Lecture #15. Chapter 18 - Electrochemistry

Size: px
Start display at page:

Download "Lecture #15. Chapter 18 - Electrochemistry"

Transcription

1 Lecture #15 Chapter 18 - Electrochemistry

2 Chapter 18 - Electrochemistry the branch of chemistry that examines the transformations between chemical and electrical energy

3 Redox Chemistry Revisited

4 A Spontaneous Redox Reaction Znº(s) + Cu 2+ (aq) Zn 2+ (aq) + Cuº(s) Sum of two half-reactions: One species gains e (reduction) while another species loses e (oxidation) Oxidizing agents vs. reducing agents Znº(s) Zn 2+ (aq) Zn = red. agent; Cu 2+ = oxid. agent Cu 2+ (aq) Cuº(s)

5 Zn 0 + Cu 2+ Zn 2+ + Cu 0 electrons K +? Zn 2+ NO3 - NO3 - Cu 2+

6 A Voltaic Cell

7 Electrochemical Cells

8 The anode is for oxidation!! Reduction takes place at the cathode!!

9 Voltaic Cell Spontaneous Reaction Chemical energy is transformed into electrical energy.

10 Electrolytic Cell External source of electrical energy required Electrical energy is transformed into chemical energy.

11 Cell Components Anode = electrode at which oxidation halfreaction (loss of electrons) takes place. Cathode = electrode at which reduction halfreaction (gain of electrons) takes place. A bridge connects the two solutions of the cell; balances flow of electrons, eliminates accumulation of charge in either compartment.

12 Writing Cell Diagrams Write chemical symbol of anode at the far left, symbol of cathode at the far right, and a double vertical for connecting bridge halfway between them. Work inward from electrodes toward the bridge, using vertical lines to indicate phase changes and symbols of ions or compounds to represent electrolytes surrounding the electrode that are changed by the cell reaction. Indicate concentrations of dissolved species and partial pressures of any gases (if known).

13 Cell Diagram Example Cu(s) + 2 Ag + (aq) Cu 2+ (aq) + 2 Ag(s) 1. Cu(s) Ag(s) 2. Cu(s) Cu 2+ (aq) Ag + (aq) Ag(s) 3. Cu(s) Cu 2+ (1.00 M) Ag + (1.00 M) Ag(s) } anode half-cell } cathode half-cell

14 Standard Potentials

15 Recollection: The Activity Series of Metals ACTIVITY SERIES of Metals Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb [ H 2 ] Sb Bi Cu Hg Ag Pt Au Replace hydrogen from cold water Replace hydrogen from steam Replace hydrogen from acids React with oxygen to form oxides Atoms are Strong Reducing Agents Cations are Strong Oxidizing Agents

16 Recollection: The Activity Series of Metals ACTIVITY SERIES of Metals Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb [ H 2 ] Sb Bi Cu Hg Ag Pt Au Replace hydrogen from cold water Replace hydrogen from steam Replace hydrogen from acids React with oxygen to form oxides Atoms are Strong Reducing Agents 2 Naº + 2 H2O(l) 2 Na OH - + H2 Δ 2 Znº + 4 H2O(g) 2 Zn OH H2 Snº + H2O + H + Sn 2+ + OH H2 2 Cuº + O2 + 2 CuO Cations are Strong Oxidizing Agents

17 Standard Potentials Standard reduction potential (Eº) the potential of a halfreaction in which all reactants and products are their standard states at 25ºC. Standard cell potential (Eº cell ) a measure of how forcefully an electrochemical cell (in standard state) can pump electrons through an external circuit. Eº cell = Eº cathode Eº anode

18 19.3 Standard Reduction Potentials

19 Standard Cell Potential (E cell ) Znº(s) Zn 2+ (aq) Cu 2+ (aq) Cuº(s) Eºcell = Eºcathode Eºanode Eºcathode (Cu 2+ Cu(s)) = V Eºanode (Zn 2+ Zn(s)) = V E o cell = (0.342 V) ( V) = V

20 1) Calculate the standard cell potential for the reaction: 2 Fe 3+ (aq) + 2 I (aq) 2 Fe 2+ (aq) + I2(s) Fe 3+ (aq) Fe 2+ (aq) 2 I - (aq) I2º (s) Eºcell = Eºcathode Eºanode Eºcathode (Fe 3+ (aq) Fe 2+ (aq) ) = V Eºanode ( I2º(s) 2I - (aq)) = V E o cell = ( V) ( V) = V

