Abstract. 1 Introduction

Size: px
Start display at page:

Download "Abstract. 1 Introduction"

Transcription

1 Measuring and modelling of aerosol chemical composition for the SANA intensive field campaigns W. Seidl, G. Brunnemann, L. Kins, D. Kohler, E. Kohler, K. ReiBwig, K. RouB, Th. Seller, R. Dugli Meteorologisches Institut der Universitdt Munchen, Theresienstr. 37, D Munchen, Germany Abstract During the intensive field campaign SANA 2 in August/September 1991, measurements of aerosol particles and related gases have been performed. The accumulation mode particles showed a diurnal cycle of their chemical composition due to the diurnal cycles of the temperature and relative humidity. Nitrate appeared in the accumulation mode particles in dependence on the temperature. During morning sampling periods with easterly winds, potassium has been detected in accumulation mode particles which was supposed to be externally mixed with sulfate. Model calculations showed different ph-values and different mass fractions of volatile compounds in the potassium and the sulfate particles. 1 Introduction The interaction of aerosol particles with related trace gases has already been mentioned by Wigand [1] in Aerosol particles which contain hygroscopic compounds take up water with increasing relative humidity. In addition to water, also trace gases like ammonia and nitric acid can condense on aerosol particles in dependence on their concentrations and on the temperature and relative humidity. These gases can react chemically with the particulate material. Experiments e.g. by Harrison & Pio [2] and Willison et al. [3] have shown a loss of chloride due to reactions of sea salt particles with HzSC^ and HNOg or their precursor gases. The equilibrium of gas phase nitric acid and ammonia with particles consisting of sulfate, nitrate and ammonia has been described e.g. by Saxena et al. [4]. However, experiments (e.g. Sheridan et al. [5]) have shown the presence of a so called "external mixture", i.e. particles of the same size have different chemical compositions. A model has been developed, which permits the computation of equilibria be-

2 54 Observation and Simulation of Air Pollution tween the gas phase and particles of different sizes and chemical compositions. During the SANA 2 experiment, the gas phase species NHg and HNOg as well as the temperature and relative humidity have been measured in addition to the aerosol particles (Seidl et al. [6]). So the measurements offered a good data base for the initialization of model calculations, which demonstrate the interaction of externally mixed particles with the gas phase. 2 Results offieldmeasurements The aerosol particles have been sampled by a 5 stage impactor. The aerodynamic cut-off radii of the stages 1 to 5 were 0.02 jim, 0.07 pm, jam, 0.86 (im and 3.0 jim. The gases NHg and HNOg have been sampled on filter packs. In general 3 impactor samples and 7 to 8 filter samples have been taken per day. The black carbon concentration has been measured by an aethalometer. The detailed sampling and analytical procedures are described by Brunnemann et al. [7]. In the following, mainly the results concerning sulfate, nitrate and potassium will be presented. The discussion will be limited to the accumulation mode particles, which can be assumed to be in equilibrium with the gas phase considering the timescale of the four hours impactor sampling period. Wexler & Seinfeld [8] have shown, that particles smaller than 1 urn radius can get into equilibrium within this time. In general, 1 um radius can be regarded as an upper limit for the accumulation mode. The actual radius of the accumulation mode particles depends on the relative humidity, which will be shown in section 2.2 for sulfate and potassium particles. 2.1 Gas - particle phase distribution of nitrate In the accumulation mode particles, sulfate, nitrate and ammonium were the major ions with regard to the equivalent concentrations. Consequently, nitrate could only be present as ammonium nitrate. This is a rather unstable compound which dissociates with increasing temperature (Stelson & Seinfeld [9]). This dissociation was observed during the field measurements (Seidl et al. [6]). During the morning sampling period, nitrate was mainly observed in the accumulation mode particles. During the noon and evening sampling periods, the accumulation mode particles contained only little nitrate, and in the gas phase the HNOg concentration was higher than in the morning (Fig. 1). This gas - particle phase distribution was found to be a function of the temperature. Below approximately 15 C, most nitrate was in the particulate phase, and above approximately 20 C, most nitrate was in the gas phase. Then, the particles in the accumulation mode consisted mainly of ammonium and sulfate (and small mass concentrations of other ions, which have been close to the detection limit). This gas - particle phase distribution of nitrate is not a specific quantity like the dissociation constant of ammonium nitrate but depends also on the total mass concentration of nitrate and on the relative humidity. It also requires a total mass concentration of ammonium which is sufficient to form ammonium nitrate. So the observed rela-

