonic crystal containing CuO nanoparticles with. tunable structural colors

SUPPORTING INFORMATION. Preparation of colloidal photonic crystal containing CuO nanoparticles with. tunable structural colors Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 SUPPORTING INFORMATION Preparation of colloidal photonic crystal containing CuO nanoparticles

More information

Supports, Zeolites, Mesoporous Materials - Chapter 9

Supports, Zeolites, Mesoporous Materials - Chapter 9 Supports, Zeolites, Mesoporous Materials - Chapter 9 Krijn P. de Jong Inorganic Chemistry and Catalysis Utrecht University NIOK CAIA Course, Schiermonnikoog, December 4 th, 2009 1 Overview of lecture Introduction

More information

Fabrication Methods: Chapter 4. Often two methods are typical. Top Down Bottom up. Begins with atoms or molecules. Begins with bulk materials

Fabrication Methods: Chapter 4. Often two methods are typical. Top Down Bottom up. Begins with atoms or molecules. Begins with bulk materials Fabrication Methods: Chapter 4 Often two methods are typical Top Down Bottom up Begins with bulk materials Begins with atoms or molecules Reduced in size to nano By thermal, physical Chemical, electrochemical

More information

Microstructured Porous Silica Obtained via Colloidal Crystal Templates

Microstructured Porous Silica Obtained via Colloidal Crystal Templates Paper No. 203e Microstructured Porous Silica Obtained via Colloidal Crystal Templates O. D. Velev, T. A. Jede, R. F. Lobo and A. M. Lenhoff Department of Chemical Engineering, University of Delaware, Newark

More information

Anodic alumina supported dual-layer microporous silica membranes

Anodic alumina supported dual-layer microporous silica membranes Journal of Membrane Science 287 (2007) 157 161 Rapid communication Anodic alumina supported dual-layer microporous silica membranes G. Xomeritakis a,, N.G. Liu a,1, Z. Chen a, Y.-B. Jiang a,b,r.köhn a,2,

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells References and Sources: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 1982. Fuel Cell Systems, Explained by James Larminie and Andrew Dicks, Wiley,

More information

Nanocontainers with controlled permeability for feedback active coatings

Nanocontainers with controlled permeability for feedback active coatings Nanocontainers with controlled permeability for feedback active coatings Contents: 1. Self-healing coatings based on nanocontainers for corrosion protection: - with ph-triggered release, - triggered by

More information

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free Supporting Information Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes Tong-Tong Zuo,, Ya-Xia Yin,, Shu-Hua Wang, Peng-Fei Wang,, Xinan

More information

Variable capacitor energy harvesting based on polymer dielectric and composite electrode

Variable capacitor energy harvesting based on polymer dielectric and composite electrode 2.8.215 Variable capacitor energy harvesting based on polymer dielectric and composite electrode Robert Hahn 1*, Yuja Yang 1, Uwe Maaß 1, Leopold Georgi 2, Jörg Bauer 1, and K.- D. Lang 2 1 Fraunhofer

More information

Introduction to Solid Oxide Fuel Cells. Solid Oxide Fuel Cell (SOFC)

Introduction to Solid Oxide Fuel Cells. Solid Oxide Fuel Cell (SOFC) Introduction to Solid Oxide Fuel Cells Basics Electrochemistry Microstructure Effects Stacks Solid Oxide Fuel Cell (SOFC) CATHODE: (La,Sr)(Mn)O 3 (LSM) LSM-YSZ ELECTROLYTE: ANODE: Y-doped ZrO 2 (YSZ) Ni-YSZ

More information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

Design and Fabrication of Hierarchically Porous Carbon with a Template-free Method

Design and Fabrication of Hierarchically Porous Carbon with a Template-free Method Supplementary information Design and Fabrication of Hierarchically Porous Carbon with a Template-free Method Yutong Gong, Zhongzhe Wei, Jing Wang, Pengfei Zhang, Haoran Li and Yong Wang * Carbon Nano Materials

More information

One-Dimensional Nanomaterials for Energy and Electronics Applications

One-Dimensional Nanomaterials for Energy and Electronics Applications #1/28 One-Dimensional Nanomaterials for Energy and Electronics Applications Latika Menon Advanced Nanomaterials Laboratory Department of Physics l.menon@neu.edu 617-373-4530 617-373-4530 Menon Laboratories,

More information

MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS

MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS Bologna, May 23 th 2017 M. Federica De Riccardis SSPT-PROMAS-MATAS OUTLINE Basic concepts EDLC and PC Porosity Electrode materials Carbon

More information

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ. Office Hours: Wenesday, 09:30-10:30 am.