21 2) Calculate the standard cell potential for the reaction: 2 NiO(OH)(s) + 2 H2O (l) + Cd (s) 2 Ni(OH)2 (s) + Cd(OH)2 (s) 2 NiO(OH) + 2 H2O 2 Ni(OH)2 + 2 OH- (Ni 3+ Ni 2+ ) Eºreductiion = V Cd + 2 OH- Cd(OH)2 (Cd Cd 2+ ) Eºoxidation = V Eºcell = Eºoxidation + Eºreduction E o cell = ( V) + ( V) = V Eºcell = Eºcathode Eºanode

22 Znº(s) + Cu 2+ (aq) Zn 2+ (aq) + Cuº(s) Znº(s) Zn 2+ (aq) Cu 2+ (aq) Cuº(s) 2 Fe 3+ (aq) + 2 I (aq) 2 Fe 2+ (aq) + I2(s) 2 I - (aq) I2º (s) Fe 3+ (aq) Fe 2+ (aq) 2 NiO(OH)(s) + 2 H2O (l) + Cd (s) 2 Ni(OH)2 (s) + Cd(OH)2 (s) 2 NiO(OH) + 2 H2O 2 Ni(OH)2 + 2 OH- Cd + 2 OH- Cd(OH)2 (Ni 3+ Ni 2+ ) (Cd Cd 2+ )

23 Stronger Oxidizing Agents Standard Reduction Potentials Fe 3+ (aq) Fe 2+ (aq) Weaker Reducing Agents Ni 3+ Ni I2º(s) 2I- (aq) Cu 2+ (aq) Cuº(s) Zn 2+ (aq) Zn º (s) Cd 2+ Cdº Weaker Oxidizing Agents Stronger Reducing Agents

24 Alessandro Volta Luigi Galvani

25 Dry Cells

26 Lead Storage Battery

27 Fuel Cell

28 Chemical Energy and Electrical Work

29 Current and Voltage Current - the number of electrons that flow through the system per second 1 A = 1 Ampere = 1 Coulomb of charge/second = x electrons/second Potential difference - the difference in potential energy between reactants and products 1 V of force = 1 J of energy/coulomb of charge (The potential difference can also be thought of as the voltage needed to drive electrons through the external circuit.) Electromotive force (emf) - the amount of force pushing the electrons through the wire

30 Voltage and Electrical Work ΔGºcell = Welec = CEºcell Welec = work done by the cell C = charge (coulombs) Eºcell = electromotive force (emf); cell voltage,volts = J/C ΔGºcell = -nfeºcell Faraday constant (F) is C/(mol e ) n = number of moles of electrons x C/e x e mol

31 3) Calculate the value of ΔGº and the work done on the circuit for the reaction: Mg(s) + Cu 2+ (aq) Mg 2+ (aq) + Cu(s) taking place in a voltaic cell that produces 2.71V. Mg(s) Mg 2+ (aq) Cu 2+ (aq) Cu(s) [oxidation] [reduction] Eºcell = Eºcathode Eºanode E o cell = ( V) ( 2.37 V) = V ΔGºcell = Welec = -nfeºcell = (-2)(9.65 x 10 4 C/mol e)(2.71 J/C) = -523 J

32 4) Calculate the value of Eºcell for the following reaction by calculating ΔGº: Cu(s) + 2 Fe 3+ (aq) Cu 2+ (aq) + 2 Fe 2+ (aq) ΔGºcell =[ (-78.9)] - [ (-4.7)] ΔGºcell =[-92.3] - [ ] = kj Eºcell = x 10 3 J/mol -(2)(9.65 x 10 4 C) = J/C = V

33 A Reference Point: The Standard Hydrogen Electrode

34 A Reference Point: The Standard Hydrogen Electrode 2 H + (aq) + 2 e H2(g) ESHE = 0.00 V Pt H2(g), 1.0 atm H + (1.0 M) (Can serve as anode or cathode)

35 A Reference Point: The Standard Hydrogen Electrode The Standard Hydrogen Electrode (SHE) reduction potential is defined to be exactly 0.00 V. Half reactions with a stronger tendency toward reduction that the SHE have a positive value for Eº reduction. Half reactions with a strong tendency toward oxidation than the SHE have a negative value for Eº reduction. Eºcell = Eºcathode Eºanode Eºcell = Eºoxidation + Eºreduction Eºoxid = -Eºred When adding Eº values for the half-cells, do not multiply the half-cell Eº values.