3 Observation and Simulation of Air Pollution 55 Melpitz S04 N03- t = 10.2 C NH4+ f X Cl- HN03-.1 ppb No+ rzl^j 0.02 urn 0.07 urn urn 0.86 um 3.0 um 10.5 urn aerodynamic radius D E Melpitz S N NH4+ -- Cl Na+... K t = 27.0 C f % HN03-.9 ppb NH3 = 3.8 ppb 0.02 um 0.07 um um 0.88 um 3.0 um 10.5 um aerodynamic radius K> Melpitz S N NH4+ -- Cl No+... K t = 23.3 C f X HN03-.8 ppb NH3-2.2 ppb 0.02 um 0.07 um um 0.88 um 3.0 um 10.5 um aerodynamic radius Figure 1: Concentrations of ions for the three impactor sampling periods on Sep. 3, 1991 in Melpitz. The concentrations of the respective ions are drawn from the base line, no stacked bars are used in this figure.

4 56 Observation and Simulation of Air Pollution O 2 CO K (ug/m3) Figure 2: Concentration of black carbon (BC) as function of the potassium (K) concentration. The black carbon concentration has been determined by an aethalometer. tion is only representative of the conditions at Melpitz during the SANA 2 campaign. It has to be tested, if a similar relation can also be observed at other measurement sites. 2.2 Potassium particles Potassium has been observed in the accumulation mode particles mainly during morning sampling periods with easterly winds. The origin of the potassium is not clear. However, as it was observed when an inversion was close to the ground, the source can be expected to be close to the measurement site. Fig. 2 shows the black carbon (BC) concentration as function of the potassium concentration. A correlation between both quantities can be seen. The correlation coefficient is So, there seems to be a common origin and some combustion process can be assumed as a probable source. One likely source is residential heating by brown coal in the village of Melpitz, which was located east of the measurement site. Another possible source is biomass burning. Christensen & Livbjerg [10] have shown, that potassium chloride particles are emitted during straw burning which is a common agricultural practice in Germany in the autumn. These particles will undergo chemical reactions in the atmosphere and chloride can be substituted by nitrate or sulfate. The size distribution of potassium was different to the size distribution of sulfate but similar to that of nitrate (Fig. 1). Therefore, one can assume the sulfate and potassium particles to be externally mixed. As initial guess for the model simulations, potassium is taken as potassium nitrate due to the similar size distri-

5 Observation and Simulation of Air Pollution 57! "o *' V.: s i: K ** relative humidity (%) '* i relative humidity (%) Figure 3: Aerodynamic mass mean radii of sulfate and potassium as function of the relative humidity. bution of nitrate (see below). The assumption of an external mixture is also supported, when one looks at the mass mean radii of sulfate and potassium as function of the relative humidity (Fig 3). The mass mean radius of sulfate shows an increase with the relative humidity, beginning at humidities above 60%. The mass mean radius of potassium shows nearly no increase with the relative humidity except for cases above 90%. 3 Model Simulations An aerosol model has been developed, which describes individual particle classes within a closed box. Particles in a class have fixed masses of non-volatile compounds (e.g. sulfate or metal ions) and a fixed number concentration. The particles take up volatile compounds, e.g. nitrate, in thermodynamic equilibrium with the gas phase. So every particle class can have a different chemical composition. For humid particles with a liquid phase, the activity coefficients of the ions are calculated by the Pitzer theory (Clegg & Brimblecombe [11]). The deliquescence relative humidity is calculated as a function of the temperature for 25 electrolytes. For the other electrolytes, fixed deliquescence relative humidities are taken. No supersaturated salt solutions are modeled. To consider the curvature of the droplet surfaces, the Kelvin correction is applied on the partial pressures of the trace gases for humid particles. The surface tension is calculated in dependence on the concentration of the electrolyte solution.

