Lecture 8. Polyprotic Acids often acid molecules have more than one ionizable H these are called polyprotic acids. sulfuric acid is a diprotic acid

Size: px
Start display at page:

Download "Lecture 8. Polyprotic Acids often acid molecules have more than one ionizable H these are called polyprotic acids. sulfuric acid is a diprotic acid"

Transcription

1 Lecture 8 Professor icks Inorganic Chemistry (CE152) Polyprotic Acids often acid molecules have more than one ionizable these are called polyprotic acids 1 = monoprotic, 2 = diprotic, 3 = triprotic Cl = monoprotic, 2 SO 4 = diprotic, 3 PO 4 = triprotic ionizable s have different K a s polyprotic acids ionize in steps each ionizable removed sequentially removing of the first + makes removal of the second + harder 2 SO 4 is a stronger acid than SO 4 3 PO 4 is a stronger acid than 2 PO 4 2 PO 4 is a stronger acid than PO 4 2 sulfuric acid is a diprotic acid 2 SO 4 (aq) 2 O (l) 3 O + (aq) + SO 4 strong acid ~ 100% SO O(l) 4 (aq) 2 3 O + (aq) + SO 2 4 weak acid much less 100% a 1.0 M solution of 2 SO 4 has [ 3 O + ] = 1.0 M (first step) + a little more 3 O + from second dissociation 1

2 Estimate the concentration of sulfate ion in a 5.0 M solution of sulfuric acid. ints: In the first hydrolyses of sulfuric acid it acts as a strong acid For the second hydrolyses K a = 1.0 x10 2 strong bases ionic compounds with O ion KO, NaO, LiO. calculate po from molarity [O ] calculate p p = 14 po Example: A M solution of NaO has a [O ] = M po = log(0.0010) = 3.0 p = 14 3 = 11 2

3 weak bases react with water to produce O Base + 2 O Base + + O hydrolysis reaction N O(l) + 3 (aq) + 2 N 4 (aq) + O (aq) do not react completely equilibrium constant K b dissociation of weak bases Calculate p at equilibrium for a 0.10 M solution of Na 2 CO 3 in water. write hydrolysis reaction base + 2 O conj acid + O initial (M) change (M) equilibrium (M) CO 2 3 (aq) + 2 O (l) CO 3 (aq) + O (aq) x +x +x 0.10 x x x K b = [O ][CO 3 ] [CO 2 3 ] look up K b for CO 3 2 x x 10 4 = 0.10x x x 10 4 = 0.10 x = sqrt{ 0.10* 1.8 x 10 4 } = M % dissociated = po = log[o ]=log( )=2.37 p =14pO =142.37=11.62 x100% = 4.2 % less than 5%! approximation is OK dissociation of weak bases Calculate p at equilibrium for a M solution of Na 2 CO 3 in water. write hydrolysis reaction base + 2 O conj acid + O initial (M) change (M) equilibrium (M) CO 2 3 (aq) + 2 O (l) CO 3 (aq) + O (aq) x +x +x x x x K b = [O ][CO 3 ] x x 10 4 = [CO 2 3 ] look up K x = sqrt{ 0.010* 1.8 x 10 4 b for CO 2 3 } = M x x 10 4 = % dissociated = x100% =13.4% 0.010x % dissociated increases as the acid/base is more dilute more than 5%! approximation not good enough! Need to use the quadratic equatiion 3

4 Le Chateliers Principle breathing controls body p CO 2 dissolved in water forms bicarbonate ion CO 3 2 that is part of the body s defense against sudden changes in p disturbance = decrease CO 2 by exhaling response = increase CO 2 reaction goes towards right shift to right inc [O ] raising the p CO 3 (aq) + 2 O (l) CO 2 (g) + O (aq) overall effect removal of CO 2 by breathing raises body p This counteracts the lowering of p that would occur with the production of acidic intermediates in the metabolism of fats and sugars 4

5 acids + + anion + anion if an acid is uncharged its conjugate base is negatively charged conjugate bases of acids exist as ionic compounds aka salts often from group I since all group I salts are soluble salts of acids replace + any cation + anion Na + anion K + anion Strong acids Cl NO 3 2 SO 4 + Cl + NO SO 2 4 hydrochloric acid nitric acid sulfuric acid Weak acids C 2 3 O 2 F + C 2 3 O 2 + F acetic acid hydrofluoric acid Salts of Strong acids LiCl NaNO 3 K 2 SO 4 Li + Cl Na + NO 3 2K + SO 2 4 lithium chloride sodium nitrate potassium sulfate Salts of Weak acids Mg(C 2 3 O 2 ) 2 CsF Mg 2+ 2C 2 3 O 2 Cs + F magnesium acetate cesium fluoride 5

6 conjugate bases of weak acids most conjugate acid/base pairs are both weak exception: conjugates of the strong acids/bases are weak bases/acids acetic acid Gibbs Free Energy a weak acid acetate ion acetate ion Gibbs Free Energy conjugate base acetate ion is a weak base acetic acid 0 % dissociated % dissociated 100 (so weak they do not affect p) alcohols C 2 5 O weaker weak acids Weak acids stronger weak acids 2 O CN ClO 2 Strong Acids Cl, Br, I, NO 3, ClO 4, 2 SO 4 Increasing Acid Strength Strong bases Conjugate bases of weak acids stronger weak bases weaker weak bases C O 2 5 O CN ClO 2 Conjugate bases of Strong Acids (so weak they do not affect p) Cl, Br, I, NO 3, ClO 4, SO 4 Increasing Base Strength weak base N weak bases and the salts of their conjugate acids conjugate acids of bases exist as ionic compounds aka salts compound with lone pairs ammonia often a N containing compound N R if a base is uncharged its conjugate acid is positively charged amines N salt of its conjugate acid + anion and N R + anion when they act as bases gaining + they become positively charged examples N 4 Cl C 3 N 3 (ClO 4 ) 6