36 Determination of E o!!h 2 "!!(1!atm)! V = ESHE EZn V = 0.00 V EZn V = ECu ESHE V = ECu 0.00 V

37 Selected Standard Electrode Potentials (298K) Half-Reaction E 0 (V) F 2 (g) + 2e - 2F - (aq) strength of oxidizing agent Cl 2 (g) + 2e - 2Cl - (aq) MnO 2 (g) + 4H + (aq) + 2e - Mn 2+ (aq) + 2H 2 O(l) NO 3- (aq) + 4H + (aq) + 3e - NO(g) + 2H 2 O(l) Ag + (aq) + e - Ag(s) Fe 3+ (g) + e - Fe 2+ (aq) O 2 (g) + 2H 2 O(l) + 4e - 4OH - (aq) Cu 2+ (aq) + 2e - Cu(s) 2H + (aq) + 2e - H 2 (g) N 2 (g) + 5H + (aq) + 4e - N 2 H 5+ (aq) Fe 2+ (aq) + 2e - Fe(s) 2H 2 O(l) + 2e - H 2 (g) + 2OH - (aq) Na + (aq) + e - Na(s) strength of reducing agent Li + (aq) + e - Li(s) -3.05

38 Overall Cell Potential Eº(V) Cu 2+ (aq) + 2e Cu (s) Zn 2+ (aq) + 2e Zn (s) Eºcell = Eºoxid + Eºred Eºcell = - (-0.76) =1.10 V Eºcell = Eºcathode - Eºanode Eºcell = (-0.76) = 1.10 V

Chapter 19 - Electrochemistry. the branch of chemistry that examines the transformations between chemical and electrical energy

Chapter 19 - Electrochemistry. the branch of chemistry that examines the transformations between chemical and electrical energy Chapter 19 - Electrochemistry the branch of chemistry that examines the transformations between chemical and electrical energy 19.1 Redox Chemistry Revisited A Spontaneous Redox Reaction Znº(s) + Cu 2+

More information

Electrochemistry Pulling the Plug on the Power Grid

Electrochemistry Pulling the Plug on the Power Grid Electrochemistry 18.1 Pulling the Plug on the Power Grid 18.3 Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions 18.4 Standard Electrode Potentials 18.7 Batteries:

More information

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 18 Electrochemistry Sherril Soman Grand Valley State University Harnessing the Power in Nature The goal of scientific research is to understand nature. Once we understand the

More information

Chapter 17. Electrochemistry

Chapter 17. Electrochemistry Chapter 17 Electrochemistry Contents Galvanic cells Standard reduction potentials Cell potential, electrical work, and free energy Dependence of cell potential on concentration Batteries Corrosion Electrolysis

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

ELECTROCHEMISTRY. Oxidation/Reduction

ELECTROCHEMISTRY. Oxidation/Reduction ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Examples: voltaic cells, batteries. NON-SPONTANEOUS

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 OxidationReduction Reactions Oxidationreduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Oxidation-reduction (redox) reactions

Oxidation-reduction (redox) reactions Oxidation-reduction (redox) reactions Reactions in which there are changes in oxidation state (oxidation number) between reactants and products 2 MnO 4- + 10 Br - + 16 H + 2 Mn 2+ + 5 Br 2 + 8 H 2 O One

More information

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry Electricity from Chemistry Many chemical reactions involve the transfer of electrons between atoms or ions electron transfer

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. Oxidation number The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. 1. Free elements (uncombined state) have an oxidation number of zero. Na,

More information

Redox and Electrochemistry

Redox and Electrochemistry Redox and Electrochemistry 1 Electrochemistry in Action! 2 Rules for Assigning Oxidation Numbers The oxidation number of any uncombined element is 0. The oxidation number of a monatomic ion equals the

More information

Electrode Potentials and Their Measurement

Electrode Potentials and Their Measurement Electrochemistry Electrode Potentials and Their Measurement Cu(s) + 2Ag + (aq) Cu(s) + Zn 2+ (aq) Cu 2+ (aq) + 2 Ag(s) No reaction Zn(s) + Cu 2+ (aq) Cu(s) + Zn 2+ (aq) In this reaction: Zn (s) g Zn 2+