6 58 Observation and Simulation of Air Pollution Case 1: T: 300 K, r.h.: 34%, NH,: 12.3 ppb, HNO,: 2.0 ppb, HCI: 0.85 ppb class 1 class 2 class 3 class 4 class 5 class 6 r,=0.04 pm r,=0.14 ftm r,«0.92 ftm r =0.04 ftm r ^m r ftm r.»0.04 ftm r =0.04 ftm r^-0.13 fan r =0.13 ftm r.=0.92 fun r ftm Case 2: T: 282 K. r.h.: 83%, NH,: 9.53 ppb, HNO,: 1.8E-2 ppb, HCI: 9.0 E-4 ppb class 1 class 2 class 3 class 4 class 5 class 6 r,-0.04 ftm r fun r,-1.09 fun r,-0.04/im r «0.07 /im r pm r»1.75 /*m r /im w-b.be-18 g W-4.4E-14 g W-1.7E-11 g ph-3.33 ph-3.32 ph-3.32 r ^m r =0.13 pm r,-0.92 fun r =0.92 fun Case 3: T: 282 K. r.h.: 97%. NH,: 9.73 ppb, HNO,: 1.1 E-3 ppb. HCI: 2.3 E-5 ppb class 1 class 2 class 3 class 4 class 5 class 6 r,-0.04 ftm r,-0.14jwn r.-1.04/im r ftm r ftm r 0.09 ftm r ftm r ftm r pm r ftm r ftm W-3.1E-15 g W-1.9E-13 g W-8.2E-11 g W-4.0E-15 g W-2.6E-13 g W-1.1E-10 g ph=3.43 ph=3.59 ph-3.65 ph=4.40 ph=4.31 ph=4.29 so/- cr NH/ Figure 4: Results of model calculations for three cases similar to conditions on Sep. 3, Case 1 represents noon conditions, Case 2 morning conditions. In Case 3, the relative humidity is set to 97%. r^ = radius, r = radius, w = mass of liquid water of the particles.

7 Observation and Simulation of Air Pollution 59 This model has been applied to analyze the SANA measurement data. Model calculations have been done with initial values derived from measurements on Sep. 3, Three size classes of ammonium sulfate (S) and potassium nitrate (K) particles, respectively, are used to initialize the model. Three cases with different temperatures and relative humidities are considered: Case 1 represents the noon measurement period and Case 2 the morning measurement period. For Case 3, the same temperature as for Case 2 is taken, but the relative humidity was set to 97% (Fig. 4). The total (gas and particle phase) mass concentrations of NHg, HNOg and HC1 are the same for all cases. For the noon conditions (Case 1), all particles are in a state. For the morning conditions (Case 2), the S particles are above their deliquescence point. Then these particles are electrolyte solution droplets. The gases NHg, HNOg and HC1 dissolve in these droplets. The K particles are still in the state. At a temperature of 10 C, potassium nitrate particles dissolve at approximately 96% relative humidity (depending on their size due to the Kelvin correction). Therefore, the relative humidity was set to 97% in Case 3. Otherwise, the same initial conditions as in Case 2 were taken. At 97% relative humidity, also the K particles are dissolved. The model results show higher ph-values for the K than for the S particles. Consequently, higher mass fractions of nitrate and chloride are found in the K particles. Ammonium, which dissolves preferentially in particles with low phvalues, has higher mass fractions in the S particles. Also as solution droplets in equilibrium with the gas phase, the sulfate particles consist mainly of ammonium sulfate and the potassium particles mainly of potassium nitrate. Other ions have only minor massfractions.the higher ph-values of the potassium particles may have an effect on chemical reactions in the liquid phase. 4 Conclusions The measurements demonstrated the gas - particle phase interactions for the accumulation mode particles. The SANA measurements were especially suitable for this purpose, because an almost complete set of information on trace gases and meteorological conditions was obtained in addition to the aerosol measurements. The model calculations supported the supposition of an external mixture of ammonium sulfate and potassium nitrate particles. Different deliquescence humidities and ph-values of these two particles types have an effect on the chemical reactions in the particles which possibly affect also the gas phase atmospheric chemistry. Acknowledgments: The authors thank Dr. S. L. Clegg for supplying the Pitzer model. The project was funded by the German Minister for Research and Technology within the joint research program SANA (Projects ANA C 1.3, Contract No. P12/103624).