7 K a K b = K w for acetic acid the hydrolysis reaction is C 2 3 O 2 (aq) + 2 O(l) C 2 3 O 2 (aq) + 3 O + (aq) K a =1.76 x10 5 for acetate ion the hydrolysis reaction is C 2 3 O 2 (aq) + 2 O C 2 3 O 2 (aq) + O (aq) K b =5.68 x10 10 notice if you add them the conjugate acid and base cancel overall reaction becomes 2 2 O(l) 3 O + (aq) + O (aq) K w =? when reactions are added the overall K eq is the product of the K eq s K a K b = 1.76 x10 5 x 5.68 x10 10 = 10 14!!!!!!!!! conjugate acids of weak bases most weak bases conjugate acids are weak the conjugate acid of the strong base O = 2 O is a weak acid Gibbs Free Energy N N + 3 N4 + 4 N 3 a weak base K N 4+ is a weak acid b = 1.76 x 10 5 K a = 5.68 x Gibbs Free Energy not on table K a s use K a = 1014 K b N 3 0 %ionized %ionized 100 same free energy bowl looked at from other side salts of weak acids/bases if soluble fully dissociate into ions initial molarity calculated from chemical formula Example 0.33 M NaC 2 3 O 2 a solution 0.33 M in C 2 3 O M Ca(C 2 3 O 2 ) 2 a solution 0.48 M in C 2 3 O 2 2 C 2 3 O 2 per 1 Ca(C 2 3 O 2 ) 2 7

8 ICE tables for salts of weak acids What is the p of a 0.66 M solution of sodium acetate? initial change equil C 2 3 O 2 (aq) + 2 O C 2 3 O 2 (aq) + O (aq) x +x +x 0.66x +x +x by the usual approximation x = square root (0.66*5.68 x ) = x 10 5 [O ] = x 10 5 po = 4.71 p = = 9.29 acetate ion K b = K a (acetic acid) a basic solution b/c we added the conjugate base of acetic acid 10 = x10 5 = 5.68 x10 10 this problem is setup like other weak base problems but you will not find acetate in table of bases you must recognize it as the conjugate base of a weak acid and calculate its K b trends in strengths of acids 2 factors bond strength A weaker bonds break more easily stronger acid electronegativity of conjugate base δ δ+ A higher electronegativity of A makes closer to +1 stronger acid bond more polarized Strengths of Binary Acids 1) the more δ+ X δ polarized the bond, the more acidic the bond 2) the weaker the X bond, the stronger the acid binary acid strength increases to the right across a period example C < N < O < F binary acid strength increases down the column example F < Cl < Br < I 8

9 Strengths of Oxoacids more oxygen atoms stronger acid helps polarize the O bond more oxygen atoms in the chemical formula, like adding a single atom of greater electronegativity used to compare similar acids Example: 2 SO 4 is a strong acid but 2 SO 3 is a weak acid complex ions metal ion + base new complex structure of base stays intact bases are called ligands when they bind to metals as bases O Al 3+ repeat 6x Al( 2 O) 6 3+ ligand metal ion complex ion complex ions metal ion + base new complex water becomes more acidic when bound to metal Al( 2 O) ( 2 O) 5 Al O + 2 O K =14x10 5 a Al( 2 O) 5 (O) O + 9

10 acidity of complex ions increases as metal ion becomes smaller and/or more highly charged not acidic metal ion + water complex ion charge increases both increase acidity size decreases Classifying Salt Solutions as Acidic, Basic, or Neutral cations of group 1 (Li +, Na +, K +, etc) will not change the p anions that are conjugate bases of strong acids are such weak bases they will not change the p NaCl LiNO 3 KBr neutral solutions Cl NO 3 Br group 1 ions conjugate bases of strong acids 10

11 Classifying Salt Solutions as Acidic, Basic, or Neutral if the anion is the conjugate base of a weak acid, it will form a basic solution NaF KNO 2 solution will be basic Na + K + group I ions neutral F NO 2 conjugate bases of weak acids basic Classifying Salt Solutions as Acidic, Basic, or Neutral if the salt cation is the conjugate acid of a weak base and the anion is the conjugate base of a strong acid, it will form an acidic solution acidic N 4 Cl weak acid conjugate base of a strong acid neutral Classifying Salt Solutions as Acidic, Basic, or Neutral if the salt cation is a small / highly charged metal ion and the anion is the conjugate base of a strong acid, it will form an acidic solution acidic Al(NO 3 ) 3 weak acid conjugate base of a strong acid neutral 11

12 Classifying Salt Solutions as Acidic, Basic, or Neutral if the salt cation is the conjugate acid of a weak base and the anion is the conjugate base of a weak acid, the p of the solution depends on the relative strengths of the acid and base solution will be acidic N 4 F K is larger than K b of the F a of N + 4 ; 5.68 x x Example: Determine whether a solution of the following salts is acidic, basic, or neutral a) SrCl 2 Sr 2+ slightly acidic Cl is the conjugate base of a strong acid p neutral solution will be slightly acidic Example: Determine whether a solution of the following salts is acidic, basic, or neutral b) AlBr 3 Al 3+ is a small, highly hl charged metal ion weak acid Br is the conjugate base of a strong acid, p neutral solution will be acidic 12

