Basic principles of HPLC

Size: px
Start display at page:

Download "Basic principles of HPLC"

Transcription

1 Introduction to the theory of HPLC HPLC (High Performance Liquid Chromatography) depends on interaction of sample analytes with the stationary phase (packing) and the mobile phase to effect a separation. Following are explanations of the separation mechanisms commonly used in HPLC. In adsorption chromatography the stationary phase, properly speaking, is the liquid-solid interface Molecules are reversibly bound to this surface by dipole-dipole interactions. Since the strength of interaction with the surface is different for different compounds, residence time at the stationary phase varies for different substances thus achieving separation. Liquid-solid adsorption chromatography is most often used for polar, non-ionic organic compounds. Partition chromatography is the fundamental distribution mechanism in liquid-liquid chromatography, i. e. when both mobile phase and stationary phase are liquids. Separation by distribution is based on the relative solubility of the sample in the two phases. In normal phase partition chromatography the stationary phase is more polar than the mobile phase, in reversed phase (RP) chromatography the mobile phase is more polar than the stationary phase. Stationary phases may be either coated on to a support, or they may be chemically bonded to the surface. Normal phase partition chromatography is used for very polar organic compounds, while reversed phase chromatography is commonly used for nonpolar or weakly polar substances. Ionic compounds are often better separated by ion exchange chromatography (IEC). In this case, the stationary phase consists of acidic or basic functional groups bonded to the surface of a polymer matrix (resin or silica gel). Charged species in the mobile phase are attracted to appropriate functional groups on the ion exchanger and thereby separated. Ion pairing chromatography is an alternative to ion exchange chromatography. Mixtures of acids, bases and neutral substances are often difficult to separate by ion exchange techniques. In these cases ion pairing chromatography is applied. The stationary phases used are the same reversed phases as developed for reversed phase chromatography. An ionic organic compound, which forms an ionpair with a sample component of opposite charge, is added to the mobile phase. This ion-pair is, chemically speaking, a salt which behaves chromatographically like a non-ionic organic molecule that can be separated by reversed phase chromatography. Size exclusion chromatography (SEC) or gel permeation chromatography (GPC) uses as the stationary phase a porous matrix which is permeated by mobile phase molecules. Sample molecules small enough to enter the pore structure are retarded, while larger molecules are excluded and therefore rapidly carried through the column. Thus size exclusion chromatography means separation of molecules by size. The chromatogram below illustrates the most important parameters which characterise a separation. These parameters will be explained in the following paragraphs. t 0 tr1 w 1/2 w t R1 t R2 t R2 retention time 10% of peak height Explanation of the most important parameters to characterise a separation: peak widths: w 1/2 = peak width at half height w = band width of the peak (intersection point of the inflectional tangents with the zero line) peak symmetry is measured at 10% or peak height symmetry parameters: A = peak front at 10% of peak height to peak maximum B = peak maximum to peak end at 10% of peak height retention times t 0 = t R1 Injection dead time of a column = retention time of an unretarded substance,.. = retention times of components 1, 2.. t R2 t R1, t R2.. = net retention times of components 1, 2.. Retention: In an elution chromatographic separation substances differ from each other only in their residence time in or at the stationary phase. From this the following time definitions arise: The total retention time ( t R1 or t R2 ) is the time, which is needed by a sample component to migrate from column inlet (sample injection) to the column end (detector). The dead time t 0 is the time required by an inert compound to migrate from column inlet to column end without any retardation by the stationary phase. Consequently, the dead time is identical with the residence time of the sample compound in the mobile phase. A B 174

2 Introduction to the theory of HPLC The net retention time ( t R1 or t R2 ) is the difference between total retention time and dead time. That is the time the sample component remains in the stationary phase. The capacity factor k is a measure of the position of a sample peak in the chromatogram. It is specific for a given substance. k depends on the stationary phase, the mobile phase, the temperature, quality of the packing etc. The relative retention α, also known as separation factor, is the ratio between two capacity factors, where the figure in the denominator is the reference compound. The relative retention describes the ability of a system of stationary and mobile phase to discriminate between two compounds. It is independent of column construction (length, quality of packing) and flow velocity. It depends on the temperature and the properties of the mobile and stationary phases. Impurities in the mobile phase (e.g. water content) strongly influence the relative retention. Instead of the mobile phase volumetric flow rate F (ml/min) it is advantageous to use the linear velocity u (cm/sec). The linear velocity is independent of the cross section of the column and proportional to the pressure drop in the column. The linear velocity can be calculated by means of the dead time, where L is the column length in cm and t 0 the dead time in sec. The permeability K of a column describes its transmittance for a mobile phase and characterises the hydraulic resistance. The permeability of a column depends on mobile phase, temperature, column length and pressure. A change in permeability indicates a change in the packing (e.g. swelling of ion exchangers, silica gel etc.). The number of theoretical plates n characterises the quality of a column packing and mass transfer phenomena. The larger n, the more complicated sample mixtures can be separated with the column. The height equivalent of a theoretical plate h, HETP, is the length, in which the chromatographic equilibrium between mobile and stationary phase is established. Since a large number of theoretical plates is desired, h should be as small as possible. There are, of course, no real plates in a chromatographic column, since the packing is homogeneous. The value of h is a criterion for the quality of a column. h values depend on the particle size, the flow velocity, the mobile phase (viscosity) and especially on the quality of a packing. For practical reasons, the peak symmetry is measured at 10% of peak height, where A is the distance from peak front to peak maximum and B is the distance from peak maximum to peak end. Ideally symmetry should be 1, i. e. A = B. With values below 1 one speaks of fronting, with values above 1 there is peak tailing. t R1 = t R1 t 0 t R2 = t R2 t 0 t R1 t 0 t R2 t 0 k 1 = k t 2 = t 0 α u k = k 1 = L --- t 0 t R1 n t R1 2 = or n = w w 1 2 h = L -- n B symmetry = --- A 175