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Redox reactions & electrochemistry

Redox reactions & electrochemistry Redox reactions & electrochemistry Electrochemistry Electrical energy ; Chemical energy oxidation/reduction = redox reactions Electrochemistry Zn + Cu 2+ º Zn 2+ + Cu Oxidation-reduction reactions always

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Learning goals and key skills: Identify oxidation, reduction, oxidizing agent, and reducing agent in a chemical equation Complete and balance redox equations using the method

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Electrochemistry Chapter 18 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Electrochemical processes are oxidation-reduction reactions in which: the energy

More information

Chapter 19 ElectroChemistry

Chapter 19 ElectroChemistry Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 11July2009 Chapter 19 ElectroChemistry These Notes are to SUPPLIMENT the Text,

More information

Chapter 18 problems (with solutions)

Chapter 18 problems (with solutions) Chapter 18 problems (with solutions) 1) Assign oxidation numbers for the following species (for review see section 9.4) a) H2SO3 H = +1 S = +4 O = -2 b) Ca(ClO3)2 Ca = +2 Cl = +5 O = -2 c) C2H4 C = -2

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Section 17.1 Spontaneous Processes and Entropy Section 17.1 http://www.bozemanscience.com/ap-chemistry/ Spontaneous Processes and Entropy Section 17.1 Spontaneous Processes

More information

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions).

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Electrochemistry Oxidation-Reduction: Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Half Reactions Method for Balancing Redox Equations: Acidic solutions: 1.

More information

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells.

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells. Lecture 14 Thermodynamics of Galvanic (Voltaic) Cells. 51 52 Ballard PEM Fuel Cell. 53 Electrochemistry Alessandro Volta, 1745-1827, Italian scientist and inventor. Luigi Galvani, 1737-1798, Italian scientist

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

Chapter 18 Electrochemistry

Chapter 18 Electrochemistry Chapter 18 Electrochemistry Definition The study of the interchange of chemical and electrical energy in oxidation-reduction (redox) reactions This interchange can occur in both directions: 1. Conversion

More information

25. A typical galvanic cell diagram is:

25. A typical galvanic cell diagram is: Unit VI(6)-III: Electrochemistry Chapter 17 Assigned Problems Answers Exercises Galvanic Cells, Cell Potentials, Standard Reduction Potentials, and Free Energy 25. A typical galvanic cell diagram is: The

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry Sample Exercise 20.1 (p. 845) The nickelcadmium (nicad) battery, a rechargeable dry cell used in batteryoperated devices, uses the following redox reaction to generate electricity:

More information

Electrochemistry. Remember from CHM151 G E R L E O 6/24/2014. A redox reaction in one in which electrons are transferred.

Electrochemistry. Remember from CHM151 G E R L E O 6/24/2014. A redox reaction in one in which electrons are transferred. Electrochemistry Remember from CHM151 A redox reaction in one in which electrons are transferred Reduction Oxidation For example: L E O ose lectrons xidation G E R ain lectrons eduction We can determine

More information

Chapter 19: Electrochemistry

Chapter 19: Electrochemistry Chapter 19: Electrochemistry Overview of the Chapter review oxidation-reduction chemistry basics galvanic cells spontaneous chemical reaction generates a voltage set-up of galvanic cell & identification

More information

Electrochemistry 1 1

Electrochemistry 1 1 Electrochemistry 1 1 Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Voltaic Cells 2. Construction of Voltaic Cells 3. Notation for Voltaic Cells 4. Cell Potential

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

Electrochemical System

Electrochemical System Electrochemical System Topic Outcomes Week Topic Topic Outcomes 8-10 Electrochemical systems It is expected that students are able to: Electrochemical system and its thermodynamics Chemical reactions in

More information

Ch 18 Electrochemistry OIL-RIG Reactions

Ch 18 Electrochemistry OIL-RIG Reactions Ch 18 Electrochemistry OIL-RIG Reactions Alessandro Volta s Invention Modified by Dr. Cheng-Yu Lai Daily Electrochemistry Appliactions Electrochemistry: The area of chemistry that examines the transformations

More information

Unit 12 Redox and Electrochemistry

Unit 12 Redox and Electrochemistry Unit 12 Redox and Electrochemistry Review of Terminology for Redox Reactions OXIDATION loss of electron(s) by a species; increase in oxidation number. REDUCTION gain of electron(s); decrease in oxidation