13 Example: Determine whether a solution of the following salts is acidic, basic, or neutral c) C 3 N 3 NO 3 C 3 N 3+ conjugate acid of a weak base acidic NO 3 is the conjugate base of a strong acid, p neutral solution will be acidic Example: Determine whether a solution of the following salts is acidic, basic, or neutral d) NaCO 2 Na + is in group I, neutral CO 2 base of a weak acid basic solution will be basic Example: Determine whether a solution of the following salts is acidic, basic, or neutral e) N 4 (CO 2 ) N 4+ conjugate acid of a weak base acidic CO 2 conjugate base of a weak acid basic K a (N 4+ ) > K b (F ); solution will be acidic (5.68 x ) (2.8 x ) 13

14 Classifying Salt Solutions as Acidic, Basic, or Neutral N 4 O weak acid Basic strong base Estimate the p of a 0.10 M N 4 O solution Forms N 4 + and O conjugate acid of N 3 base will the solution be basic or acidic? Write down an equilibrium reaction that includes O and N + 4 N 3 (aq) + 2 O (l) N 4+ (aq) + O (aq) K b = 1.76 x 10 5 initial (M) change (M) x x x equilibrium (M) x 0.10 x 0.10 x 1.76 x 105 = (0.10 x)(0.10 x) x = (0.10 ) 2 x 1.76 x x 10 5 = (0.10 x) 2 x = 568!!!!!!!!! bad approximation!!!!!!!! If approximation is very bad then x is large Gibbs Free Energy Gibbs Free Energy placing the ball in a different initial position does not change where it will end up at equilibrium 0 100% 0 100% xlarge xsmall Estimate the p of a 0.10 M N 4 O solution N 3 (aq) + 2 O (l) N 4+ (aq) + O (aq) K b = 1.76 x 10 5 initial (M) reactants and products can be change (M) x +x +x imagined to react into any set of concentrations and then allowed equil (M) 0.10 x x x to move to equilibrium like the ball in the bowl x 2 x = sqrt {0.10 x 1.76 x10 5 } 1.76 x 10 5 = 0.10 x x = % dissociated = ( /0.010) x100% = 1.3% 14

Lecture 7. Acids. non-metals form anions. metals form cations H+ - Professor Hicks Inorganic Chemistry (CHE152) + anion. molecular compounds

Lecture 7. Acids. non-metals form anions. metals form cations H+ - Professor Hicks Inorganic Chemistry (CHE152) + anion. molecular compounds Lecture 7 Professor icks Inorganic Chemistry (CE152) Acids + + anion + - anion substances that release + ions when dissolved Strong acids Cl NO 3 2 SO 4 + Cl - + NO - 3 2 + SO 2-4 hydrochloric acid nitric

More information

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration Lecture 10 Professor Hicks Inorganic Chemistry II (CHE152) ph Scale of [H 3 O + ] (or you could say [H + ]) concentration More convenient than scientific notation ph = log [H 3 O + ] still not sure? take

More information

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species 3 ACID AND BASE THEORIES: A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species B) Bronsted and Lowry Acid = H + donor > CB = formed after H + dissociates

More information

Wednesday, February 25, Acid and Base Reactions

Wednesday, February 25, Acid and Base Reactions Acid and Base Reactions Dilute aqueous solution of acetic acid, C3COO Aqueous solution of sodium hydroxide, NaO The role of the ydrogen Ion Cl (aq) Æ + (aq) + Cl - (aq) What does the neutral atom consist

More information

Chapter 14. Objectives

Chapter 14. Objectives Section 1 Properties of Acids and Bases Objectives List five general properties of aqueous acids and bases. Name common binary acids and oxyacids, given their chemical formulas. List five acids commonly

More information

Aqueous Equilibria: Acids and Bases

Aqueous Equilibria: Acids and Bases /3/014 Aqueous Equilibria: Acids and Bases Ch. 16 What is an? What is a? There are actually multiple definitions Arrhenius: Dealt with species in aqueous solutions. Most basic definition of acis. Acid:

More information

Chapter 10. Acids, Bases, and Salts

Chapter 10. Acids, Bases, and Salts Chapter 10 Acids, Bases, and Salts Topics we ll be looking at in this chapter Arrhenius theory of acids and bases Bronsted-Lowry acid-base theory Mono-, di- and tri-protic acids Strengths of acids and

More information

The ph of aqueous salt solutions

The ph of aqueous salt solutions The ph of aqueous salt solutions Sometimes (most times), the salt of an acid-base neutralization reaction can influence the acid/base properties of water. NaCl dissolved in water: ph = 7 NaC 2 H 3 O 2

More information

Aqueous Reactions and Solution Stoichiometry (continuation)

Aqueous Reactions and Solution Stoichiometry (continuation) Aqueous Reactions and Solution Stoichiometry (continuation) 1. Electrolytes and non-electrolytes 2. Determining Moles of Ions in Aqueous Solutions of Ionic Compounds 3. Acids and Bases 4. Acid Strength

More information

Properties of Acids and Bases

Properties of Acids and Bases Chapter 15 Aqueous Equilibria: Acids and Bases Properties of Acids and Bases Generally, an acid is a compound that releases hydrogen ions, H +, into water. Blue litmus is used to test for acids. Blue litmus

More information

ACID-BASE EQUILIBRIA. Chapter 16

ACID-BASE EQUILIBRIA. Chapter 16 P a g e 1 Chapter 16 ACID-BASE EQUILIBRIA Nature of Acids and Bases Before we formally define acids and bases, let s examine their properties. Properties of Acids Sour taste Ability to dissolve many metals

More information

Acids Bases and Salts Acid

Acids Bases and Salts Acid Acids Bases and Salts Acid ph less than 7.0 Sour taste Electrolyte Names of Acids Binary acids Contain only 2 elements Begin with hydro; end with ic Ternary acids Ex: H 2 S = hydrosulfuric Contain a polyatomic