3 ideal peak shape symmetry = 1 The following table lists frequent problems in HPLC and possible solutions for: uncommon peak shapes lack of sensitivity poor sample recovery pressure problems baseline problems leaks changing retention times As mentioned above, the ideal peak symmetry is 1.0. Though broad peaks may have a symmetry value of 1, their peak shape indicates a problem in the chromatographic system. If the symmetry deviates largely from 1, it may provide valuable information about problems in a separation system. A uncommon peak shapes 1. broad peaks 1.1. early eluting analyte due to column dilute sample 1:10 and repeat the separation overload 1.2. injection volume too large inject smaller volumes or reduce solvent strength for injection to focus the sample components 1.3. viscosity of mobile phase is too high increase column temperature or use a solvent of lower viscosity 1.4. retention times too long use gradient elution or a stronger mobile phase for isocratic elution 1.5. poor column efficiency use mobile phases of lower viscosity, elevated column temperature, lower flow rate or a packing with smaller particle size 1.6. peak broadening in the injection valve decrease size of the sample loop, or introduce an air bubble in front and back of the sample in the loop 1.7. extra column volume of the LC system too large use zero dead volume fittings and connectors; use smallest possible tubing diameter (<0,25 mm) and matched size of fittings 1.8. volume of detector cell too large use smallest possible cell volume for the sensitivity required; use a detector without heat exchanger in the system 1.9. detector time constant too slow adjust the time constant to the peak width sampling rate of the data system is too low increase the sampling rate only some peaks broad: late elution of analytes from a previous run flush the column with a strong eluent after each run, or end gradient at a higher concentration broad peak symmetry ~ 1 2. peak fronting 2.1. column overload decrease sample amount; increase column diameter; use a stationary phase with higher capacity 2.2. formation of channels in the column buy a new column or have the column repacked (we will be glad to inform you about our refill service) symmetry < 1 fronting 176

4 3. peak tailing 3.1. basic analytes: interactions with silanol groups 3.2. sample components which can form chelates: metal traces in the packing 3.3. silica-based column: silanol interactions 3.4. silica-based column: degradation at high ph values 3.5. silica-based column: degradation at high temperatures use silica-based base deactivated RP phases (e.g. NUCLEOSIL PROTECT I, NUCLEOSIL HD or NUCLEOSIL AB); use a competing base such as triethylamine; use a stronger mobile phase; switch to polymer-based columns (e.g. NUCLEOGEL RP) only use high-purity silica packings (e.g. NUCLEOSIL, NUCLEOPREP ) with their very low content of metal ions; add EDTA or another chelating compound to the mobile phase; switch to polymer columns (e.g. NUCLEOGEL ) decrease the ph value of the mobile phase to suppress ionisation of the silanol groups; increase the buffer concentration; derivatise the sample to avoid polar interactions use RP columns with good surface shielding, polymer columns or sterically protected phases; also see A use temperatures below 50 C 3.6. dead volume at the column head rotate injection valve quickly; use an injection valve with pressure bypass; avoid pressure pulses / replace the deteriorated column, or, if possible, open the upper end fitting and fill the void with the column packing or some silanised glass fibre wadding; have the column repacked. With our VarioPrep columns for preparative HPLC you can compensate dead volumes with the adjustable end fitting unswept dead volume minimise the number of connections; ensure that the rotor seal is tight; check whether all fittings are tight 3.8. beginning of peak doubling see under double peaks symmetry > 1 tailing 4. double peaks 4.1. simultaneous elution of an interfering substance 4.2. simultaneous late elution of a substance from a previous run use sample clean-up or fractionation prior to injection (e. g. SPE with CHROMABOND or CHROMAFIX ); improve selectivity by choice of another mobile or stationary phase flush the column with a strong eluent after each run, or end gradient at a higher concentration 4.3. column overload see A injection solvent too strong use a weaker solvent for the sample or a stronger mobile phase 4.5. sample volume too large if the sample is dissolved in the mobile phase, the injection volume should be smaller than one-sixth of the column volume 4.6. dead volume or formation of channels in the column replace the column or, if possible, open the upper end fitting and fill the void with the same packing; have the column repacked 4.7. plugged frit install an in-line filter with 0.5 µm pore size between pump and injector to remove solids from the mobile phase, or between injector and column, to filter particulate matter from the sample / if possible, clean or replace the plugged frit 4.8. unswept volume in the injector replace the rotor of the injection valve double peak 177

5 5. negative peaks 5.1. RI detector: refractive index of the analyte lower than that of the mobile phase 5.2. UV detector: absorption of the analyte lower than absorption of the mobile phase reverse detector polarity to obtain positive peaks use a mobile phase with lower UV absorption; if recycling solvent, use fresh HPLC grade eluent when the recycled mobile phase starts to affect detection negative peak 6. ghost peaks 6.1. contamination only use HPLC grade solvents / flush the column to remove impurities 6.2. late elution of an analyte from a previous see A run 6.3. unknown interfering substances in the sample 6.4. in ion pairing chromatography: disturbed equilibrium 6.5. in peptide mapping: oxidation of trifluoroacetic acid 6.6. in RP chromatography: contaminated water 7. spikes use sample clean-up or fractionation prior to injection (e. g. SPE with CHROMABOND or CHROMAFIX ) prepare the sample in the mobile phase; reduce the injection volume prepare fresh trifluoroacetic acid solution daily; add an antioxidant check the suitability of the water by passing different amounts through the column and measure the peak height of the impurity as a function of enrichment time; purify the water by running it through an old RP column or use HPLC grade water 7.1. air bubbles in the mobile phase degas the mobile phase; install a back pressure restrictor at the detector outlet; ensure that all fittings are tight 7.2. column was stored without endcaps always store columns tightly capped; flush reversed phase columns with degassed methanol Spikes B lack of sensitivity 1. detector attenuation set too high reduce detector attenuation 2. not enough sample injected increase amount of sample for injection 3. sample loop of injector underfilled overfill loop with sample 4. sample loss during sample preparation use an internal standard for sample preparation and optimise your method 5. sample loss on column see paragraph C: poor sample recovery 6. autosampler line blocked check the flow and clear any blockages 7. peaks outside the linear range of the detector 8. only during first few injections: sample absorption in sample loop of injector or column dilute or enrich the sample until the concentration is in the linear range of the detector condition sample loop and column with concentrated sample 178