8 60 Observation and Simulation of Air Pollution References 1. Wigand, A. Uber die Natur der Kondensationskerne in der Atmosphare, insbesondere iiber die Kernwirkung von Staub und Rauch, Meteorologische Zeitschrift, 1913,30, Harrison, R. M. & Pio, C. A. Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin, Atmos. Environ., 1983,17, Willison, M. J., Clarke, A. G. & Zeki, E. M. Chloride Aerosols in Central Northern England, Atmos. Environ., 1989,23, Saxena, P., Hudischewskyi, A. B., Seigneur, C. & Seinfeld, J. H. A comparative study of equilibrium approaches to the chemical characterization of secondary aero sols, A tmos. Environ., 1986,20, Sheridan, P. J., Schnell, R. C., Kahl, J. D., Boatman, J. F. & Garvey, D. M. Microanalysis of the aerosol collected over south-central New Mexico during the ALIVE field experiment, May-December 1989, Atmos. Environ., 1993, 27A, Seidl, W., Brunnemann,G., Kins, L., Kohler, E., ReuBwig, K. & Dlugi, R. On the ionic composition of aerosol particles and related gas phase species at two sites during the SANA 2 campaign, Meteorologische Zeitschrift, N.F., submitted for publication 7. Brunnemann, G., Kins, L. & Dlugi, R. Physical and chemical characterization of the atmospheric aerosol: An overview of the measurements during the SANA 2 campaign at Melpitz, Meteorologische Zeitschrift, N. F., submitted for publication 8. Wexler, A. S. & Seinfeld, J. H. The distribution of ammonium salts among a size and composition dispersed aerosol, Atmos. Environ., 1990, 24A, Stelson, A. W. & Seinfeld, J. H. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant, Atmos. Environ., 1982, 16, Christensen, K. A. & Livbjerg, H. Formation of submicron particles from the combustion of straw, in Abstracts (ed R. C. Flagan), pp. 397, 398, Abstracts of the Fourth International Aerosol Conference, Los Angeles, California, American Association for Aerosol Research, Cincinnati, OH, Clegg, S. L. & Brimblecombe, P. Solubility of volatile electrolytes in multicomponent solutions with atmospheric applications, Chapter 5, Chemical Modelling in Aqueous Systems II, eds R. L. Basset & D. Melchior, pp 58-73, American Chemical Society, Washington, DC, 1990

Continuous measurement of airborne particles and gases

Continuous measurement of airborne particles and gases Continuous measurement of airborne particles and gases Jeff Collett and Taehyoung Lee Atmospheric Science Department Colorado State University Funding: USDA/AES and NPS Outline Why measure particles and

More information

A cloud microphysics model including trace gas condensation and sulfate chemistry

A cloud microphysics model including trace gas condensation and sulfate chemistry BOREAL ENVIRONMENT RESEARCH 8: 43 424 ISSN 239-695 Helsinki December 23 23 A cloud microphysics model including trace gas condensation and sulfate chemistry Harri Kokkola ), Sami Romakkaniemi ), Markku

More information

Lab 4 Major Anions In Atmospheric Aerosol Particles

Lab 4 Major Anions In Atmospheric Aerosol Particles Georgia Institute of Technology School of Earth and Atmospheric Sciences EAS 4641 Spring 2008 Lab 4 Major Anions In Atmospheric Aerosol Particles Purpose of Lab 4: This experiment will involve determining

More information

Aerosol Basics: Definitions, size distributions, structure

Aerosol Basics: Definitions, size distributions, structure Aerosol Basics: Definitions, size distributions, structure Antti Lauri NetFAM Summer School Zelenogorsk, 9 July 2008 Department of Physics, Division of Atmospheric Sciences and Geophysics, University of

More information

Influence of Organic-Containing Aerosols on Marine Boundary Layer Processes

Influence of Organic-Containing Aerosols on Marine Boundary Layer Processes DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Influence of Organic-Containing Aerosols on Marine Boundary Layer Processes John H. Seinfeld California Institute of Technology,

More information

Comparing Modal and Sectional Approaches in Modeling Particulate Matter in Northern California

Comparing Modal and Sectional Approaches in Modeling Particulate Matter in Northern California Comparing Modal and Sectional Approaches in Modeling Particulate Matter in Northern California K. Max Zhang* [1], Jinyou Liang [2], Anthony S. Wexler [1], and Ajith Kaduwela [1,2] 1. University of California,