More information

Chemistry 101 Chapter 4 STOICHIOMETRY

Chemistry 101 Chapter 4 STOICHIOMETRY STOICHIOMETRY Stoichiometry is the quantitative relationship between the reactants and products in a balanced chemical equation. Stoichiometry allows chemists to predict how much of a reactant is necessary

More information

Chapter 16 Acid Base Equilibria

Chapter 16 Acid Base Equilibria Chapter 16 Acid Base Equilibria 2015 Pearson Education, Inc. Acid Base Equilibria 16.1 : A Brief Review 16.2 Brønsted Lowry 16.3 The Autoionization of Water 16.4 The ph Scale 16.5 Strong Balsamic Vinegar

More information

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases Chem 106 Thursday, March 10, 2011 Chapter 17 Acids and Bases K a and acid strength Acid + base reactions: Four types (s +s, s + w, w + s, and w + w) Determining K from concentrations and ph ph of aqueous

More information

Acids and Bases. CHEM 102 T. Hughbanks. In following equilibrium, will reactants or products be favored? Strong acid (HCl) + Strong base (NaOH)

Acids and Bases. CHEM 102 T. Hughbanks. In following equilibrium, will reactants or products be favored? Strong acid (HCl) + Strong base (NaOH) Acids and Bases According to the Brønsted Lowry theory, all acid base reactions can be written as equilibria involving the acid and base and their conjugates. CEM 102 T. ughbanks All proton transfer reactions

More information

Chapter 5 Classification and Balancing of Chemical Reactions

Chapter 5 Classification and Balancing of Chemical Reactions Chapter 5 Classification and Balancing of Chemical Reactions 5.1 Chemical Equations Chemical equations describe chemical reactions. - As words: hydrogen plus oxygen combine to form water - As a chemical

More information

Proton Transfer Acids - Base. Dr. Fred Omega Garces Chemistry 201. Miramar College

Proton Transfer Acids - Base. Dr. Fred Omega Garces Chemistry 201. Miramar College 16.2 Acids Base Proton Transfer Dr. Fred Omega Garces Chemistry 201 Miramar College Important Notes: K a when H 3 O + is produced, K b when OH is produced 1 Acids Bases; Proton Transfer BrønstedLowry AcidsBases

More information

CH 15 Summary. Equilibrium is a balance between products and reactants

CH 15 Summary. Equilibrium is a balance between products and reactants CH 15 Summary Equilibrium is a balance between products and reactants Use stoichiometry to determine reactant or product ratios, but NOT reactant to product ratios. Capital K is used to represent the equilibrium

More information

Acid / Base Properties of Salts

Acid / Base Properties of Salts Acid / Base Properties of Salts n Soluble ionic salts produce may produce neutral, acidic, or basic solutions depending on the acidbase properties of the individual ions. n Consider the salt sodium nitrate,

More information

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or Chapter 16 - Acid-Base Equilibria Arrhenius Definition produce hydrogen ions in aqueous solution. produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of base. NH

More information

Chapter 14 Acids and Bases

Chapter 14 Acids and Bases Properties of Acids and Bases Chapter 14 Acids and Bases Svante Arrhenius (1859-1927) First to develop a theory for acids and bases in aqueous solution Arrhenius Acids Compounds which dissolve (dissociate)

More information

Strong Acids and Bases C020

Strong Acids and Bases C020 Strong Acids and Bases C020 Strong Acids and Bases 1 Before discussing acids and bases examine the concept of chemical equilibrium At reaction is at equilibrium when it is proceeding forward and backwards

More information

Chapter 15. Properties of Acids. Structure of Acids 7/3/08. Acid and Bases

Chapter 15. Properties of Acids. Structure of Acids 7/3/08. Acid and Bases Chapter 15 Acid and Bases Properties of Acids! Sour taste! React with active metals! React with carbonates, producing CO 2! Change color of vegetable dyes!blue litmus turns red! React with bases to form

More information

Chapter 4. Reactions in Aqueous Solution

Chapter 4. Reactions in Aqueous Solution Chapter 4 Reactions in Aqueous Solution Topics General properties of aqueous solutions Precipitation reactions Acid base reactions Oxidation reduction reactions Concentration of solutions Aqueous reactions

More information

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill Chapter 4 Reactions in Aqueous Solutions Copyright McGraw-Hill 2009 1 4.1 General Properties of Aqueous Solutions Solution - a homogeneous mixture Solute: the component that is dissolved Solvent: the component

More information

10.1 Acids and Bases in Aqueous Solution

10.1 Acids and Bases in Aqueous Solution 10.1 Acids and Bases in Aqueous Solution Arrhenius Definition of Acids and Bases An acid is a substance that gives hydrogen ions, H +, when dissolved in water. In fact, H + reacts with water and produces

More information

NATURE OF ACIDS & BASES

NATURE OF ACIDS & BASES General Properties: NATURE OF ACIDS & BASES ACIDS BASES Taste sour Bitter Change color of indicators Blue Litmus turns red no change Red Litmus no change turns blue Phenolphtalein Colorless turns pink

More information

UNIT #11: Acids and Bases ph and poh Neutralization Reactions Oxidation and Reduction

UNIT #11: Acids and Bases ph and poh Neutralization Reactions Oxidation and Reduction NAME: UNIT #11: Acids and Bases ph and poh Neutralization Reactions Oxidation and Reduction 1. SELF-IONIZATION OF WATER a) Water molecules collide, causing a very small number to ionize in a reversible

More information

Chapter 6. Acids, Bases, and Acid-Base Reactions

Chapter 6. Acids, Bases, and Acid-Base Reactions Chapter 6 Acids, Bases, and Acid-Base Reactions Chapter Map Arrhenius Acid Definition Anacid is a substance that generates hydronium ions, H 3 O + (often described as H + ), when added to water. An acidic

More information

Weak acids are only partially ionized in aqueous solution: mixture of ions and un-ionized acid in solution.