More information

Dr. Anand Gupta

Dr. Anand Gupta By Dr Anand Gupta Mr. Mahesh Kapil Dr. Anand Gupta 09356511518 09888711209 anandu71@yahoo.com mkapil_foru@yahoo.com Electrochemistry Electrolysis Electric energy Chemical energy Galvanic cell 2 Electrochemistry

More information

Spontaneous Redox Between Zinc Metal and Copper(II) Ions. Zn 2+ Zn + 2e- Cu 2+ NO 3

Spontaneous Redox Between Zinc Metal and Copper(II) Ions. Zn 2+ Zn + 2e- Cu 2+ NO 3 Spontaneous Redox Between Zinc Metal and Copper(II) Ions Zn 2+ Cu 2+ NO 3 _ Zn + 2e- Cu Zn 0 + Cu 2+ º Zn 2+ + Cu 0 spontaneous red 1 ox 2 ox 1 red 2 Spontaneous Redox Between Copper Metal and Silver Ions

More information

Electrochem 1 Electrochemistry Some Key Topics Conduction metallic electrolytic Electrolysis effect and stoichiometry Galvanic cell Electrolytic cell Electromotive Force (potential in volts) Electrode

More information

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College Cottleville, MO Chapter 20 Problems

More information

Name: Regents Chemistry Date:

Name: Regents Chemistry Date: Name: Date: 1. The reaction CuO + CO CO 2 + Cu is an example of (A) reduction, only (B) oxidation, only (C) both oxidation and reduction (D) neither oxidation nor reduction 6. In which compound does chlorine

More information

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox Electrochemistry Applications of Redox Review Oxidation reduction reactions involve a transfer of electrons. OIL- RIG Oxidation Involves Loss Reduction Involves Gain LEO-GER Lose Electrons Oxidation Gain

More information

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0 Electrochemistry 1. Element M reacts with oxygen to from an oxide with the formula MO. When MO is dissolved in water, the resulting solution is basic. Element M is most likely: A. Na B. Ba C. S D. N E.

More information

Section Electrochemistry represents the interconversion of chemical energy and electrical energy.

Section Electrochemistry represents the interconversion of chemical energy and electrical energy. Chapter 21 Electrochemistry Section 21.1. Electrochemistry represents the interconversion of chemical energy and electrical energy. Electrochemistry involves redox (reduction-oxidation) reactions because

More information

Answer Key, Problem Set 9

Answer Key, Problem Set 9 Chemistry 122 Mines, Spring 2018 Answer Key, Problem Set 9 1. 19.44(c) (Also indicate the sign on each electrode, and show the flow of ions in the salt bridge.); 2. 19.46 (do this for all cells in 19.44);

More information

Electrochemical Reactions

Electrochemical Reactions 1 of 20 4/11/2016 1:00 PM Electrochemical Reactions Electrochemical Reactions Electrical Work From Spontaneous Oxidation- Reduction Reactions Predicting Spontaneous Redox Reactions from the Sign of E Line

More information

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons 1 of 13 interesting links: Battery Chemistry Tutorial at http://www.powerstream.com/batteryfaq.html Duracell Procell: Battery Chemistry at http://www.duracell.com/procell/chemistries /default.asp I. Oxidation

More information

20.1 Consider the Brønsted-Lowry acid-base reaction and the redox reaction below. + A

20.1 Consider the Brønsted-Lowry acid-base reaction and the redox reaction below. + A 20 Electrochemistry Visualizing Concepts 20.1 Consider the Brønsted-Lowry acid-base reaction and the redox reaction below. HA + B BH + + A HA H + + A B + H + BH + X(red) + Y + (ox) X + (ox) + Y(red) X(red)

More information

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis)

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis) CHAPTER 19: ELECTROCHEMISTRY Part One: Introduction A. Terminology. 1. Electrochemistry deals with: a. Chemical reactions produced by electric current. (electrolysis) b. Production of electric current

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Oxidation & Reduction (Redox) Notes

Oxidation & Reduction (Redox) Notes Oxidation & Reduction (Redox) Notes Chemical Activity (or Chemical Reactivity) is the measure of the reactivity of elements. If an element has high activity, then it means that the element is willing to

