1 A burning splint will burn more vigorously in pure oxygen than in air because

Size: px
Start display at page:

Download "1 A burning splint will burn more vigorously in pure oxygen than in air because"

Transcription

1 Slide 1 / 38 1 burning splint will burn more vigorously in pure oxygen than in air because oxygen is a reactant in combustion and concentration of oxygen is higher in pure oxygen than is in air. oxygen is a catalyst for combustion. oxygen is a product of combustion. nitrogen is a product of combustion and the system reaches equilibrium at a lower temperature. nitrogen is a reactant in combustion and its low concentration in pure oxygen catalyzes the combustion.

2 Slide 2 / 38 2 s the temperature of a reaction is increased, the rate of the reaction increases because the. reactant molecules collide less frequently reactant molecules collide more frequently and with greater energy per collision activation energy is lowered reactant molecules collide less frequently and with greater energy per collision reactant molecules collide more frequently with less energy per collision

3 Slide 3 / 38 3 Which of the following will not affect the rate of a chemical reaction? increasing the concentration of a reactant decreasing the concentration of a reactant increasing the temperature at which the reaction is carried out performing the reaction in the presence of a catalyst ll of the above will affect the rate of a chemical reaction.

4 Slide 4 / 38 4 reaction was found to be first order in carbon monoxide concentration. The rate of the reaction if the [O] is doubled, with everything else kept the same. doubles remains unchanged triples increases by a factor of 4 is reduced by a factor of 2

5 Slide 5 / 38 5 reaction was found to be second order in carbon monoxide concentration. The rate of the reaction if the [O] is doubled, with everything else kept the same. doubles remains unchanged triples increases by a factor of 4 is reduced by a factor of 2

6 Slide 6 / 38 6 If the rate law for a reaction is first order in and second order in, then the rate law is k [][] k[] 2 [] 3 k[][] 2 k[] 2 [] k[] 2 [] 2

7 Slide 7 / 38 7 reaction was found to be third order in. Increasing the concentration of by a factor of 3 will cause the reaction rate to. remain constant increase by a factor of 27 increase by a factor of 9 triple decrease by a factor of the cube root of 3

8 Slide 8 / 38 8 It was experimentally determined that the rate for the reaction ( + P) increased by a factor of 9 when th concentration of was tripled. The reaction is order in. zero first second third one-half

9 Slide 9 / 38 9 The rate law for a reaction is rate = k[][] 2 Which one of the these statements is false? The reaction is first order in. The reaction is second order in. The reaction is second order overall. k is the reaction rate constant If [] is doubled, the reaction rate will increase by a factor of 4.

10 Slide 10 / The rate law of the overall reaction + Is rate=k[] 2 Which of the following will not increase the rate of the reaction? increasing the concentration of reactant increasing the concentration of reactant increasing the temperature of the reaction adding a catalyst for the reaction ll of these will increase the rate.

11 Slide 11 / Which energy difference in this energy profile corresponds to the activation energy for the forward reaction? x y x+y x-y y-x

12 Slide 12 / In the above drawing, what quantity is represented by the sum of x + y? heat of reaction, H activation energy of the forward reaction activation energy of the reverse reaction potential energy of the reactants potential energy of the products

13 Slide 13 / In the above drawing, what quantity is represented by y? heat of reaction, ΔH activation energy of the forward reaction activation energy of the reverse reaction potential energy of the reactants potential energy of the products

14 Slide 14 / In the above drawing, what quantity is not affected by the presence of a catalyst? x y Neither x nor y oth x and y are affected by the presence of a catalyst.

15 Slide 15 / In the energy profile of a reaction, the species that exists at the maximum on the curve is called the. product activated complex activation energy enthalpy of reaction atomic state

16 Slide 16 / catalyst can increase the rate of a reaction. by lowering the activation energy of the reverse reaction by increasing the overall activation energy (a ) of the reaction by providing an alternative pathway with a lower activation energy ll of these are ways that a catalyst might act to increase the rate of reaction.

17 Slide 17 / t equilibrium,. all chemical reactions have ceased the rates of the forward and reverse reactions are equal the rate constants of the forward and reverse reactions are equal the value of the equilibrium constant is 1 the limiting reagent has been consumed

18 Slide 18 / Which of the following expressions is the correct equilibrium-constant expression for the reaction below? (NH 4 ) 2 Se (s) 2NH 3 (g) + H 2 Se(g) [ NH 3 ] [H 2 Se] / [NH 4 ) 2 Se ] [NH 4 ) 2 Se ] / [ NH 3 ] 2 [H 2 Se] 1/ [NH 4 ) 2 Se ] [ NH 3 ] 2 [H 2 Se] [ NH 3 ] 2 [H 2 Se] / [NH 4 ) 2 Se ]