CERAMIC MATERIALS I. Asst. Prof. Dr. Ayşe KALEMTAŞ. Office Hours: Wenesday, 09:30-10:30 am. CERAMIC MATERIALS I Office Hours: Wenesday, 09:30-10:30 am. akalemtas@mu.edu.tr, akalemtas@gmail.com, Phone: 211 19 17 Metallurgical and Materials Engineering Department Liquid Phase Synthesis Fine Ceramic

More information

Determination and Assessment of the Rheological Properties of Pastes for Screen Printing Ceramics

Determination and Assessment of the Rheological Properties of Pastes for Screen Printing Ceramics ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 17, 2009 Determination and Assessment of the Rheological Properties of Pastes for Screen Printing Ceramics John W. Phair 1 and Andreas F-J. Kaiser

More information

Superhydrophobic Surfaces

Superhydrophobic Surfaces Superhydrophobic Surfaces Glen McHale and Mike Newton School of Biomedical & Natural Sciences Nottingham Trent University, UK Email: glen.mchale@ntu.ac.uk The Laboratory Themes & Expertise Wetting of surfaces

More information

Carbon Molecular Sieves and Spherical Graphitized Polymer Carbons for Sample Preparation Processes and Bulk Scale Purification Processes

Carbon Molecular Sieves and Spherical Graphitized Polymer Carbons for Sample Preparation Processes and Bulk Scale Purification Processes Carbon Molecular Sieves and Spherical Graphitized Polymer Carbons for Sample Preparation Processes and Bulk Scale Purification Processes William R. Betz, Michael J. Keeler, Jay M. Jones, Wendy S. Roe,

More information

SHORT ANSWER QUESTIONS UNIT I: POLYMERS AND BUILDING MATERIALS

SHORT ANSWER QUESTIONS UNIT I: POLYMERS AND BUILDING MATERIALS SHORT ANSWER QUESTIONS UNIT I: POLYMERS AND BUILDING MATERIALS 1. Define polymer. Give one example. 2. What is monomer? Give one example. 3. What is polymerization? 4. What is degree of polymerization?

More information

Carbon nanotubes and conducting polymer composites

Carbon nanotubes and conducting polymer composites University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 4 Carbon nanotubes and conducting polymer composites May Tahhan University of Wollongong

More information

Nano-silica production by a sustainable process; application in building materials.

Nano-silica production by a sustainable process; application in building materials. Nano-silica production by a sustainable process; application in building materials. A. LÁZARO AND H. J. H. BROUWERS Department of Architecture, Building and Planning Unit of Building Physics and Systems,

More information

GRAPHENE/CARBON BLACK COUNTER ELECTRODE FOR PEROVSKITE SOLAR CELL. Nutsuda Bunyoo, Nuttapol Pootrakulchote*

GRAPHENE/CARBON BLACK COUNTER ELECTRODE FOR PEROVSKITE SOLAR CELL. Nutsuda Bunyoo, Nuttapol Pootrakulchote* GRAPHENE/CARBON BLACK COUNTER ELECTRODE FOR PEROVSKITE SOLAR CELL Nutsuda Bunyoo, Nuttapol Pootrakulchote* Department of Chemical Technology, Faculty of Science, Chulalongkorn University Center of Excellence

More information

Development of Innovative Gas Separation Membranes Through Sub-Nanoscale Materials Control

Development of Innovative Gas Separation Membranes Through Sub-Nanoscale Materials Control GCEP Research Symposium 2006 Wednesday, September 20, 2006 Carbon Mitigation, Capture, and Separation Development of Innovative Gas Separation Membranes Through Sub-Nanoscale Materials Control Yuichi Fujioka,