More information

Chem II. Zn(s) + CuSO4(aq)

Chem II. Zn(s) + CuSO4(aq) Redox Review Chem II 1. What is the sum of the oxidation numbers of the atoms in the compound CO2? A) 0 B) 2 C) 4 D) +4 2. In which substance does phosphorus have a +3 oxidation state? A) P4O10 B) PCl5

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Oxidation and Reduction by Christopher Hamaker 1 Oxidation Reduction Reactions Oxidation reduction reactions are

More information

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic Review William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 17 Electrochemistry Oxidation Loss of electrons Occurs at electrode called the anode Reduction Gain of

More information

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which

More information

Electrochem: It s Got Potential!

Electrochem: It s Got Potential! Electrochem: It s Got Potential! Presented by: Denise DeMartino Westlake High School, Eanes ISD Pre-AP, AP, and Advanced Placement are registered trademarks of the College Board, which was not involved

More information

CHEMISTRY - CLUTCH CH.18 - ELECTROCHEMISTRY.

CHEMISTRY - CLUTCH CH.18 - ELECTROCHEMISTRY. !! www.clutchprep.com CONCEPT: OXIDATION-REDUCTION REACTIONS Chemists use some important terminology to describe the movement of electrons. In reactions we have the movement of electrons from one reactant

More information

How to Assign Oxidation Numbers. Chapter 18. Principles of Reactivity: Electron Transfer Reactions. What is oxidation? What is reduction?

How to Assign Oxidation Numbers. Chapter 18. Principles of Reactivity: Electron Transfer Reactions. What is oxidation? What is reduction? Chapter 18 Principles of Reactivity: Electron Transfer Reactions What is oxidation? When a molecule/ion loses electrons (becomes more positive) Whatever is oxidized is the reducing agent What is reduction?

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Chapter Nineteen. Electrochemistry

Chapter Nineteen. Electrochemistry Chapter Nineteen Electrochemistry 1 Electrochemistry The study of chemical reactions through electrical circuits. Monitor redox reactions by controlling electron transfer REDOX: Shorthand for REDuction-OXidation

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Oxidation-Reduction Reactions Review of Terms Oxidation-reduction (redox) reactions always involve a transfer of electrons from one species to another. Oxidation number - the

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions Review: Balancing Redox Reactions Determine which species is oxidized and which species is reduced Oxidation corresponds to an increase in the oxidation number of an element Reduction corresponds to a

More information

Chapter 9 Oxidation-Reduction Reactions. An Introduction to Chemistry by Mark Bishop

Chapter 9 Oxidation-Reduction Reactions. An Introduction to Chemistry by Mark Bishop Chapter 9 Oxidation-Reduction Reactions An Introduction to Chemistry by Mark Bishop Chapter Map Oxidation Historically, oxidation meant reacting with oxygen. 2Zn(s) + O 2 (g) 2ZnO(s) Zn Zn 2+ + 2e or 2Zn

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry 20.1 Oxidation States and Oxidation-Reduction Reactions An oxidation occurs when an atom or ion loses electrons. A reduction occurs when an atom or ion gains electrons. One

More information

We can use chemistry to generate electricity... this is termed a Voltaic (or sometimes) Galvanic Cell

We can use chemistry to generate electricity... this is termed a Voltaic (or sometimes) Galvanic Cell Unit 6 Electrochemistry Chemistry 020, R. R. Martin Electrochemistry Electrochemistry is the study of the interconversion of electrical and chemical energy. We can use chemistry to generate electricity...

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

REVIEW QUESTIONS Chapter 19

REVIEW QUESTIONS Chapter 19 Chemistry 10 ANSWER KEY REVIEW QUESTIONS Chapter 19 1. For each of the following unbalanced equations, (i) write the half-reactions for oxidation and reduction, and (ii) balance the overall equation in

More information

CHAPTER 12. Practice exercises

CHAPTER 12. Practice exercises CHAPTER 12 Practice exercises 12.1 2Al(s) + 3Cl 2 (g) 2AlCl 3 (aq) Aluminium is oxidised and is therefore the reducing agent. Chlorine is reduced and is therefore the oxidising agent. 12.3 First the oxidation

More information

Hg2 2+ (aq) + H2(g) 2 Hg(l) + 2H + (aq)