19 Slide 19 / Which of the following expressions is the correct equilibrium-constant expression for the reaction below? HF (aq) H 2 O(l) H 3 O + (aq) + F- (aq) [HF][ H 2 O]/ [H 3 O + ][F - ] 1/HF [H 3 O+][F - ] / [HF][ H 2 O] [H 3 O + ][F - ] / [HF] [F-]/[HF]

20 Slide 20 / The equilibrium constant for the gas phase reaction N 2 (g) +3H 2 (g) ( 2NH 3 (g) is Keq = 4.34x10-3 at t equilibrium. products predominate reactants predominate roughly equal amounts of products and reactants are present only products are present only reactants are present

21 Slide 21 / The equilibrium constant for the gas phase reaction 2NH 3 (g) N 2 (g) +3H 2 (g) is K eq =230 at t equilibrium, products predominate reactants predominate roughly equal amounts of products and reactants are present only products are present only reactants are present

22 Slide 22 / Which of the following expressions is the correct equilibrium-constant expression for the equilibrium between dinitrogen tetroxide and nitrogen dioxide? N 2 O 4 (g) 2NO 2 (g) [ NO 2 ] /[ N 2 O 4 ] [ NO 2 ] 2 / [ N 2 O 4 ] [ NO 2 ]/ [ N 2 O 4 ] 2 [NO 2 ][N 2 O 4 ] [NO 2 ] 2 [N 2 O 4 ]

23 Slide 23 / The equilibrium-constant expression for the reaction Ti(s) + 2l 2 (g) Til 4 (l) is given by Til 4 (l)/ [Ti(s)] + [l 2 (g)] [Ti(s)] [l 2 (g)] 2 / [ Til 4 (l)] [ Til 4 (l)] / [l 2 (g)] 2 [l 2 (g)] -2 [ Til 4 (l)] / [Ti(s)] [l 2 (g)] 2

24 Slide 24 / onsider the following equilibrium. 2SO 2 (g) + O 2 (g) 2SO 3 (g) The equilibrium cannot be established when is/are placed in a 1.0-L container mol SO 2 and 0.25 mol O mol SO mol SO 2 and 0.25 mol SO mol O 2 and 0.50 mol SO mol SO 3

25 Slide 25 / If the value for the equilibrium constant is much greater than 1, then the equilibrium mixture contains mostly. reactants products

26 Slide 26 / Pure and pure are excluded from equilibrium-constant expressions. gases and compounds solids and liquids liquids and elements ions and molecular compounds cids and bases

27 Slide 27 / Pure and pure are excluded from equilibrium-constant expressions. gases and compounds gases and liquids liquids and elements ions and molecular compounds cids and bases

28 Slide 28 / Of the following equilibria, only will shift to the left in response to a decrease in volume. H 2 (g) + l 2 (g) 2Hl (g) 2SO 3 (g) 2SO 2 (g) + O 2 (g) N 2 (g) + 3H 2 (g) 2NH 3 (g) 4Fe(s) + 3O 2 (g) 2Fe 2 O 3 (s) 2HI (g) H 2 (g) + I 2 (g)

29 Slide 29 / The reaction below is exothermic: 2SO 2 (g) + O 2 (g) 2SO 3 (g) Le hatelier's Principle predicts that will result in an increase in the number of moles of SO 3 (g) in the reaction container. increasing the pressure decreasing the pressure increasing the temperature removing some oxygen increasing the volume of the container

30 Slide 30 / For the endothermic reaction ao 3 ao (s) + O 2 (g) hatelier's principle predicts that will result in an increase in the number of moles of O 2. increasing the temperature decreasing the temperature increasing the pressure removing some of the ao 3 none of the above

31 Slide 31 / In which of the following reactions would increasing pressure at constant temperature not change the concentrations of reactants and products, based on Le hatelier's principle? N 2 (g) + 3H 2 (g) 2NH 3 (g) N 2 O 4 (g) 2NO 2 (g) N 2 (g) + 2O 2 (g) 2NO2 (g) 2N 2 (g) +O 2 2N 2 O (g) N 2 (g) +O 2 (g) 2NO(g)

32 Slide 32 / onsider the following reaction at equilibrium: 2NH 3 (g) N 2 (g) + 3H 2 (g) ΔH = kj Le hatelier's principle predicts that adding N 2 (g) to the system at equilibrium will result in. a decrease in the concentration of NH 3 a decrease in the concentration of H 2 (g) an increase in the value of the equilibrium constant a lower partial pressure of N 2 removal of all of the H 2 (g)

33 Slide 33 / onsider the following reaction at equilibrium: 2O 2 (g) 2O(g) + O 2 (g) ΔH = -514 kj Le haelier's principle predicts that adding O 2 (g) to the reaction container will. increase the partial pressure of O (g) at equilibrium decrease the partial pressure of O 2 (g) at equilibrium increase the value of the equilibrium constant increase the partial pressure of O 2 (g) at equilibrium decrease the value of the equilibrium constant