6 C poor sample recovery 1. adsorption on stationary phase increase mobile phase strength to minimise adsorption; for basic compounds add a competing base or use a base deactivated packing like NUCLEOSIL HD, NUCLEOSIL PROTECT I or NUCLEOSIL AB 2. chemisorption on stationary phase ensure no reactive groups are present; use a column or separation mechanism better suiting the problem; use polymer-based columns like e. g. NUCLEOGEL 3. acidic substances: <90% yield, irreversible adsorption on active groups use endcapped or polymeric stationary phases; acidify the mobile phase 4. basic substances: <90% yield, irreversible adsorption on active groups 5. hydrophobic interactions between stationary phase and biomolecules use endcapped, base deactivated, sterically protected phases with dense surface coverage or polymer-based reversed phase materials (NUCLEOSIL HD, NUCLEOGEL RP); add a competing base to the mobile phase use short-chain reversed phase packings with 300 Å pore size; as an alternative you may use hydrophilic stationary phases or ion exchangers 6. adsorption of proteins use another HPLC mode to reduce nonspecific interactions; use a mobile phase containing reagents which enhance solubility of the proteins, strong acids or bases (only with polymer-based columns) or detergents like SDS 7. adsorption on tubing and other hardware components use inert tubing and fittings made from e.g. PEEK or titanium D pressure problems 1. high back pressure 1.1. viscosity of mobile phase too high use a solvent of lower viscosity or increase the temperature 1.2. particle size of packing too small use a packing with larger particle size (e. g. 7 µm instead of 5 µm) 1.3. for polymer-based columns: swelling of the adsorbent caused by eluent changes use only solvents compatible with the column; check proper eluent composition; consult instructions for use for solvent compatibility; use a column with a higher degree of cross-linking 1.4. salt precipitation especially in reversed phase chromatography with high proportions of organic solvents in the mobile phase; ensure that the solvent composition is compatible with the buffer concentration; reduce the ionic strength and the ratio organic : aqueous in the mobile phase; premix the mobile phase 1.5. contamination at the column inlet improve sample clean-up; use guard columns; backflush column with a strong solvent in order to dissolve the impurity 1.6. microbial growth in the column use a mobile phase with at least 10% organic solvent; prepare fresh buffer daily; add 0.02% sodium azide to aqueous mobile phases; for storage equilibrate the column with at least 25% organic solvent and without buffer 1.7. plugged frit in in-line filter or guard replace frit or guard column column 1.8. plugged frit at column inlet replace the end fitting or the frit 1.9. when the injector is disconnected from the column: plugged injector clean the injector or replace the rotor 2. pressure fluctuations 2.1. air bubbles in the pump degas the solvent; flush the solvent with helium 2.2. leak in liquid lines between pump and column tighten all fittings; replace defective fittings; tighten rotor in the injection valve 179

7 3. increasing pressure 3.1. accumulation of solids at the column head 3.2. in aqueous / organic solvent systems: precipitation of buffer components filter sample and mobile phase; use an 0.5 µm in-line filter; disconnect the contaminated column and clean it by back-flushing; replace plugged inlet frits; replace the guard column ensure that the solvent composition is compatible with the buffer concentration; reduce the ionic strength and the ratio of organic : aqueous in the mobile phase 3.3. plugged liquid lines systematically disconnect system components from the detector end to the blockage; clean or replace the plugged component 4. decreasing pressure 4.1. insufficient flow from the pump loosen the cap on the mobile phase reservoir 4.2. leak in liquid lines between pump and column tighten all fittings; replace defective fittings; tighten the rotor in the injection valve 4.3. leaking pump check valve or seals clean the check valve; replace defective check valves or seals 4.4. air bubbles in the pump degas all solvents; check for blockage between solvent reservoir and pump; if necessary replace the frit in the inlet line E baseline problems 1. baseline drifting to lower absorption 1.1. with gradient elution: UV absorption of mobile phase A use non-uv-absorbing HPLC grade solvents for your mobile phases; if a UV-absorbing solvent is inevitable, use a UV-absorbing additive in mobile phase B 2. baseline drifting to higher absorption 2.1. accumulation and elution of impurities use sample clean-up or fractionation prior to injection; use only HPLC grade solvents; clean the contaminated column with a strong solvent 2.2. with gradient elution: UV absorption of mobile phase B use a higher wavelength of the UV detector; use non- UV-absorbing HPLC grade solvents for your mobile phases; if a UV-absorbing solvent is inevitable, use a UV-absorbing additive in mobile phase A 3. undulating baseline 3.1. temperature changes in the room monitor or avoid changes in room temperature; isolate the column or use a column oven; cover the RI detector to protect it from air currents 180

8 4. baseline noise 4.1. continuous: detector lamp problem or replace the UV lamp or clean the detector cell dirty detector cell 4.2. periodic: pump pulses repair or replace the pulse damper; purge any air from the pump; clean or replace the check valves 4.3. random: accumulation of impurities use sample clean-up or fractionation prior to injection; use only HPLC grade solvents / backflush contaminated column with a strong solvent 4.4. spikes: air bubble in the detector see A spikes: column temperature higher than the boiling point of the solvent use lower working temperature 4.6. occasional sharp spikes: external electrical interferences use a voltage stabiliser for your LC system or use an independent electrical circuit for your chromatography equipment 5. baseline noise during gradient elution or isocratic proportioning 5.1. insufficient solvent mixing mix by hand, or if possible use solvents of lower viscosity; monitor proportioning precision by spiking one solvent with a UV-absorbing substance and measure the resulting detector output 5.2. malfunctioning proportioning valves clean or replace the proportioning valve; use partially premixed solvents 6. disturbance at dead time 6.1. air bubbles in the mobile phase degas the mobile phase or use premixed eluents 6.2. difference in refractive index between injection solvent and mobile phase normal with many samples; if possible, use the mobile phase as solvent for the sample F leaks 1. column loses stationary phase replace column! 2. serious leaks at column or fittings tighten loose fittings or use new fittings 3. serious leak at the detector replace defective detector seals or gaskets 4. serious leak at the injector replace worn or scratched valve rotors 5. serious leak at the pump replace defective pump seals; check the piston for scratches and replace piston, if necessary G changing retention times 1. decreasing retention times 1.1. column overloaded with sample reduce the amount of sample or use a column with larger diameter 1.2. increasing flow rate check and if necessary adjust the pump flow rate 1.3. active groups at the stationary phase use a mobile phase containing an organic solvent (modifier) or a competing base, increase the buffer strength; use a packing with higher surface coverage 1.4. loss of bonded stationary phase replace column; for silica adsorbents use mobile phases between ph 2 and ph 8 181