More information

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL Anthony Paris Kevin Anderson Jet Propulsion Laboratory Prasanna Chandrasekhar, Brian Zay, Terrance McQueeney Ashwin-Ushas Corporation, Inc.,

More information

Properties and synthesis of ultra-thin SOFC structures Jingyu Shi, Frank M. Zalar, and Henk Verweij Department of Materials Science & Engineering,

Properties and synthesis of ultra-thin SOFC structures Jingyu Shi, Frank M. Zalar, and Henk Verweij Department of Materials Science & Engineering, Properties and synthesis of ultra-thin SOFC structures Jingyu Shi, Frank M. Zalar, and Henk Verweij Department of Materials Science & Engineering, Ohio State University, 241 College Road, Columbus OH 4321-1178,

More information

Preparation of DielectAcs HR Mirrors from Colloidal Oxide Suspensions Containing Organic Polymer Binders

Preparation of DielectAcs HR Mirrors from Colloidal Oxide Suspensions Containing Organic Polymer Binders UCRL-JC-115940 Preparation of DielectAcs HR Mirrors from Colloidal Oxide Suspensions Containing Organic Polymer Binders I. M. Thomas This paper was prepared for submittal to the SPIE International Symposia

More information

Resolving Questions of Biological Interface Chemistry with TOF-SIMS and FIB-TOF Tomography

Resolving Questions of Biological Interface Chemistry with TOF-SIMS and FIB-TOF Tomography Resolving Questions of Biological Interface Chemistry with TOF-SIMS and FIB-TOF Tomography Gregory L. Fisher, John S. Hammond & Scott R. Bryan, Physical Electronics With acknowledgements to: Prof. Reinhard

More information

Proton-Conducting Nanocomposites and Hybrid Polymers

Proton-Conducting Nanocomposites and Hybrid Polymers Proton-onducting Nanocomposites and Hybrid Polymers Y.D. Premchand 1, M.L. Di Vona 2, and P. Knauth 1 1 Introduction This chapter is about proton-conducting nanocomposites and hybrid polymers. Before beginning

More information

Block Copolymer Based Hybrid Nanostructured Materials As Key Elements In Green Nanotechnology

Block Copolymer Based Hybrid Nanostructured Materials As Key Elements In Green Nanotechnology The 7 th Korea-U.S. Nano Forum Block Copolymer Based Hybrid Nanostructured Materials As Key Elements In Green Nanotechnology Dong Ha Kim Department of Chemistry and Nano Science, Ewha Womans University

More information

Development of active inks for organic photovoltaics: state-of-the-art and perspectives

Development of active inks for organic photovoltaics: state-of-the-art and perspectives Development of active inks for organic photovoltaics: state-of-the-art and perspectives Jörg Ackermann Centre Interdisciplinaire de Nanoscience de Marseille (CINAM) CNRS - UPR 3118, MARSEILLE - France

More information

Micro/nano and precision manufacturing technologies and applications

Micro/nano and precision manufacturing technologies and applications The 4th China-American Frontiers of Engineering Symposium Micro/nano and precision manufacturing technologies and applications Dazhi Wang School of Mechanical Engineering Dalian University of Technology

More information

DOWNLOAD OR READ : NANOSTRUCTURED MATERIALS PROCESSING PROPERTIES AND APPLICATIONS 2ND ENLARGED EDITION PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : NANOSTRUCTURED MATERIALS PROCESSING PROPERTIES AND APPLICATIONS 2ND ENLARGED EDITION PDF EBOOK EPUB MOBI DOWNLOAD OR READ : NANOSTRUCTURED MATERIALS PROCESSING PROPERTIES AND APPLICATIONS 2ND ENLARGED EDITION PDF EBOOK EPUB MOBI Page 1 Page 2 nanostructured materials processing properties and applications

More information

Metallurgical and Materials Engineering Department MME 2509 Materials Processing Laboratory SOL-GEL DIP COATING

Metallurgical and Materials Engineering Department MME 2509 Materials Processing Laboratory SOL-GEL DIP COATING Metallurgical and Materials Engineering Department MME 2509 Materials Processing Laboratory SOL-GEL DIP COATING Assist. Prof. Dr. Tolga TAVŞANOĞLU 1. Sol-gel Process Sol-gel process is used for production