Hg2 2+ (aq) + H2(g) 2 Hg(l) + 2H + (aq) The potential difference between two electrodes in a cell is called the electromotive force, or The EMF of a voltaic cell is called the The cell voltage of a voltaic cell will be a Note: We are used to

More information

Electrochemical Cells

Electrochemical Cells Electrochemistry Electrochemical Cells The Voltaic Cell Electrochemical Cell = device that generates electricity through redox rxns 1 Voltaic (Galvanic) Cell An electrochemical cell that produces an electrical

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

Chemistry: The Central Science. Chapter 20: Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry Chemistry: The Central Science Chapter 20: Electrochemistry Redox reaction power batteries Electrochemistry is the study of the relationships between electricity and chemical reactions o It includes the

More information

ELECTROCHEMISTRY Chapter 14

ELECTROCHEMISTRY Chapter 14 ELECTROCHEMISTRY Chapter 14 Basic Concepts: Overview of Electrochemical Process at Constant T, P (14-1) ΔG = ΔG o + RT ln Q = w elec (maximum) = qe = ItE (exp) (E intensive parameter, q extensive) = nfe

More information

Chapter 19: Redox & Electrochemistry

Chapter 19: Redox & Electrochemistry Chapter 19: Redox & Electrochemistry 1. Oxidation-Reduction Reactions Definitions Oxidation - refers to the of electrons by a molecule, atom or ion Reduction - refers to the of electrons by an molecule,

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Electrochemical Cell Consists of electrodes which dip into an electrolyte & in which a chem. rxn. uses or generates an electric current Voltaic (Galvanic) Cell Spont. rxn. -

More information

SHOCK TO THE SYSTEM! ELECTROCHEMISTRY

SHOCK TO THE SYSTEM! ELECTROCHEMISTRY SHOCK TO THE SYSTEM! ELECTROCHEMISTRY REVIEW I. Re: Balancing Redox Reactions. A. Every redox reaction requires a substance to be... 1. oxidized (loses electrons). a.k.a. reducing agent 2. reduced (gains

More information

Chapter 7. Oxidation-Reduction Reactions

Chapter 7. Oxidation-Reduction Reactions Chapter 7 Oxidation-Reduction Reactions Chapter Map Oxidation Historically oxidation meant reacting with oxygen. 2Zn(s) + O 2 (g) 2ZnO(s) Zn Zn 2+ + 2e or 2Zn 2Zn 2+ + 4e O + 2e O 2 or O 2 + 4e 2O 2 Oxidation

More information

ELECTROCHEMISTRY Chapter 19, 4.9

ELECTROCHEMISTRY Chapter 19, 4.9 ELECTROCHEMISTRY Chapter 19, 4.9 Overview of an Electrochemical Process at Constant T and P ΔG = ΔG o + RT ln Q = welec (maximum) Note: I below stands for current measured in amperes = qecell = ItEcell

More information

Introduction to electrochemistry

Introduction to electrochemistry Introduction to electrochemistry Oxidation reduction reactions involve energy changes. Because these reactions involve electronic transfer, the net release or net absorption of energy can occur in the

More information

12.05 Galvanic Cells. Zn(s) + 2 Ag + (aq) Zn 2+ (aq) + 2 Ag(s) Ni(s) + Pb 2+ (aq) «Ni 2+ (aq) + Pb(s)

12.05 Galvanic Cells. Zn(s) + 2 Ag + (aq) Zn 2+ (aq) + 2 Ag(s) Ni(s) + Pb 2+ (aq) «Ni 2+ (aq) + Pb(s) 12.05 Galvanic Cells 1. In an operating voltaic cell, reduction occurs A) at the anode B) at the cathode C) in the salt bridge D) in the wire 2. Which process occurs in an operating voltaic cell? A) Electrical

More information

Electrochemistry. 1. For example, the reduction of cerium(iv) by iron(ii): Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ a. The reduction half-reaction is given by...

Electrochemistry. 1. For example, the reduction of cerium(iv) by iron(ii): Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ a. The reduction half-reaction is given by... Review: Electrochemistry Reduction: the gaining of electrons Oxidation: the loss of electrons Reducing agent (reductant): species that donates electrons to reduce another reagent. Oxidizing agent (oxidant):

More information

Q1. Why does the conductivity of a solution decrease with dilution?