9 2. increasing retention times 2.1. changing mobile phase composition cover the solvent reservoirs; ensure that the gradient system supplies the proper composition; if possible, mix the mobile phase by hand 2.2. decreasing flow rate check and if necessary adjust the pump flow rate; check for pump cavitation; check for leaking pump seals and other leaks in the system 2.3. loss of bonded stationary phase for silica adsorbents use mobile phases between ph 2 and ph 8 3. fluctuating retention times 3.1. only during first few injections: active condition the column with concentrated sample groups 3.2. insufficient buffer capacity use buffer concentrations above 20 mm 3.3. insufficient mixing of the mobile phase ensure that the gradient system supplies a mobile phase with constant composition; compare with manually mixed eluents; use partially premixed mobile phases 3.4. selective evaporation of one component from the mobile phase cover the mobile phase reservoirs; avoid vigorous flushing with helium; prepare fresh mobile phase 3.5. accumulation of impurities flush the column occasionally with a strong solvent, replace the guard column more frequently 3.6. fluctuating column temperature ensure that the room temperature is constant; if necessary, thermostat or isolate the column 3.7. Leaks see paragraph F 4. changing retention times resulting from insufficient equilibration 4.1. isocratic separation pass 10 to 15 column volumes of mobile phase through the column for equilibration 4.2. gradient elution increase equilibration time with mobile phase A in order to obtain constant retention times for early peaks, also: pass at least 10 column volumes of eluent A through the column for gradient regeneration 4.3. reversed phase ion-pairing chromatography increase the equilibration time; in ion-pairing chromatography sometimes 50 column volumes may be required for equilibration; long-chain ion-pairing reagents require more time; if possible, use ion-pairing reagents with shorter alkyl chains 182

High Performance Liquid Chromatography

High Performance Liquid Chromatography High Performance Liquid Chromatography What is HPLC? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube packed with a tiny particles (stationary phase).

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 1 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography STANDARDBASE techniques: High Performance Liquid Chromatography Drenthe College, The Netherlands 1. Introduction HPLC. High Performance Liquid Chromatography High Performance Liquid Chromatography (HPLC)

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

LC III: HPLC. Originally referred to as High-Pressure Liquid Chromatography. Now more commonly called High Performance Liquid Chromatography

LC III: HPLC. Originally referred to as High-Pressure Liquid Chromatography. Now more commonly called High Performance Liquid Chromatography LC III: HPLC What is HPLC? Originally referred to as High-Pressure Liquid Chromatography Now more commonly called High Performance Liquid Chromatography In general: The instrument controlled version of

More information

GPC/SEC Practical Tips and Tricks. Thomas Dent Applications Scientist Agilent Technologies. October, 2011 Gulf Coast Conference

GPC/SEC Practical Tips and Tricks. Thomas Dent Applications Scientist Agilent Technologies. October, 2011 Gulf Coast Conference GPC/SEC Practical Tips and Tricks Thomas Dent Applications Scientist Agilent Technologies October, 2011 Gulf Coast Conference 1 Section 1: Introduction Goals Brief introduction to GPC/SEC Highlight considerations

More information

HPLC Background Chem 250 F 2008 Page 1 of 24

HPLC Background Chem 250 F 2008 Page 1 of 24 HPLC Background Chem 250 F 2008 Page 1 of 24 Outline: General and descriptive aspects of chromatographic retention and separation: phenomenological k, efficiency, selectivity. Quantitative description

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Biochemistry. Biochemical Techniques HPLC

Biochemistry. Biochemical Techniques HPLC Description of Module Subject Name Paper Name 12 Module Name/Title 13 1. Objectives 1.1. To understand the basic concept and principle of 1.2. To understand the components and techniques of 1.3. To know

More information

Chemistry Instrumental Analysis Lecture 31. Chem 4631

Chemistry Instrumental Analysis Lecture 31. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 31 High Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) Solvent Delivery

More information

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents No. 089 SEPARATION REPORT Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS Table of Contents 1. Introduction 1 2. Column Specification 1 3. Features of Packing Materials

More information

for Acclaim Mixed-Mode HILIC-1 Column

for Acclaim Mixed-Mode HILIC-1 Column for Acclaim Mixed-Mode HILIC-1 Column Product Manual for ACCLAIM Mixed-Mode HILIC-1 Page 1 of 17 Product Manual for ACCLAIM Mixed-Mode HILIC-1 Column 5µm, 4.6 x 250mm, P/N 066844 5µm, 4.6 x 150mm, P/N

More information

M > ACN > > THF

M > ACN > > THF Method Development in HPLC Dr. Amitha Hewavitharana School of Pharmacy University of Queensland Method Development in HPLC References: D A Skoog Principles of instrumental analysis, 3 rd Edition Chapters

More information

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A.