More information

OMICS Group International is an amalgamation of Open Access publications

OMICS Group International is an amalgamation of Open Access publications About OMICS Group OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of

More information

RECENT DEVELOPMENT IN THE ZEOLITE MEMBRANE SYNTHESIS

RECENT DEVELOPMENT IN THE ZEOLITE MEMBRANE SYNTHESIS RECENT DEVELOPMENT IN THE ZEOLITE MEMBRANE SYNTHESIS L. GÓRA, J.C. JANSEN, A.W.C. van den BERG and Th. MASCHMEYER Laboratory for Applied Organic Chemistry and Catalysis, DelftChemTech, Delft University

More information

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications S. Altmann a,b, T. Kaz b, K. A. Friedrich a,b a Institute of Thermodynamics and Thermal Engineering, University Stuttgart,

More information

Plasma Route to Nanosciences and Nanotechnology Frontiers

Plasma Route to Nanosciences and Nanotechnology Frontiers J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Plasma Route to Nanosciences and Nanotechnology Frontiers M.P.SRIVASTAVA Department of Physics and Astrophysics, University of Delhi, Delhi -110007, INDIA (Received:

More information

Supplemental Information. Carbon Monoxide Gas Diffusion Electrolysis. that Produces Concentrated C 2 Products. with High Single-Pass Conversion

Supplemental Information. Carbon Monoxide Gas Diffusion Electrolysis. that Produces Concentrated C 2 Products. with High Single-Pass Conversion JOUL, Volume 3 Supplemental Information Carbon Monoxide Gas Diffusion Electrolysis that Produces Concentrated C 2 Products with High Single-Pass Conversion Donald S. Ripatti, Thomas R. Veltman, and Matthew

More information

On Continuum Models for Heat Transfer in Small Scale Porous Materials Professor Jinliang Yuan

On Continuum Models for Heat Transfer in Small Scale Porous Materials Professor Jinliang Yuan On Continuum Models for Heat Transfer in Small Scale Porous Materials Professor Jinliang Yuan August 30, 2013 Department of Energy Sciences Lund University, Sweden Jinliang.yuan@energy.lth.se Why porous

More information

Hydrogen permeation using nanostructured silica membranes

Hydrogen permeation using nanostructured silica membranes Sustainable Development and Planning VII 447 Hydrogen permeation using nanostructured silica membranes M. N. Kajama, N. C. Nwogu & E. Gobina Centre for Process Integration and Membrane Technology (CPIMT),

More information

Impedance spectroscopy of symmetric cells for SOFC research

Impedance spectroscopy of symmetric cells for SOFC research Impedance spectroscopy of symmetric cells for SOFC research Shany Hershkovitz, Sioma Baltianski and Yoed Tsur Department of Chemical Engineering Technion, 32000 Haifa, Israel Outline A short update on

More information

Facilitated transport of thiophenes through Ag 2 O-filled PDMS membranes

Facilitated transport of thiophenes through Ag 2 O-filled PDMS membranes Facilitated transport of thiophenes through PDMS membranes Rongbin Qi, Yujun Wang, Jiding Li *, Shenlin Zhu State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University.

More information

Julien Schmitt, postdoc in the Physical Chemistry department. Internship 2010: Study of the SAXS scattering pattern of mesoporous materials

Julien Schmitt, postdoc in the Physical Chemistry department. Internship 2010: Study of the SAXS scattering pattern of mesoporous materials Before starting Julien Schmitt, postdoc in the Physical Chemistry department Internship 2010: Study of the SAXS scattering pattern of mesoporous materials PhD 2011-2014: Self-assembly mechanism of mesoporous

More information

UV-LED Module Design with Maximum Power Density

UV-LED Module Design with Maximum Power Density UV-LED Module Design with Maximum Power Density Manfred Scholdt 1, Christian Herbold 1, Marc Schneider 2, Cornelius Neumann 1 1 e 2 Institute for Data Processing and Electronics e (LTI) KIT Universität

More information

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS K. S. Choi, Y. Park, K-.C. Kwon, J. Kim, C. K.

More information