34 Slide 34 / onsider the following reaction at equilibrium: 2O 2 (g) 2O(g) + O2 (g) H = -514 kj Le hatelier's principle predicts that an increase in temperature will. increase the partial pressure of O 2 (g) decrease the partial pressure of O 2 (g) decrease the value of the equilibrium constant increase the value of the equilibrium constant increase the partial pressure of O

35 Slide 35 / onsider the following reaction at equilibrium. 2O 2 (g) 2O(g) + O 2 (g) ΔH = -514 kj Le hatelier's principle predicts that the equilibrium partial pressure of O (g) can be maximized by carrying out the reaction. at high temperature and high pressure at high temperature and low pressure at low temperature and low pressure at low temperature and high pressure in the presence of solid carbon

36 Slide 36 / onsider the following reaction at equilibrium: 2SO 2 (g) + O 2 (g) 2SO 3 (g) ΔH = -99 kj Le hatelier's principle predicts that an increase in temperature will result in. a decrease in the partial pressure of SO 3 a decrease in the partial pressure of SO 2 an increase in K eq no changes in equilibrium partial pressures the partial pressure of O 2 will decrease

37 Slide 37 / The effect of a catalyst on an equilibrium is to increase the rate of the forward reaction only increase the equilibrium constant so that products are favored slow the reverse reaction only increase the rate at which achieved without change shift the equilibrium to the right

38 Slide 38 / 38

CHEM 102 Winter 10 Exam 2(a)

CHEM 102 Winter 10 Exam 2(a) CHEM 102 Winter 10 Exam 2(a) On the answer sheet (scantron) write your Name, Student ID Number, and Recitation Section Number. Choose the best (most correct) answer for each question AND ENTER IT ON YOUR

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

Chemistry in society. Homework

Chemistry in society. Homework hemistry in society Homework Equilibrium, Hess Law, Enthalpy 1 Multiple choice 10 marks 1) l 2 (g) + H 2 O(l) l - (aq) + lo - (aq) + 2H + (aq) The addition of which substance would move the above equilibrium

More information

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease?

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease? CHEMISTRY 12 UNIT II - REVIEW EQUILIBRIA Part I - Multiple Choice 1. In which of the following does the entropy decrease? A. NaCl (s) Na + (aq) + Cl (aq) B. 4 NO (g) + 6 H 2 O (g) 4 NH 3 (g) + 5 O 2 (g)

More information

Q.1 Write out equations for the reactions between...

Q.1 Write out equations for the reactions between... 1 CHEMICAL EQUILIBRIUM Dynamic Equilibrium not all reactions proceed to completion some end up with a mixture of reactants and products this is because some reactions are reversible; products revert to

More information

Unit 13: Rates and Equilibrium- Guided Notes

Unit 13: Rates and Equilibrium- Guided Notes Name: Period: What is a Chemical Reaction and how do they occur? Unit 13: Rates and Equilibrium- Guided Notes A chemical reaction is a process that involves of atoms Law of Conservation of : Mass is neither

More information

Energy Diagram Endothermic Reaction Draw the energy diagram for exothermic and endothermic reactions. Label each part.

Energy Diagram Endothermic Reaction Draw the energy diagram for exothermic and endothermic reactions. Label each part. CP Chapter 18 Notes A Model for Reaction Rates Expressing Reaction Rates Average Rate = Δquantity Δtime The amount of increase or decrease depends on their mole ratios Units = or mol/ls Expressing Reaction

More information

Chapter Seven. Chemical Reactions: Energy, Rates, and Equilibrium

Chapter Seven. Chemical Reactions: Energy, Rates, and Equilibrium Chapter Seven Chemical Reactions: Energy, Rates, and Equilibrium Endothermic vs. Exothermic 2 Endothermic: A process or reaction that absorbs heat and has a positive ΔH. Exothermic: A process or reaction

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) B) 1588 C) 397 D) 28 E) 0.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) B) 1588 C) 397 D) 28 E) 0. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The value of Keq for the equilibrium 1) H2 (g) + I2 (g) 2 HI (g) is 794 at 25 C. What

More information

Unit 13: Rates and Equilibrium- Funsheets

Unit 13: Rates and Equilibrium- Funsheets Name: Period: Unit 13: Rates and Equilibrium- Funsheets Part A: Reaction Diagrams 1) Answer the following questions based on the potential energy diagram shown here: a. Does the graph represent an endothermic

More information

4) What is the order of the reaction with respect to ClO2? 4) A) 2 B) 1 C) 4 D) 0 E) 3

4) What is the order of the reaction with respect to ClO2? 4) A) 2 B) 1 C) 4 D) 0 E) 3 Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Nitrogen dioxide decomposes to nitric oxide and oxygen via the reaction: 1) 2NO2 2NO

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 1588 B) C) 28 D) 397 E) 0.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 1588 B) C) 28 D) 397 E) 0. Chapter 15 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The value of Keq for the equilibrium 1) H2 (g) + I2 (g) 2 HI (g) is 794 at 25 C. What

More information

2.0 Equilibrium Constant

2.0 Equilibrium Constant 2.0 Equilibrium Constant When reactions are reversible and chemical equilibrium is reached, it is important to recognize that not all of the reactants will be converted into products. There is a mathematical

More information

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction.