Weak acids are only partially ionized in aqueous solution: mixture of ions and un-ionized acid in solution. 16.6 Weak Acids Weak acids are only partially ionized in aqueous solution: mixture of ions and un-ionized acid in solution. Therefore, weak acids are in equilibrium: HA(aq) + H 2 O(l) H 3 O + (aq) + A

More information

CHEM 200/202. Professor Jing Gu Office: EIS-210. All s are to be sent to:

CHEM 200/202. Professor Jing Gu Office: EIS-210. All  s are to be sent to: CHEM 200/202 Professor Jing Gu Office: EIS-210 All emails are to be sent to: chem200@mail.sdsu.edu My office hours will be held in GMCS-212 on Monday from 9 am to 11 am or by appointment. ANNOUNCEMENTS

More information

CHEM 200/202. Professor Gregory P. Holland Office: GMCS-213C. All s are to be sent to:

CHEM 200/202. Professor Gregory P. Holland Office: GMCS-213C. All  s are to be sent to: CHEM 200/202 Professor Gregory P. Holland Office: GMCS-213C All emails are to be sent to: chem200@mail.sdsu.edu My office hours will be held in GMCS-212 on Monday from 12:00 pm to 2:00 pm or by appointment.

More information

Chapter In each case the conjugate base is obtained by removing a proton from the acid: (a) OH (b) I (c)

Chapter In each case the conjugate base is obtained by removing a proton from the acid: (a) OH (b) I (c) Practice Exercises 16.1 Conjugate acid base pairs (a), (c), and (f) (b) The conjugate base of I is I (d) The conjugate base of N 2 is N 2 and the conjugate base of N 4 is N 3 (e) The conjugate acid of

More information

Chapter 9: Acids, Bases, and Salts

Chapter 9: Acids, Bases, and Salts Chapter 9: Acids, Bases, and Salts 1 ARRHENIUS ACID An Arrhenius acid is any substance that provides hydrogen ions, H +, when dissolved in water. ARRHENIUS BASE An Arrhenius base is any substance that

More information

Chapter 7 Acids and Bases

Chapter 7 Acids and Bases Chapter 7 Acids and Bases 7.1 The Nature of Acids and Bases 7.2 Acid Strength 7.3 The ph Scale 7.4 Calculating the ph of Strong Acid Solutions 7.5 Calculating the ph of Weak Acid Solutions 7.6 Bases 7.7

More information

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13 ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. A solution is a homogenous mixture of 2 or more substances at the molecular level The solute(s) is(are)

More information

Acids & Bases. Strong Acids. Weak Acids. Strong Bases. Acetic Acid. Arrhenius Definition: Classic Definition of Acids and Bases.

Acids & Bases. Strong Acids. Weak Acids. Strong Bases. Acetic Acid. Arrhenius Definition: Classic Definition of Acids and Bases. Arrhenius Definition: Classic Definition of Acids and Bases Acid: A substance that increases the hydrogen ion concetration, [H ], (also thought of as hydronium ion, H O ) when dissolved in water. Acids

More information

Contents and Concepts

Contents and Concepts Learning Objectives Chapter 15 Acid Base Concepts Arrhenius Concept of Acids and Base a. Define and according to the Arrhenius concept. Brønsted Lowry Concept of Acids and Bases a. Define and according

More information

Chapter 15 - Acids and Bases Behavior of Weak Acids and Bases

Chapter 15 - Acids and Bases Behavior of Weak Acids and Bases Chapter 15 - Acids and Bases Behavior of Weak Acids and Bases 6) Calculate [H+] and ph for 1.0 10 8 M HCl. HCl H + + Cl - For a strong acid, [H+] = 1.0 10 8 M, ph = 8.0, BUT THIS DOES NOT MAKE SENSE!!!

More information

Chapter 4; Reactions in Aqueous Solutions. Chapter 4; Reactions in Aqueous Solutions. V. Molarity VI. Acid-Base Titrations VII. Dilution of Solutions

Chapter 4; Reactions in Aqueous Solutions. Chapter 4; Reactions in Aqueous Solutions. V. Molarity VI. Acid-Base Titrations VII. Dilution of Solutions Chapter 4; Reactions in Aqueous Solutions I. Electrolytes vs. NonElectrolytes II. Precipitation Reaction a) Solubility Rules III. Reactions of Acids a) Neutralization b) Acid and Carbonate c) Acid and

More information

The Chemistry of Acids and Bases

The Chemistry of Acids and Bases The Chemistry of 1 Acids and Bases 2 Acid and Bases 3 Acid and Bases 4 Acid and Bases 5 Strong and Weak Acids/Bases Generally divide acids and bases into STRONG or WEAK ones. STRONG ACID: HNO 3 (aq) +

More information

Acid/Base Theories The common characteristics of acids

Acid/Base Theories The common characteristics of acids Acid/Base Theories The common characteristics of acids describe them as: Acids aving a sour taste Being electrolytes (some weak) Reacting with metals to produce gas (usually 2 ) Reacting with bases to

More information

116 PLTL Activity sheet / Intro Acid - Base equilibrium Set 8

116 PLTL Activity sheet / Intro Acid - Base equilibrium Set 8 Potentially Useful or useless information: Strong and Weak Acids and Bases Definitions Arrhenius acid a compound that releases hydrogen ions ( + ) in water Brønsted acid a proton, + ion, donor Lewis acid

More information

Chapter 16 Acid-Base Equilibria

Chapter 16 Acid-Base Equilibria Chapter 16 Acid-Base Equilibria Learning goals and key skills: Understand the nature of the hydrated proton, represented as either H + (aq) or H 3 O + (aq) Define and identify Arrhenuis acids and bases.