Q1. Why does the conductivity of a solution decrease with dilution? Q1. Why does the conductivity of a solution decrease with dilution? A1. Conductivity of a solution is the conductance of ions present in a unit volume of the solution. On dilution the number of ions per

More information

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases.

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases. Oxidation-Reduction Page 1 The transfer of an electron from one compound to another results in the oxidation of the electron donor and the reduction of the electron acceptor. Loss of electrons (oxidation)

More information

Lecture 30 Chapter 19, Sections 3-4 Galvanic Cells Electrochemical Potential

Lecture 30 Chapter 19, Sections 3-4 Galvanic Cells Electrochemical Potential Lecture 30 Chapter 19, Sections 3-4 Galvanic Cells Electrochemical Potential Galvanic Cells Defined Standard Hydrogen Electrode Standard Reduction Potentials Redox Balancing One More Example OK, then here

More information

Ch 11 Practice Problems

Ch 11 Practice Problems Ch 11 Practice Problems 1. How many electrons are transferred in the following reaction? 2Cr 2O 7 2- + 14H + + 6Cl 2Cr 3+ + 3Cl 2 + 7H 2O A) 2 B) 4 C) 6 D) 8 2. Which metal, Al or Ni, could reduce Zn 2+

More information

Chapter 18. Redox Reac)on. Oxida)on & Reduc)on 4/8/08. Electrochemistry

Chapter 18. Redox Reac)on. Oxida)on & Reduc)on 4/8/08. Electrochemistry Chapter 18 Electrochemistry Redox Reac)on One or more elements change oxida)on number all single displacement, and combus)on, some synthesis and decomposi)on Always have both oxida)on and reduc)on split

More information

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3 CHAPTER 17: ELECTROCHEMISTRY Big Idea 3 Electrochemistry Conversion of chemical to electrical energy (discharge). And its reverse (electrolysis). Both subject to entropic caution: Convert reversibly to

More information

CHAPTER 17 ELECTROCHEMISTRY

CHAPTER 17 ELECTROCHEMISTRY Advanced Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 17 ELECTROCHEMISTRY Day Plans for the day Assignment(s) for the day 17.1 Galvanic Cells Assignment

More information

Electrochemistry. Slide 1 / 144. Slide 2 / 144. Slide 3 / 144. Electrochemistry. Electrochemical Reactions

Electrochemistry. Slide 1 / 144. Slide 2 / 144. Slide 3 / 144. Electrochemistry. Electrochemical Reactions Slide 1 / 144 Electrochemistry Electrochemistry Slide 2 / 144 Electrochemistry deals with relationships between reactions and electricity In electrochemical reactions, electrons are transferred from one

More information

18.2 Voltaic Cell. Generating Voltage (Potential) Dr. Fred Omega Garces. Chemistry 201. Miramar College. 1 Voltaic Cell.

18.2 Voltaic Cell. Generating Voltage (Potential) Dr. Fred Omega Garces. Chemistry 201. Miramar College. 1 Voltaic Cell. 18.2 Voltaic Cell Generating Voltage (Potential) Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Voltaic Cell Redox Between If Zn (s) and Cu 2+ (aq) is in the same solution, then the electrons transfer

More information

mccord (pmccord) HW11 Electrochemistry I mccord (51520) 1

mccord (pmccord) HW11 Electrochemistry I mccord (51520) 1 mccord (pmccord) HW11 Electrochemistry I mccord (51520) 1 This print-out should have 27 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001

More information

NCEA Chemistry 3.7 REDOX AS 91393

NCEA Chemistry 3.7 REDOX AS 91393 NCEA Chemistry 3.7 REDOX AS 91393 This achievement standard involves demonstrating understanding of oxidation-reduction processes Demonstrate comprehensive understanding (Excellence) involves: 1. Identify

More information

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5 (Hebden Unit 5 ) is the study of the interchange of chemical energy and electrical energy. 2 1 We will cover the following topics: Review oxidation states and assigning oxidation numbers Redox Half-reactions

More information

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO CHAPTER 5 REVIEW 1. The following represents the process used to produce iron from iron III oxide: Fe 2 O 3 + 3CO 2Fe + 3CO 2 What is the reducing agent in this process? A. Fe B. CO C. CO 2 D. Fe 2 O 3

More information

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number General Chemistry II Exam 4 Practice Problems 1 1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number a. K 2 Cr 2 O 7 +6 b. NaAl(OH) 4 +3 c.

More information