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical Equilibrium Reversible Reactions A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical

More information

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst?

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Kinetics & Equilibrium Review Packet Standard Level 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Enthalpy I II III Time A. I and II only B. I and III only C.

More information

(b) Describe, and explain, what would happen to the position of the NO 2 /N 2 O 4 equilibrium if the following changes are made

(b) Describe, and explain, what would happen to the position of the NO 2 /N 2 O 4 equilibrium if the following changes are made 1. Nitrogen dioxide, NO 2, and dinitrogen tetroxide, N 2 O 4, take part in the following equilibrium. 2NO 2 (g) N 2 O 4 (g) ΔH = 58 kj mol 1 (a) State le Chatelier s principle. (b) Describe, and explain,

More information

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions UNIT 16: Chemical Equilibrium collision theory activation energy activated complex reaction rate reversible reaction chemical equilibrium law of chemical equilibrium equilibrium constant homogeneous equilibrium

More information

The reactions we have dealt with so far in chemistry are considered irreversible.

The reactions we have dealt with so far in chemistry are considered irreversible. 1. Equilibrium Students: model static and dynamic equilibrium and analyse the differences between open and closed systems investigate the relationship between collision theory and reaction rate in order

More information

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided. CHAPTER 16 REVIEW Reaction Energy SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. For elements in their standard state, the value of H 0 f is 0. 2. The formation and decomposition

More information

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g)

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g) 1. Which of the following can we predict from an equilibrium constant for a reaction? 1. The extent of a reaction 2. Whether the reaction is fast or slow 3. Whether a reaction is exothermic or endothermic

More information

Chemical Equilibrium Practice Problems #2

Chemical Equilibrium Practice Problems #2 Chemical Equilibrium Practice Problems #2 2-20-2015 1. A CPHS student does an equilibrium experiment with the general chemical equation and derives the 2 graphs below: A = B: a. When at equilibrium is

More information

Quantitative Relationships in Chemical Reactions Chapter 7

Quantitative Relationships in Chemical Reactions Chapter 7 Quantitative Relationships in Chemical Reactions Chapter 7 The burning of charcoal releases heat (thermal energy) that grills our food. But the combustion of charcoal and fossil fuels also releases CO

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

6. Which will react faster: Magnesium and 2M hydrochloric acid, or Magnesium and 0.5M hydrochloric acid?

6. Which will react faster: Magnesium and 2M hydrochloric acid, or Magnesium and 0.5M hydrochloric acid? REACTION RATES WORKSHEET WS#1 1. Identify the three components of collision theory. What are the three factors that must be true for a collision to be successful? a. b. c. 2. Do all collisions result in

More information

Kinetics & Equilibrium

Kinetics & Equilibrium Kinetics & Equilibrium Name: Essential Questions How can one explain the structure, properties, and interactions of matter? Learning Objectives Explain Collision Theory Molecules must collide in order

More information

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS CHEMICAL EQUILIBRIA: GENERAL CONCEPTS THE NATURE OF THE EQUILIBRIUM STATE: Equilibrium is the state where the concentrations of all reactants and products remain constant with time. (in stoichiometry,

More information

(02) WMP/Jun10/CHEM2

(02) WMP/Jun10/CHEM2 Energetics 2 Section A Answer all the questions in the spaces provided. 1 An equation for the equilibrium reaction between hydrogen, iodine and hydrogen iodide is shown below. H 2 (g) + I 2 (g) 2HI(g)

More information

Chapter 8: Reaction Rates and Equilibrium

Chapter 8: Reaction Rates and Equilibrium Chapter 8: Reaction Rates and Equilibrium ACTIVATION ENERGY In some reaction mixtures, the average total energy of the molecules is too low at the prevailing temperature for a reaction to take place at

More information

AS Paper 1 and 2 Kc and Equilibria

AS Paper 1 and 2 Kc and Equilibria AS Paper 1 and 2 Kc and Equilibria Q1.When one mole of ammonia is heated to a given temperature, 50 per cent of the compound dissociates and the following equilibrium is established. NH 3(g) ½ N 2 (g)

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Homework 03. Chemical Equilibria

Homework 03. Chemical Equilibria HW03 - Chemical Equilibria! This is a preview of the published version of the quiz Started: Feb 14 at 9:1am Quiz Instruc!ons Homework 03 Chemical Equilibria Question 1 When the chemical reaction A + B

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The effect of a catalyst on a chemical reaction is to. A) increase the entropy change

More information

UNIT 9: KINETICS & EQUILIBRIUM. Essential Question: What mechanisms affect the rates of reactions and equilibrium?