More information

Exam 3. Objectives: Nomenclature

Exam 3. Objectives: Nomenclature Exam 3 Objectives: o Nomenclature m-nm, m(vos)-nm, nm-nm o Evidence for Chemical Reactions o Writing Chemical Equations o Balancing Chemical Equations o Classifying Chemical Reactions o Combination Reactions

More information

Chemistry I Notes Unit 10: Acids and Bases

Chemistry I Notes Unit 10: Acids and Bases Chemistry I Notes Unit 10: Acids and Bases Acids 1. Sour taste. 2. Acids change the color of acid- base indicators (turn blue litmus red). 3. Some acids react with active metals and release hydrogen gas,

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Reactions in Aqueous Solutions Chapter 4 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. A solution is a homogenous mixture of 2 or more substances. The solute

More information

CHEM Dr. Babb s Sections Exam #3 Review Sheet

CHEM Dr. Babb s Sections Exam #3 Review Sheet CHEM 116 Dr. Babb s Sections Exam #3 Review Sheet Acid/Base Theories and Conjugate AcidBase Pairs 111. Define the following terms: Arrhenius acid, Arrhenius base, Lewis acid, Lewis base, BronstedLowry

More information

a) most likely to gain two electrons Br O Al Mg b) greatest tendency to form a negative ion Na Li S Mg c) a non-metal Sr S Al K

a) most likely to gain two electrons Br O Al Mg b) greatest tendency to form a negative ion Na Li S Mg c) a non-metal Sr S Al K 1. (4 pts) Name the following compounds: Al 2 (SO 4 ) 3 N 2 O 3 2. (4 pts) Give the chemical formulas for the following compounds: chromium (III) carbonate magnesium phosphate 3. (16 pts) Circle the formula

More information

HA(aq) H + (aq) + A (aq) We can write an equilibrium constant expression for this dissociation: [ ][ ]

HA(aq) H + (aq) + A (aq) We can write an equilibrium constant expression for this dissociation: [ ][ ] 16.6 Weak Acids Weak acids are only partially ionized in aqueous solution. There is a mixture of ions and un-ionized acid in solution. Therefore, weak acids are in equilibrium: Or: HA(aq) + H 2 O(l) H

More information

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ).

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ). CHAPTER 13: ACIDS & BASES Section 13.1 Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist (1839-1927). He understood that aqueous solutions of acids and bases conduct electricity (they are electrolytes).

More information

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA Acids- taste sour Bases(alkali)- taste bitter and feel slippery Arrhenius concept- acids produce hydrogen ions in aqueous solution while

More information

Net Ionic Equations. Making Sense of Chemical Reactions

Net Ionic Equations. Making Sense of Chemical Reactions Making Sense of Chemical Reactions Now that you have mastered writing balanced chemical equations it is time to take a deeper look at what is really taking place chemically in each reaction. There are

More information

Chapter 14. Acids and Bases

Chapter 14. Acids and Bases Chapter 14 Acids and Bases Section 14.1 The Nature of Acids and Bases Models of Acids and Bases Arrhenius: Acids produce H + ions in solution, bases produce OH - ions. Brønsted Lowry: Acids are proton

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change UNIT 18 Table Of Contents Section 18.1 Introduction to Acids and Bases Unit 18: Acids and Bases Section 18.2 Section 18.3 Section 18.4 Strengths of Acids and Bases Hydrogen

More information

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3 Chapter 14 Acids and Bases I. Bronsted Lowry Acids and Bases a. According to Brønsted- Lowry, an acid is a proton donor and a base is a proton acceptor. Therefore, in an acid- base reaction, a proton (H

More information

insoluble partial very soluble (< 0.1 g/100ml) solubility (> 1 g/100ml) Factors Affecting Solubility in Water

insoluble partial very soluble (< 0.1 g/100ml) solubility (> 1 g/100ml) Factors Affecting Solubility in Water Aqueous Solutions Solubility is a relative term since all solutes will have some solubility in water. Insoluble substances simply have extremely low solubility. The solubility rules are a general set of

More information

Chapter 17 Acids and Bases

Chapter 17 Acids and Bases Chapter 17 Acids and Bases - we are all familiar with 'acids' - depicted on television as burning liquids - from foods (i.e. vinegar) - taste "sour" or "tart' - less familiar with 'bases' - taste "bitter"

More information

Unit 6: ACIDS AND BASES

Unit 6: ACIDS AND BASES Unit 6: Acids and Bases Honour Chemistry Unit 6: ACIDS AND BASES Chapter 16: Acids and Bases 16.1: Brønsted Acids and Bases Physical and Chemical Properties of Acid and Base Acids Bases Taste Sour (Citric

More information

Session 8: LECTURE OUTLINE (SECTIONS I1 I4 pp F61 F67)

Session 8: LECTURE OUTLINE (SECTIONS I1 I4 pp F61 F67) Session 8: LECTURE OUTLINE (SECTIONS I1 I4 pp F61 F67) I. Elecrolytes a. Soluble substances b. Insoluble substances c. Electrolytes d. Non-Electrolytes e. Ions and electrical conductivity f. Strong and

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases Acids and Bases 1 UNIT 4: ACIDS & BASES OUTCOMES All important vocabulary is in Italics and bold. Outline the historical development of acid base theories. Include: Arrhenius, BronstedLowry, Lewis. Write

More information

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent Quick Review - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent Water H 2 O Is water an ionic or a covalent compound? Covalent,