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A. Instrumental Analysis II Course Code: CH3109 Chromatographic &Thermal Methods of Analysis Part 1: General Introduction Prof. Tarek A. Fayed What is chemical analysis? Qualitative analysis (1) Chemical

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L2 Page1 Instrumental Chemical Analysis Chromatography (General aspects of chromatography) Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester,

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

HPLC Workshop 16 June 2009 What does this do? Chromatography Theory Review Several chromatographic techniques Even though each method utilizes different techniques to separate compounds, the principles

More information

Determination of Polymer Modifier in Asphalt

Determination of Polymer Modifier in Asphalt Standard Method of Test for Determination of Polymer Modifier in Asphalt AASHTO Designation: T xxx-xx (2005) 1. SCOPE 1.1. This method of test is used to determine the polymer content of an asphalt sample.

More information

Chapter content. Reference

Chapter content. Reference Chapter 7 HPLC Instrumental Analysis Rezaul Karim Environmental Science and Technology Jessore University of Science and Technology Chapter content Liquid Chromatography (LC); Scope; Principles Instrumentation;

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

Liquid Chromatography

Liquid Chromatography Liquid Chromatography 1. Introduction and Column Packing Material 2. Retention Mechanisms in Liquid Chromatography 3. Method Development 4. Column Preparation 5. General Instrumental aspects 6. Detectors

More information

HPLC Columns. HILICpak VT-50 2D MANUAL. Shodex HPLC Columns Europe, Middle East, Africa, Russia

HPLC Columns. HILICpak VT-50 2D MANUAL. Shodex HPLC Columns Europe, Middle East, Africa, Russia HPLC Columns MANUAL HILICpak VT-50 2D Shodex HPLC Columns Europe, Middle East, Africa, Russia For technical support please use contact details shown below: SHOWA DENKO EUROPE GmbH Shodex Business Konrad-Zuse-Platz

More information

LC Column Troubleshooting. Do you have an equivalent column for my LC column?

LC Column Troubleshooting. Do you have an equivalent column for my LC column? LC Column Troubleshooting Do you have an equivalent column for my LC column? LC columns from different suppliers may have very different retention properties even if the bonding is the same. Although there

More information

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction. LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set Extraction Problem #1 1. Devise a scheme to be able to isolate organic acids, bases

More information

Determination of trace anions in concentrated hydrofluoric acid

Determination of trace anions in concentrated hydrofluoric acid APPLICATION NOTE 78 Determination of trace anions in concentrated hydrofluoric acid Authors Archava Siriraks Thermo Fisher Scientific, Sunnyvale, CA Keywords HF, ICS-5000 +, IonPac AS10, IonPac AC10, ion

More information

Shodex TM ODP2 HP series columns

Shodex TM ODP2 HP series columns HPLC Columns Shodex TM ODP2 HP series columns Better retention of highly polar substances Technical notebook No. 6 Contents 1. Introduction 1-1. Specifications 1-2. Eluent Compatibility of ODP2 HP Series

More information

PDG.pdf G-20 CHROMATOGRAPHY 3 4 INTRODUCTION

PDG.pdf G-20 CHROMATOGRAPHY 3 4 INTRODUCTION 1 2 3 4 5 INTRODUCTION G-20 CHROMATOGRAPHY 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Chromatographic separation techniques are multi-stage separation methods in which the components

More information

HPLC Praktikum Skript

HPLC Praktikum Skript HPLC Praktikum Skript Assistants: Gianluca Bartolomeo HCI D330, 3 46 68, bartolomeo@org.chem.ethz.ch Sahar Ghiasikhou HCI E330, 2 29 29, ghiasikhou@org.chem.ethz.ch 1. Introduction In chromatographic techniques,

More information

Polymer analysis by GPC-SEC. Technical Note. Introduction

Polymer analysis by GPC-SEC. Technical Note. Introduction Polymer analysis by GPC-SEC Technical Note Introduction Gel Permeation Chromatography (GPC), also referred to as Size Exclusion Chromatography (SEC) is a mode of liquid chromatography in which the components

More information

FAQ's. 1 - Which column would be the most appropriate for my application?

FAQ's. 1 - Which column would be the most appropriate for my application? 1 - Which column would be the most appropriate for my application? Due to the complexity of the chiral recognition mechanism, it is not possible yet to establish rules for the selection of the best chiral

More information

Introduction to Chromatography

Introduction to Chromatography Introduction to Chromatography Dr. Sana Mustafa Assistant Professor Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. What is Chromatography? Derived from the Greek

More information

CAPCELL PAK C18 IF2 Type http://hplc.shiseido.co.jp/e/column/html/if2_index.htm Page 1 of 2 List of Sales Representatives Contact Shiseido Technical Materials Catalog List HPLC Columns HPLC Instruments

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

Maximizing Performance Through GPC Column Selection

Maximizing Performance Through GPC Column Selection Maximizing Performance Through GPC Column Selection What Are Polymers? Polymers are long chain molecules produced by linking small repeat units (monomers) together There are many ways to link different

More information

HPLC COLUMNS WILEY-VCH. Theory, Technology, and Practice. Uwe D. Neue with a contribution from M. Zoubair El Fallah

HPLC COLUMNS WILEY-VCH. Theory, Technology, and Practice. Uwe D. Neue with a contribution from M. Zoubair El Fallah HPLC COLUMNS Theory, Technology, and Practice Uwe D. Neue with a contribution from M. Zoubair El Fallah WILEY-VCH New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS Preface ix 1 Introduction

More information

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography)

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) Ch.28 HPLC 28.1 Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) High Performance (Pressure) LC Glass column st.steel (high

More information

Introduction to Chromatographic Separations

Introduction to Chromatographic Separations Introduction to Chromatographic Separations Analysis of complex samples usually involves previous separation prior to compound determination. Two main separation methods instrumentation are available:

More information

Chapter 23 Introduction to Analytical Separations

Chapter 23 Introduction to Analytical Separations Chapter 23 Introduction to Analytical Separations Homework Due Monday April 24 Problems 23-1, 23-2, 23-7, 23-15, 23-27, 23-29, 23-32 Analytical Separations: Universal approach to analyzing complex mixtures