UNIT 9: KINETICS & EQUILIBRIUM. Essential Question: What mechanisms affect the rates of reactions and equilibrium? UNIT 9: KINETICS & EQUILIBRIUM Essential Question: What mechanisms affect the rates of reactions and equilibrium? What is Kinetics? Kinetics is the branch of chemistry that explains the rates of chemical

More information

2nd Semester Exam Review. C. K eq = [N 2][H 2 ]

2nd Semester Exam Review. C. K eq = [N 2][H 2 ] Name: ate: 1. Which pair of formulas represents the empirical formula and the molecular formula of a compound?. H 2 O, 4 H 6 O 4. HO, 6 H 12 O 6 8. Given the reaction at equilibrium: N 2 (g) + 3H 2 (g)

More information

Chapter 17. Preview. Lesson Starter Objectives Reaction Mechanisms Collision Theory Activation Energy The Activated Complex Sample Problem A

Chapter 17. Preview. Lesson Starter Objectives Reaction Mechanisms Collision Theory Activation Energy The Activated Complex Sample Problem A Preview Lesson Starter Objectives Reaction Mechanisms Collision Theory Activation Energy The Activated Complex Sample Problem A Section 1 The Reaction Process Lesson Starter The reaction H 2 + I 2 2HI

More information

AP* Chapter 13. Chemical Equilibrium

AP* Chapter 13. Chemical Equilibrium AP* Chapter 13 Chemical Equilibrium Section 13.1 The Equilibrium Condition Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular

More information

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion Reaction Rate Products form rapidly Precipitation reaction or explosion Products form over a long period of time Corrosion or decay of organic material Chemical Kinetics Study of the rate at which a reaction

More information

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction?

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction? Reaction Rates & Equilibrium What determines how fast a reaction takes place? What determines the extent of a reaction? Reactants Products 1 Reaction Rates Vary TNT exploding. A car rusting. Dead plants

More information

CHEMISTRY 102 FALL 2009 EXAM 2 FORM B SECTION 501 DR. KEENEY-KENNICUTT PART 1

CHEMISTRY 102 FALL 2009 EXAM 2 FORM B SECTION 501 DR. KEENEY-KENNICUTT PART 1 NAME CHEMISTRY 102 FALL 2009 EXAM 2 FORM B SECTION 501 DR. KEENEY-KENNICUTT Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated. (2) Sign the Aggie

More information

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction CHAPTER 17 REVIEW Reaction Kinetics SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Refer to the energy diagram below to answer the following questions. D Energy C d c d

More information

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice Page 1 of 7 AP Chemistry Chapter 16 Assignment Part I Multiple Choice 1984 47. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) H = 889.1 kj H f H 2 O(l) = 285.8 kj mol 1 H f CO 2 (g) = 393.3 kj mol 1 What is

More information

Reaction Rate and Equilibrium Chapter 19 Assignment & Problem Set

Reaction Rate and Equilibrium Chapter 19 Assignment & Problem Set Reaction Rate and Equilibrium Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Reaction Rate and Equilibrium 2 Study Guide: Things You Must Know

More information

which has an equilibrium constant of Which of the following diagrams represents a mixture of the reaction at equilibrium?

which has an equilibrium constant of Which of the following diagrams represents a mixture of the reaction at equilibrium? Chapter 9 Quiz: Chemical Equilibria 1. Which of the following statements is true regarding chemical equilibrium? I. The concentrations of reactants and products at equilibrium are constant, which means

More information

Equilibrium and Reaction Rate

Equilibrium and Reaction Rate Equilibrium and Reaction Rate Multiple Choice Questions - Answers 1. Activation energy could be considered as the minimum energy required to do which of these? A. change the orientation of the reactant

More information

1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below.

1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below. 1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below. Ba(OH) 2 (s) + 2NH 4 Cl(s) BaCl 2 (s) + 2NH 3 (g) + 2H 2 O(l) ΔH ο = +51.1 kj mol 1

More information

Q1. (a) State what is meant by the term activation energy of a reaction. (1)

Q1. (a) State what is meant by the term activation energy of a reaction. (1) Q1. (a) State what is meant by the term activation energy of a reaction. (c) State in general terms how a catalyst increases the rate of a chemical reaction. The curve below shows the Maxwell Boltzmann

More information

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1?