More information

Acid Dissociation Constant

Acid Dissociation Constant CE 131 Lecture 37 Lewis Acids and Bases Chapter 16: pp. 800-802. Acid Dissociation Constant C 2 3 2 + 2 3 + + C 2 3-2 [ 3 + ][C 2 3-2 ] K = [ 2 ][C 2 3 2 ] [ 3 + ][C 2 3-2 ] K a = K [ 2 ] = [C 2 3 2 ]

More information

Chemistry 102 Chapter 15 ACID-BASE CONCEPTS

Chemistry 102 Chapter 15 ACID-BASE CONCEPTS General Properties: ACID-BASE CONCEPTS ACIDS BASES Taste sour Bitter Change color of indicators Blue Litmus turns red no change Red Litmus no change turns blue Phenolphtalein Colorless turns pink Neutralization

More information

5. Pb(IO 3) BaCO 3 8. (NH 4) 2SO 3

5. Pb(IO 3) BaCO 3 8. (NH 4) 2SO 3 Chemistry 11 Solution Chemistry II Name: Date: Block: 1. Ions in Solutions 2. Solubility Table 3. Separating Ions Ions in Solutions Ionization Equation - Represents the salt breaking apart into ions. Practice:

More information

Acids and Bases. Unit 10

Acids and Bases. Unit 10 Acids and Bases Unit 10 1 Properties of Acids and Bases Acids Bases Taste Sour Turns Litmus Dye Red Reacts with Metals to give H 2 (g) Taste Bitter Turns Litmus Dye Blue Do Not React with Metals Reacts

More information

Name Date Class ACID-BASE THEORIES

Name Date Class ACID-BASE THEORIES 19.1 ACID-BASE THEORIES Section Review Objectives Define the properties of acids and bases Compare and contrast acids and bases as defined by the theories of Arrhenius, Brønsted-Lowry, and Lewis Vocabulary

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

19.3 Strengths of Acids and Bases > Chapter 19 Acids, Bases, and Salts Strengths of Acids and Bases

19.3 Strengths of Acids and Bases > Chapter 19 Acids, Bases, and Salts Strengths of Acids and Bases Chapter 19 Acids, Bases, and Salts 19.1 Acid-Base Theories 19.2 Hydrogen Ions and Acidity 19.3 Strengths of Acids and Bases 19.4 Neutralization Reactions 19.5 Salts in Solution 1 Copyright Pearson Education,

More information

Chapter 16. Acid-Base Equilibria

Chapter 16. Acid-Base Equilibria Chapter 16 Acid-Base Equilibria Arrhenius Definition Acids produce hydrogen ions in aqueous solution. Bases produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of

More information

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY Acids And Bases A. Characteristics of Acids and Bases 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Reactions with water do NOT go to completion, so to find ion concentrations, need to know K eq and solve an equilibrium problem!

Reactions with water do NOT go to completion, so to find ion concentrations, need to know K eq and solve an equilibrium problem! Strong Acid and Base Solutions Easy to find ion concentrations! 0.1 M HCl = [H 3 O + ] = 0.1 M [OH ] = 1 x 10 13 M 0.1 M NaOH = [OH ] = 0.1 M [H 3 O + ] = 1 x 10 13 M Weak Acid and Base Solutions Reactions

More information

5/10/2017. Chapter 10. Acids, Bases, and Salts

5/10/2017. Chapter 10. Acids, Bases, and Salts Chapter 10. Acids, Bases, and Salts Introduction to Inorganic Chemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State) E-mail: upali@latech.edu Office: 311 Carson Taylor Hall ; Phone: 318-257-4941;

More information

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids and Bases Chapter 15 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain

More information

CH 221 Chapter Four Part II Concept Guide

CH 221 Chapter Four Part II Concept Guide CH 221 Chapter Four Part II Concept Guide 1. Solubility Why are some compounds soluble and others insoluble? In solid potassium permanganate, KMnO 4, the potassium ions, which have a charge of +1, are

More information

Chap 16 Chemical Equilibrium HSU FUYIN

Chap 16 Chemical Equilibrium HSU FUYIN Chap 16 Chemical Equilibrium HSU FUYIN 1 Definitions: Arrhenius & Brønsted Lowry acid and base Arrhenius theory: An acid is a substance that, when dissolved in water, increases the concentration of hydrogen

More information

Chapter 14: Acids and Bases

Chapter 14: Acids and Bases Chapter 14: Acids and Bases Properties of Acids and Bases What is an acid? Some examples of common items containing acids: Vinegar contains acetic acid; lemons and citrus fruits contain citric acid; many

More information

Section 32 Acids and Bases. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Section 32 Acids and Bases. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Section 32 Acids and Bases 1 Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Acid-Base Concepts Acids and bases are among the most familiar and important of all chemical compounds. You

More information

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic Formation of a salt (ionic compound): Neutralization reaction molecular Full ionic Eliminate spect ions to yield net ionic Hydrolysis/ reaction with water Anions of Weak Acids Consider the weak acid HF

More information

Help! I m Melting, wait...i m dissolving! Notes (Ch. 4)

Help! I m Melting, wait...i m dissolving! Notes (Ch. 4) Aqueous Solutions I. Most reactions happen. II. Aqueous means. III. A solution is a. IV. Dissolving occurs when water and/or. V. Electrolytes:. A. In solution, ionic compounds dissolve into. B. molecular

More information

Acid Base Equilibria

Acid Base Equilibria Acid Base Equilibria Acid Ionization, also known as acid dissociation, is the process in where an acid reacts with water to produce a hydrogen ion and the conjugate base ion. HC 2 H 3 O 2(aq) H + (aq)

More information

Reactions in Aqueous Solution

Reactions in Aqueous Solution 1 Reactions in Aqueous Solution Chapter 4 For test 3: Sections 3.7 and 4.1 to 4.5 Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display. 2 A solution is a homogenous

More information

HA(s) + H 2 O(l) = H 3 O + (aq) + A (aq) b) NH 3 (g) + H 2 O(l) = NH 4 + (aq) + OH (aq) Acid no. H + type base no. OH type

HA(s) + H 2 O(l) = H 3 O + (aq) + A (aq) b) NH 3 (g) + H 2 O(l) = NH 4 + (aq) + OH (aq) Acid no. H + type base no. OH type You are already familiar with some acid and base chemistry. According to the Arrhenius model, acids are substances that when dissolved in water ionize to yield hydrogen ion (H + ) and a negative ion. e.g.