More information

C18 Column. Care & Use Sheet

C18 Column. Care & Use Sheet C18 Column Care & Use Sheet HALO Description HALO C18 is a high-speed, high-performance liquid chromatography column based on a new Fused-CoreTM particle design. The Fused-Core particle provides a thin

More information

Chromatographic Separation

Chromatographic Separation What is? is the ability to separate molecules using partitioning characteristics of molecule to remain in a stationary phase versus a mobile phase. Once a molecule is separated from the mixture, it can

More information

Gas Chromatography. Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid

Gas Chromatography. Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid Gas Chromatography Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid Principles Instrumentation Applications 18-1 Retention Volumes Volumes rather than times

More information

HPLC. GRATE Chromatography Lab Course. Dr. Johannes Ranke. September 2003

HPLC. GRATE Chromatography Lab Course. Dr. Johannes Ranke. September 2003 HPLC GRATE Chromatography Lab Course Dr. Johannes Ranke Organisation The groups Start at 9:00 am End at 18:00 pm at the latest Friday, 19th we will finish at 2:00 pm Thursday, 11th: Lecture at 08:15 am

More information

COSMOSIL Applications

COSMOSIL Applications 1.FAQ and Troubleshooting COSMOSIL Applications COSMOSIL Application has more than 7,600 applications using COSMOSIL columns. Setting optimal HPLC experimental parameters is an important process that requires

More information

MODERN HPLC FOR PRACTICING SCIENTISTS

MODERN HPLC FOR PRACTICING SCIENTISTS MODERN HPLC FOR PRACTICING SCIENTISTS Michael W. Dong Synomics Pharmaceutical Services, LLC Wareham, Massachusetts WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface xv 1 Introduction 1

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

[ CARE AND USE MANUAL ]

[ CARE AND USE MANUAL ] CONTENTS I. INTRODUCTION II. III. IV. GETTING STARTED a. Column Installation b. Column Equilibration c. Initial Column Efficiency Determination COLUMN USE a. Guard Columns b. Sample Preparation c. ph Range

More information

Packings for HPLC. Packings for HPLC

Packings for HPLC. Packings for HPLC Summary of packings for HPLC In analytical HPLC, packings with particle sizes of 3 to 10 µm are preferred. For preparative separation tasks, also particles with diameters larger than 10 µm are applied.

More information

Determination of Caffeine by HPLC

Determination of Caffeine by HPLC Determination of Caffeine by HPLC Introduction It was a long history before real high performance liquid chromatography (HPLC) had evolved. The very first indication of a chromatographic separation was

More information

Unexpected Peaks in Chromatograms - Are They Related Compounds, System Peaks or Contaminations? From the Diary of an HPLC Detective

Unexpected Peaks in Chromatograms - Are They Related Compounds, System Peaks or Contaminations? From the Diary of an HPLC Detective Unexpected Peaks in Chromatograms - Are They Related Compounds, System Peaks or Contaminations? From the Diary of an HPLC Detective SHULAMIT LEVIN HPLC in Pharmaceutics Σ Stability Indicating Methods Extra

More information

Gel Permeation Chromatography - GPC

Gel Permeation Chromatography - GPC Isolation and Separation Methods J. Poustka, VŠCHT Praha, ÚAPV 2014, http://web.vscht.cz/poustkaj Gel Permeation Chromatography - GPC Separation and clean-up method Group separation of compounds with similar

More information

IonPac Trace Cation Concentrator

IonPac Trace Cation Concentrator for the IonPac Trace Cation Concentrator (TCC-LP1, TCC-ULP1 and TCC-XLP1) Page 1 of 17 PRODUCT MANUAL FOR TRACE CATION CONCENTRATOR (TCC) TCC-LP1 Column Low Pressure, 4 x 35 mm (P/N 046027) TCC -ULP1 Column

More information

LC Technical Information

LC Technical Information LC Technical Information Method Transfer to Accucore.6 μm Columns Containing solid core particles, which are engineered to a diameter of.6μm and a very narrow particle size distribution; Accucore HPLC

More information

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography Emqal module: M0925 - Quality parameters and optimization in is a separation technique used for quantification of mixtures of analytes Svein.mjos@kj.uib.no Exercises and lectures can be found at www.chrombox.org/emq

More information

What is Chromatography?

What is Chromatography? What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated extraction. It is believed that the separation

More information

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25 High Performance Liquid Chromatography (HPLC) Harris Chapter 25 12/1/2005 Chem 253 - Chapter 25 1 HPLC Separation of nonvolatile or thermally unstable compounds. If the analyte/sample can be found to be

More information

2501 High Performance Liquid Chromatography

2501 High Performance Liquid Chromatography 2501 High Performance Liquid Chromatography High Performance Liquid Chromatography Scheme Chp25:: 1 High Performance Liquid Chromatography Components of HPLC High Performance Liquid Chromatography Scheme

More information

Pure Chromatography Consumables Pure flexibility. Pure specialization. Pure convenience.

Pure Chromatography Consumables Pure flexibility. Pure specialization. Pure convenience. Pure Chromatography Consumables Pure flexibility. Pure specialization. Pure convenience. Pure Consumables More focus on your application The Pure consumable portfolio offers an unrivaled range of products

More information

SEPARATIONS ESSENTIALS IN MODERN HPLC. 2University of Bucharest, Bucharest, Romania

SEPARATIONS ESSENTIALS IN MODERN HPLC. 2University of Bucharest, Bucharest, Romania ESSENTIALS IN MODERN HPLC SEPARATIONS Serban C. Moldoveanu1, Victor David2 'R.J. Reynolds Tobacco Co., Winston-Salem, NC, USA 2University of Bucharest, Bucharest, Romania ELSEVIER AMSTERDAM BOSTON HEIDELBERG

More information

Chromatography and other Separation Methods

Chromatography and other Separation Methods Chromatography and other Separation Methods Probably the most powerful class of modern analytical methods for analyzing mixture of components---and even for detecting a single component in a complex mixture!