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1? 72. Consider the following experimental results: Experiment 1 Experiment 2 2+ - - 4 2 2 4 aq Reactants Fe ( aq) + MnO4 ( aq) MnO ( aq) + H C O ( ) Temperature 20 C 40 C Concentration 0. 5 M solutions 1.

More information

Collision Theory. and I 2

Collision Theory. and I 2 Collision Theory To explain why chemical reactions occur, chemists have proposed a model, known as collision theory, which states that molecules must collide in order to react. These collisions can involve

More information

Dr. Valverde s AP Chemistry Class

Dr. Valverde s AP Chemistry Class AP* Chemistry Dr. Valverde s AP Chemistry Class Chapter CHEMICAL 13 Review: EQUILIBRIA: Chemical Equilibrium GENERAL CONCEPTS THE NATURE OF THE EQUILIBRIUM STATE: Equilibrium is the state where the rate

More information

Equilibrium & Reaction Rate

Equilibrium & Reaction Rate Equilibrium & Reaction Rate 1. One of the important reactions in coal gasification is the catalytic methanation reaction: CO(g) + H (g) H O(g) + CH 4 (g) H 06 kj a) Predict the direction in which this

More information

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion Energy Changes, Reaction Rates and Equilibrium Thermodynamics: study of energy, work and heat Kinetic energy: energy of motion Potential energy: energy of position, stored energy Chemical reactions involve

More information

(g) burns according to this reaction? D) CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l)

(g) burns according to this reaction? D) CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l) Name: 7171-1 - Page 1 1) In a chemical reaction, the difference between the potential energy of the products and the potential energy of the reactants is defined as the A) heat of reaction B) ionization

More information

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium Chemical Equilibrium by Professor Bice Martincigh Equilibrium involves reversible reactions Some reactions appear to go only in one direction are said to go to completion. indicated by All reactions are

More information

Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON. Name /98

Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON. Name /98 Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON Name /98 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Correct the False statments by changing

More information

CHEMISTRY 102 FALL 2010 EXAM 2 FORM C SECTION 502 DR. KEENEY-KENNICUTT PART 1

CHEMISTRY 102 FALL 2010 EXAM 2 FORM C SECTION 502 DR. KEENEY-KENNICUTT PART 1 NAME CHEMISTRY 102 FALL 2010 EXAM 2 FORM C SECTION 502 DR. KEENEY-KENNICUTT Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated. (2) Sign the Aggie

More information

91166 Demonstrate understanding of chemical reactivity Collated questions on equilibria

91166 Demonstrate understanding of chemical reactivity Collated questions on equilibria (2017:2) 91166 Demonstrate understanding of chemical reactivity Collated questions on equilibria The addition of a small amount of iron to a mixture of nitrogen and hydrogen gases helps to speed up the

More information

1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases

1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases 1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases 2. The energy needed to start a chemical reaction is

More information

1. Describe the changes in reactant and product concentration as equilibrium is approached.

1. Describe the changes in reactant and product concentration as equilibrium is approached. Web Review 1. Describe the changes in reactant and product concentration as equilibrium is approached. 2. Describe the changes in the forward and the reverse rates as equilibrium is approached. 3. State

More information

(g) 2NH 3. (g) ΔH = 92 kj mol 1

(g) 2NH 3. (g) ΔH = 92 kj mol 1 1 The uses of catalysts have great economic and environmental importance For example, catalysts are used in ammonia production and in catalytic converters (a) Nitrogen and hydrogen react together in the

More information

3. A forward reaction has an activation energy of 50 kj and a H of 100 kj. The PE. diagram, which describes this reaction, is

3. A forward reaction has an activation energy of 50 kj and a H of 100 kj. The PE. diagram, which describes this reaction, is Kinetics Quiz 4 Potential Energy Diagrams 1. A catalyst increases the rate of a reaction by A. Increasing the concentration of the reactant(s) B. Decreasing the concentration of the reactant(s) C. Increasing

More information

F322: Chains, Energy and Resources Rates and Equilibria

F322: Chains, Energy and Resources Rates and Equilibria F322: Chains, Energy and Resources 2.3.2 Rates and Equilibria 1. Dilute aqueous hydrogen peroxide, H 2 O 2 (aq), is used to sterilise contact lenses. Dilute H 2 O 2 (aq) slowly decomposes at room temperature

More information

Chapter 17. Equilibrium

Chapter 17. Equilibrium Chapter 17 Equilibrium How Chemical Reactions Occur Chemists believe molecules react by colliding with each other. If a collision is violent enough to break bonds, new bonds can form. Consider the following

More information

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium 1. Which quantities must be equal for a chemical reaction at equilibrium? (A) the potential energies of the reactants and products (B) the concentrations of the reactants and products (C) the activation