More information

Acid/Base Definitions

Acid/Base Definitions Acids and Bases Acid/Base Definitions Arrhenius Model Acids produce hydrogen ions in aqueous solutions Bases produce hydroxide ions in aqueous solutions Bronsted-Lowry Model Acids are proton donors Bases

More information

Chapter 14 Acid- Base Equilibria Study Guide

Chapter 14 Acid- Base Equilibria Study Guide Chapter 14 Acid- Base Equilibria Study Guide This chapter will illustrate the chemistry of acid- base reactions and equilibria, and provide you with tools for quantifying the concentrations of acids and

More information

Chapter Four: Reactions in Aqueous Solution

Chapter Four: Reactions in Aqueous Solution Chapter Four: Reactions in Aqueous Solution Learning Outcomes: Identify compounds as acids or bases, and as strong, weak, or nonelectrolytes Recognize reactions by type and be able to predict the products

More information

Name HONORS CHEMISTRY / / Oxide Reactions & Net Ionic Reactions

Name HONORS CHEMISTRY / / Oxide Reactions & Net Ionic Reactions Name HONORS CHEMISTRY / / Oxide Reactions & Net Ionic Reactions The first type of reactions we will look at today are reactions between an oxide (a compound with oxygen as its anion) and water. There are

More information

Cu 2+ (aq) + 4NH 3(aq) = Cu(NH 3) 4 2+ (aq) I (aq) + I 2(aq) = I 3 (aq) Fe 3+ (aq) + 6H 2O(l) = Fe(H 2O) 6 3+ (aq) Strong acids

Cu 2+ (aq) + 4NH 3(aq) = Cu(NH 3) 4 2+ (aq) I (aq) + I 2(aq) = I 3 (aq) Fe 3+ (aq) + 6H 2O(l) = Fe(H 2O) 6 3+ (aq) Strong acids There are three definitions for acids and bases we will need to understand. Arrhenius Concept: an acid supplies H + to an aqueous solution. A base supplies OH to an aqueous solution. This is the oldest

More information

AP Chapter 15 & 16: Acid-Base Equilibria Name

AP Chapter 15 & 16: Acid-Base Equilibria Name AP Chapter 15 & 16: Acid-Base Equilibria Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 15 & 16: Acid-Base Equilibria 2 Warm-Ups (Show

More information

Acids and Bases. Properties, Reactions, ph, and Titration

Acids and Bases. Properties, Reactions, ph, and Titration Acids and Bases Properties, Reactions, ph, and Titration C-19 2017 Properties of acids 1. Taste Sour (don t try this except with foods). 2. Are electrolytes (conduct electricity). Some are strong, some

More information

Stoichiometry: Chemical Calculations. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change.

Stoichiometry: Chemical Calculations. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change. Chemistry is concerned with the properties and the interchange of matter by reaction i.e. structure and change. In order to do this, we need to be able to talk about numbers of atoms. The key concept is

More information

Chem 1046 Lecture Notes Chapter 17

Chem 1046 Lecture Notes Chapter 17 Chem 1046 Lecture Notes Chapter 17 Updated 01-Oct-2012 The Chemistry of Acids and Bases These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Book Material. Additional material that

More information

A reaction in which a solid forms is called a precipitation reaction. Solid = precipitate

A reaction in which a solid forms is called a precipitation reaction. Solid = precipitate Chapter 7 Reactions in Aqueous Solutions 1 Section 7.1 Predicting Whether a Reaction Will Occur Four Driving Forces Favor Chemical Change 1. Formation of a solid 2. Formation of water 3. Transfer of electrons

More information

Chapter 14. Acids and Bases

Chapter 14. Acids and Bases Chapter 1. Acids and Bases Reactions in aqueous solutions Precipitation reactions Acid-Base reactions xidation-reduction reactions Precipitation reaction : a reaction which results in the formation of

More information

Ionic Compounds. And Acids

Ionic Compounds. And Acids CHAPTER 7 LANGUAGE OF CHEMISTRY CLASSIFICATION OF COMPOUNDS Inorganic compounds does not contain the element carbon, but there are exception to this rule, CO 2 (carbon dioxide), CO 3 2 (carbonate), and

More information

Chapter 4. Reactions in Aqueous Solution

Chapter 4. Reactions in Aqueous Solution Chapter 4. Reactions in Aqueous Solution 4.1 General Properties of Aqueous Solutions A solution is a homogeneous mixture of two or more substances. A solution is made when one substance (the solute) is

More information

Chapter 6 Acids and Bases

Chapter 6 Acids and Bases Chapter 6 Acids and Bases Introduction Brønsted acid-base reactions are proton transfer reactions. Acids donate protons to bases. In the process, the acid is converted into its conjugate base and the base

More information

IONIC CHARGES. Chemistry 51 Review

IONIC CHARGES. Chemistry 51 Review IONIC CHARGES The ionic charge of an ion is dependent on the number of electrons lost or gained to attain a noble gas configuration. For most main group elements, the ionic charges can be determined from

More information