More information

Chromatography Outline

Chromatography Outline Chem 2001 Summer 2004 Outline What is? The Chromatogram Optimization of Column Performance Why Do Bands Spread? Gas High-Performance Liquid Ion-Exchange 2 What is? In chromatography, separation is achieved

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

CHROMATOGRAPHIC SEPARATION TECHNIQUES SUPERCRITICAL FLUID CHROMATOGRAPHY

CHROMATOGRAPHIC SEPARATION TECHNIQUES SUPERCRITICAL FLUID CHROMATOGRAPHY 2.2.45. Supercritical fluid chromatography EUROPEAN PHARMACOPOEIA 7.0 Control solutions. In addition to the TOC water control, prepare suitable blank solutions or other solutions needed for establishing

More information

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Page 1 of 13 CIPAC/4105/R GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Prepared for CIPAC by Dr M J Tandy*, P M Clarke and B White (UK) The rapid

More information

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. Chromatography Primer Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. At its heart, chromatography is a technique

More information

ProPac WCX-10 Columns

ProPac WCX-10 Columns ProPac WCX-10 Columns Guidance for column use Tips to maximize column lifetime ProPac WCX-10 Column Tips and Tricks This guide provides essential information and invaluable guidelines for mobile phases,

More information

penta-hilic UHPLC COLUMNS

penta-hilic UHPLC COLUMNS penta-hilic UHPLC COLUMNS penta-hilic Highly retentive, proprietary penta-hydroxy-ligand Excellent peak shape for polar compounds with a variety of functional groups: acids, bases, zwitterions strong and

More information

Determination of Polyacrylic Acid in Boiler Water Using Size-Exclusion Chromatography with Charged Aerosol Detection

Determination of Polyacrylic Acid in Boiler Water Using Size-Exclusion Chromatography with Charged Aerosol Detection Determination of Polyacrylic Acid in Boiler Water Using Size-Exclusion Chromatography with Charged Aerosol Detection Mark Tracy, Xiaodong Liu, and Ian Acworth, Thermo Fisher Scientific, Sunnyvale, CA,

More information

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Chromatography: sample transported by mobile phase electrostatic

More information

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing)

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Chromatography Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Invention of Chromatography Mikhail Tswett invented chromatography

More information

Chapter 1. Chromatography. Abdul Muttaleb Jaber

Chapter 1. Chromatography. Abdul Muttaleb Jaber Chapter 1 Chromatography Abdul Muttaleb Jaber What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated

More information

Potential sources of contamination on Mass Spectrometers and suggested cleaning procedures

Potential sources of contamination on Mass Spectrometers and suggested cleaning procedures Potential sources of contamination on Mass Spectrometers and suggested cleaning procedures Purpose: This document provides information on potential sources of background contamination commonly encountered

More information

"Theory and Practice of High Speed Chromatography for Bioanalysis" Stuart Coleman March 20, 2007

Theory and Practice of High Speed Chromatography for Bioanalysis Stuart Coleman March 20, 2007 "Theory and Practice of High Speed Chromatography for Bioanalysis" Stuart Coleman March 20, 2007 General Observations about HPLC Separations A good separation is necessary for good bioanalytical quantitation.

More information

GPC / SEC Theory and Understanding

GPC / SEC Theory and Understanding Dr. Jason S. Davies, Smithers Rapra, UK Gel permeation chromatography (GPC), also known as size exclusion chromatography (SEC) is a branch of liquid chromatography specifically concerned with characterisation

More information

Barry E. Boyes, Ph.D. Consumables and Accessories Business Unit May 10, 2000

Barry E. Boyes, Ph.D. Consumables and Accessories Business Unit May 10, 2000 Barry E. Boyes, Ph.D. Consumables and Accessories Business Unit May 0, 000 HPLC Column Troubleshooting What Every HPLC User Should Know :00 a.m. EST Telephone Number: 86-650-06 Chair Person: Tim Spaeder

More information

LC and LC/MS Column Selection Flow Chart

LC and LC/MS Column Selection Flow Chart LC and LC/MS Column Selection Flow Chart To use the column selection diagram below, simply follow the path for your analyte and mobile phase. At the far right, follow your final column selection to the

More information

Protein separation and characterization

Protein separation and characterization Address:800 S Wineville Avenue, Ontario, CA 91761,USA Website:www.aladdin-e.com Email USA: tech@aladdin-e.com Email EU: eutech@aladdin-e.com Email Asia Pacific: cntech@aladdin-e.com Protein separation

More information

Acclaim Mixed-Mode WCX-1

Acclaim Mixed-Mode WCX-1 Acclaim Mixed-Mode WCX-1 Product Manual for the Acclaim Mixed-Mode WCX-1 Column Page 1 of 28 PRODUCT MANUAL for the Acclaim Mixed-Mode WCX-1 Columns 4.6 x 150 mm, P/N (068353) 4.6 x 250 mm, P/N (068352)

More information

The Theory of HPLC. Ion Pair Chromatography

The Theory of HPLC. Ion Pair Chromatography The Theory of HPLC Ion Pair Chromatography i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference manual.

More information

ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY

ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY CHROMATOGRAPHY Week 9-10 Reading Assignment: Chapter 7. Bioseparations Science & Engineering, Harrison, R; Todd, P; Rudge, S.C and Petrides, D,P CHROMATOGRAPHY

More information

LECTURE 2. Advanced Separation Science Techniques Present and Future Separation Tools

LECTURE 2. Advanced Separation Science Techniques Present and Future Separation Tools LECTURE 2 Advanced Separation Science Techniques Present and Future Separation Tools Jack Henion, Ph.D. Emeritus Professor, Analytical Toxicology Cornell University Ithaca, NY 14850 Lecture 2, Page 1 Contents

More information

[S016. CHROMATOGRAPHY]

[S016. CHROMATOGRAPHY] Phyto-Analysis Sheet Number : 16 Prof. Dr. Talal Aburjai Page 1 of 9 How to read the chromatogram? Comes from any automated chromatography. The chromatograms show the 0 t (t m ) which indicates the solvent