More information

CHEMICAL EQUILIBRIUM. 6.3 Le Chatelier s Principle

CHEMICAL EQUILIBRIUM. 6.3 Le Chatelier s Principle CHEMICAL EQUILIBRIUM 6.3 Le Chatelier s Principle At the end of the lesson, students should be able to: a) State Le Chatelier s principle b) Explain the effect of the following factors on a system at equilibrium

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6.2 The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

CHEMISTRY 12 UNIT II EQUILIBRIUM

CHEMISTRY 12 UNIT II EQUILIBRIUM CHEMISTRY 12 UNIT II EQUILIBRIUM F: Dynamic Equilibrium (The Quantitative Approach) It is expected that students will be able to F1: The Equilibrium Constant - Gather and interpret data on the concentration

More information

Unit 6 Kinetics and Equilibrium.docx

Unit 6 Kinetics and Equilibrium.docx 6-1 Unit 6 Kinetics and Equilibrium At the end of this unit, you ll be familiar with the following: Kinetics: Reaction Rate Collision Theory Reaction Mechanism Factors Affecting Rate of Reaction: o Nature

More information

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = mc T mol HCl m = 70.0 g c = 4.19 J/g C T = 9.8 C.4 C = 7.4 C mol HCl = 3.00 mol/ 0.000 = 0.0600 mol H = 70.0 g 4.19 J/g

More information

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction?

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction? Reaction Rates & Equilibrium What determines how fast a reaction takes place? What determines the extent of a reaction? Reactants Products 1 Reaction Rates Vary TNT exploding. A car rusting. Dead plants

More information

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c Slide 1 / 84 1 Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy A B C D E a only b only c only a and c b and c Slide 2 / 84 2 The internal energy of a system

More information

8. A piece of Mg(s) ribbon is held in a Bunsen burner flame and begins to burn according to the equation: 2Mg(s) + O2 (g) 2MgO(s).

8. A piece of Mg(s) ribbon is held in a Bunsen burner flame and begins to burn according to the equation: 2Mg(s) + O2 (g) 2MgO(s). 1. Which event must always occur for a chemical reaction to take place? A) formation of a precipitate B) formation of a gas C) effective collisions between reacting particles D) addition of a catalyst

More information

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Version A UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, 2015 5-6 pm (60 minutes) Version A DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

Calculating Rates with Stoichiometry

Calculating Rates with Stoichiometry Calculating Rates with Stoichiometry 1. If NOCl(g) is decomposing at a rate of 1.1 x 10 8 mol/l/min in the following reaction: 2 NOCl(g) 2 NO(g) + Cl 2 (g) a) What is the rate of formation of NO(g)? b)

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chemistry 213 Exam I - A Spring 2010 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) At elevated temperatures, methylisonitrile (CH3NC) isomerizes

More information

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A?

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? Kinetics 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? A. [A]/ t = [B]/ t B. [A]/ t = (2/3)( [B]/ t) C. [A]/

More information

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Version B UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, 2015 5-6 pm (60 minutes) Version B DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

I. Multiple Choice 20

I. Multiple Choice 20 Name: Date: Chemistry 30 Rates of Reaction: Chemical Kinetics 50 I. Multiple Choice 20 1. The rate determining step for a complex reaction is the one which is A. fastest C. slowest B. last in the sequence

More information

Changes & Chemical Reactions. Unit 5

Changes & Chemical Reactions. Unit 5 Changes & Chemical Reactions Unit 5 5 Types of Chemical Reactions Double Decomposition Replacement 1 2 3 4 5 Synthesis Single Replacement Combustion Continue Synthesis 2H 2 + O 2 2H 2 O Menu Decomposition

More information

Today s Objectives. describe how these changes affect the equilibrium constant, K c. Section 15.2 (pp )

Today s Objectives. describe how these changes affect the equilibrium constant, K c. Section 15.2 (pp ) 1 Today s Objectives Qualitatively predict the following using Le Chatelier s principle: shifts in equilibrium caused by changes in temperature, pressure, volume, concentration, or the addition of a catalyst

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

(b) Increase in pressure. (1)

(b) Increase in pressure. (1) 1 This question is about the equilibrium reaction between hydrogen and carbon dioxide. H 2 (g) + O 2 (g) H 2 O(g) + O(g) H = +40 kj mol 1 What effect would the following changes have on the rate of reaction

More information

Name Unit 10 Practice Test

Name Unit 10 Practice Test 1. Increasing the temperature increases the rate of a reaction by A) lowering the activation energy B) increasing the activation energy C) lowering the frequency of effective collisions between reacting

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chapter 15 Chemical Chemical 15.1 The Concept of 15.2 The Constant (K) 15.3 Understanding and Working with Constants 15.4 Heterogeneous Equilibria 15.5 Calculating Constants 15.6 Applications of Constants

More information

Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY

Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY 1 Name: Unit!!: Kinetics and Equilibrium Collision theory states that a reaction is most likely to occur if reactant particles collide with the

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Sample Exercise 15.1 (p. 632) Write the equilibrium expression for K eq for these three reactions: a) 2 O 3(g) 3 O 2(g) b) 2 NO (g) + Cl 2(g) 2 NOCl (g) c) Ag + (aq) +

More information

Bonus Final Exam 3. 1 Calculate the heat of reaction,δh 0 rxn, for the following reaction as written at 298 K: g 2H 2 CH 4. g CF 4.

Bonus Final Exam 3. 1 Calculate the heat of reaction,δh 0 rxn, for the following reaction as written at 298 K: g 2H 2 CH 4. g CF 4. Bonus Final Exam 3 1 Calculate the heat of reaction,δh rxn, for the following reaction as written at 298 K: CH 4 2F 2 CF 4 2H 2 substance CH 4 CF 4 ΔH f kj/mol 75 68 (A) ΔH rxn 23 kj (B) ΔH rxn 914 kj

More information

Equilibrium. Chapter How Reactions Occur How Reactions Occur

Equilibrium. Chapter How Reactions Occur How Reactions Occur Copyright 2004 by Houghton Mifflin Company. Equilibrium Chapter 16 ll rights reserved. 1 16.1 How Reactions Occur Kinetics: the study of the factors that effect speed of a rxn mechanism by which a rxn

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

Answers to Unit 4 Review: Reaction Rates

Answers to Unit 4 Review: Reaction Rates Answers to Unit 4 Review: Reaction Rates Answers to Multiple Choice 1. c 13. a 25. a 37. c 49. d 2. d 14. a 26. c 38. c 50. d 3. c 15. d 27. c 39. c 51. b 4. d 16. a 28. b 40. c 52. c 5. c 17. b 29. c

More information

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g)

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) Equilibrium Forward and Backward Reactions Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) forward rate = k f [H 2 ][I 2 ] 2HI(g) H 2 (g) + I 2 (g) backward rate = k b [HI]

More information

Reaction rates and rate law expressions Page 1

Reaction rates and rate law expressions Page 1 Reaction rates and rate law expressions Page 1 1 What does a large Keq (greater than 1) indicate? more products than reactants at equilibrium more reactants than products at equilibrium the reaction stops

More information

Chapters 10 and 11 Practice MC

Chapters 10 and 11 Practice MC Chapters 10 and 11 Practice MC Multiple Choice Identify the choice that best completes the statement or answers the question. d 1. Which of the following best describes the rates of chemical reaction?

More information

5.7 Quantity Relationships in Chemical Reactions (Stoichiometry)

5.7 Quantity Relationships in Chemical Reactions (Stoichiometry) 5.7 Quantity Relationships in Chemical Reactions (Stoichiometry) We have previously learned that atoms combine in simple whole number ratios to form compounds. However, to perform a chemical reaction,

More information

CST Review Part 2. Liquid. Gas. 2. How many protons and electrons do the following atoms have?

CST Review Part 2. Liquid. Gas. 2. How many protons and electrons do the following atoms have? CST Review Part 2 1. In the phase diagram, correctly label the x-axis and the triple point write the names of all six phases transitions in the arrows provided. Liquid Pressure (ATM) Solid Gas 2. How many

More information

Chemistry 40S Chemical Kinetics (This unit has been adapted from

Chemistry 40S Chemical Kinetics (This unit has been adapted from Chemistry 40S Chemical Kinetics (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Introduction to Kinetics Goals: Identify variables used to monitor reaction rate. Formulate

More information

AP Questions: Kinetics

AP Questions: Kinetics AP Questions: Kinetics 1972 2 A + 2 B C + D The following data about the reaction above were obtained from three experiments: Rate of Formation of [A] [B] C (mole. liter -1 min -1 ) 1 0.60 0.15 6.3 10-3

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

(i.e., equilibrium is established) leads to: K = k 1

(i.e., equilibrium is established) leads to: K = k 1 CHEMISTRY 104 Help Sheet #8 Chapter 12 Equilibrium Do the topics appropriate for your lecture http://www.chem.wisc.edu/areas/clc (Resource page) Prepared by Dr. Tony Jacob Nuggets: Equilibrium Constant

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Surface Area (not in book) Reality Check: What burns faster, large or small pieces of wood?

Surface Area (not in book) Reality Check: What burns faster, large or small pieces of wood? Concentration Flammable materials burn faster in pure oxygen than in air because the of O 2 is greater. Hospitals must make sure that no flames are allowed near patients receiving oxygen. Surface Area

More information