More information

Chemistry Gas Chromatography: Separation of Volatile Organics

Chemistry Gas Chromatography: Separation of Volatile Organics Chemistry 3200 Gas chromatography (GC) is an instrumental method for separating volatile compounds in a mixture. A small sample of the mixture is injected onto one end of a column housed in an oven. The

More information

Chemistry 311: Instrumental Analysis Topic 4: Basic Chromatography. Chemistry 311: Instrumental Analysis Topic 4: Basic Chromatography

Chemistry 311: Instrumental Analysis Topic 4: Basic Chromatography. Chemistry 311: Instrumental Analysis Topic 4: Basic Chromatography Introductory Theory, Basic Components, Qualitative and Quantitative applications. HPLC, GC, Ion Chromatography. Rouessac Ch. 1-7 Winter 2011 Page 1 Chromatography: The separation of analytes based on differences

More information

User Manual. IonPac NS2 Columns Revision 02 October For Research Use Only. Not for use in diagnostic procedures.

User Manual. IonPac NS2 Columns Revision 02 October For Research Use Only. Not for use in diagnostic procedures. User Manual IonPac NS2 Columns 065501 Revision 02 October 2015 For Research Use Only. Not for use in diagnostic procedures. Product Manual for IonPac NS2 Columns IonPac NS2, 5µm, 4x250mm Analytical Column

More information

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications Chapter 27: Gas Chromatography Principles Instrumentation Detectors Columns and Stationary Phases Applications GC-MS Schematic Interface less critical for capillary columns Several types of Mass Specs

More information

IonPac SCS 1 IonPac SCG 1

IonPac SCS 1 IonPac SCG 1 IonPac SCS 1 IonPac SCG 1 Document No. 031948-05 IonPac SCG1 and SCS 1 Page 1 of 33 PRODUCT MANUAL for the IONPAC SCG 1 Guard Column 2 x 50 mm, P/N 061522 4 x 50 mm, P/N 061523 IONPAC SCS 1 Analytical

More information

ANALYTICAL METHOD DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Air sampling and analysis

ANALYTICAL METHOD DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Air sampling and analysis DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Replaces: Dated: Author: Date: AM-No.: New New Nils Arne Jentoft 18.06.2014 0 CHANGES This procedure is new. 1 SCOPE This document describes

More information

Chromatographic Methods: Basics, Advanced HPLC Methods

Chromatographic Methods: Basics, Advanced HPLC Methods Chromatographic Methods: Basics, Advanced HPLC Methods Hendrik Küpper, Advanced Course on Bioinorganic Chemistry & Biophysics of Plants, summer semester 2018 Chromatography: Basics Chromatography a physical

More information

LIQUID CHROMATOGRAPHY

LIQUID CHROMATOGRAPHY LIQUID CHROMATOGRAPHY RECENT TECHNIQUES HPLC High Performance Liquid Chromatography RRLC Rapid Resolution Liquid Chromatography UPLC Ultra Performance Liquid Chromatography UHPLC Ultra High Pressure Liquid

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrary.com Der Pharmacia Sinica, 2015, 6(5):75-80 ISSN: 0976-8688 CODEN (USA): PSHIBD Laboratory practice of high performance liquid chromatography (HPLC) Ufere

More information

The Effect of Contact Angle and Wetting on Performance in Solid Phase Extraction

The Effect of Contact Angle and Wetting on Performance in Solid Phase Extraction The Effect of Contact Angle and Wetting on Performance in Solid Phase Extraction Edouard S. P. Bouvier, Randy E. Meirowitz and Uwe D. Neue Waters Corporation, 34 Maple Street, Milford, MA 01757 USA Presented

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS CHAPTER 25: Opener Aa CHAPTER 25: Opener Ab CHAPTER 25: Opener B 25-1 Ion-Exchange

More information

RESOLUTION OENO 33/2004 DETERMINATION OF SHIKIMIC ACID IN WINE BY HPLC AND UV-DETECTION

RESOLUTION OENO 33/2004 DETERMINATION OF SHIKIMIC ACID IN WINE BY HPLC AND UV-DETECTION DETERMINATION OF SHIKIMIC ACID IN WINE BY HPLC AND UV-DETECTION The GENERAL ASSEMBLY, Considering Article paragraph iv of the agreement establishing the International organisation of vine and wine Upon

More information

Lab.2. Thin layer chromatography

Lab.2. Thin layer chromatography Key words: Separation techniques, compounds and their physicochemical properties (molecular volume/size, polarity, molecular interactions), mobile phase, stationary phase, liquid chromatography, thin layer

More information

Agilent s New Weak Anion Exchange (WAX) Solid Phase Extraction Cartridges: SampliQ WAX

Agilent s New Weak Anion Exchange (WAX) Solid Phase Extraction Cartridges: SampliQ WAX Agilent s New Weak Anion Exchange (WAX) Solid Phase Extraction Cartridges: SampliQ WAX Technical Note Agilent s SampliQ WAX provides Applications for strongly acidic, acidic and neutral compounds Excellent

More information

HPLC Winter Webinars Part 2: Sample Preparation for HPLC

HPLC Winter Webinars Part 2: Sample Preparation for HPLC HPLC Winter Webinars Part 2: Sample Preparation for HPLC Jon Bardsley, Application Chemist Thermo Fisher Scientific, Runcorn/UK The world leader in serving science What am I Going to Talk About? What do

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Chromatographic Separations KAM021 2016 Dr. A. Jesorka, 6112, aldo@chalmers.se Introduction to Chromatographic Separations Theory of Separations -Chromatography Terms Summary: Chromatography

More information

Introduction to Pharmaceutical Chemical Analysis

Introduction to Pharmaceutical Chemical Analysis Introduction to Pharmaceutical Chemical Analysis Hansen, Steen ISBN-13: 9780470661222 Table of Contents Preface xv 1 Introduction to Pharmaceutical Analysis 1 1.1 Applications and Definitions 1 1.2 The

More information