More information

Chemical Change. Section 9.1. Chapter 9. Electrolytes and Solution Conductivity. Goal 1. Electrical Conductivity

Chemical Change. Section 9.1. Chapter 9. Electrolytes and Solution Conductivity. Goal 1. Electrical Conductivity Chapter 9 Chemical Change Section 9.1 Electrolytes and Solution Conductivity Goal 1 Electrical Conductivity Distinguish among strong electrolytes, weak electrolytes, and nonelectrolytes. Strong Electrolyte:

More information

Parameterization of the nitric acid effect on CCN activation

Parameterization of the nitric acid effect on CCN activation Atmos. Chem. Phys., 5, 879 885, 25 SRef-ID: 168-7324/acp/25-5-879 European Geosciences Union Atmospheric Chemistry and Physics Parameterization of the nitric acid effect on CCN activation S. Romakkaniemi,

More information

Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006

Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006 Atmos. Chem. Phys., 9, 2141 2156, 2009 Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry and Physics Thermodynamic characterization of Mexico

More information

Response to Referee 2

Response to Referee 2 Response to Referee 2 S. Metzger et al. 10 August 2018 We thank the referee for the manuscript review. Please find our pointby-point reply below. Accordingly, the revised MS will include clarifications.

More information

2.444 A FEASIBILTY STUDY OF THE MARGA TOOL AS AN AEROSOL ANALYZER

2.444 A FEASIBILTY STUDY OF THE MARGA TOOL AS AN AEROSOL ANALYZER 2.444 A FEASIBILTY STUDY OF THE MARGA TOOL AS AN AEROSOL ANALYZER Rufus Ty White ac, Dr. Vernon Morris abc Department of Chemistry a, Program in Atmospheric Science b, NOAA Center for Atmospheric Science

More information

APPLICATION OF KOHLER THEORY: MODELING CLOUD CONDENSATION NUCLEI ACTIVITY

APPLICATION OF KOHLER THEORY: MODELING CLOUD CONDENSATION NUCLEI ACTIVITY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 APPLICATION OF KOHLER THEORY: MODELING CLOUD CONDENSATION NUCLEI ACTIVITY Gavin Cornwell, Katherine Nadler, Alex Nguyen, and Steven Schill Department of

More information

P = x i. P i. = y i. Aerosol and Aqueous Chemistry. Raoult s Law. Raoult s Law vs. Henry s Law. or C i. = HC i. = k H

P = x i. P i. = y i. Aerosol and Aqueous Chemistry. Raoult s Law. Raoult s Law vs. Henry s Law. or C i. = HC i. = k H The Great Smog Aerosol and Aqueous Chemistry Equilibrium Partitioning Oxidation and Oxidants Other Surface-driven Fogs in London were a common occurrence, but the events that began on the 5th of December

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006 Permalink https://escholarship.org/uc/item/47k2f2dk

More information

(a) Complete Figure 9 by placing one tick in each row to show whether the salt is soluble or insoluble. salt soluble insoluble.

(a) Complete Figure 9 by placing one tick in each row to show whether the salt is soluble or insoluble. salt soluble insoluble. 1 The method used to prepare a salt depends on its solubility in water. (a) Complete Figure 9 by placing one tick in each row to show whether the salt is soluble or insoluble. ammonium chloride salt soluble

More information

Gas/aerosol partitioning: 1. A computationally efficient model

Gas/aerosol partitioning: 1. A computationally efficient model JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D16, 4312, 10.1029/2001JD001102, 2002 Gas/aerosol partitioning: 1. A computationally efficient model Swen Metzger, 1 Frank Dentener, 2 Spyros Pandis, 3 and

More information

Change of aerosol and precipitation in the mid troposphere over central Japan caused by Miyake volcano effluents

Change of aerosol and precipitation in the mid troposphere over central Japan caused by Miyake volcano effluents Change of aerosol and precipitation in the mid troposphere over central Japan caused by Miyake volcano effluents H. Ueda 1, M. Kajino 1 & H. Satsumabayashi 2 1 Disaster Prevention Research Institute, Kyoto

More information

Bases = Anti-Acids. The process is called neutralization (neither acidic nor basic) O H 3 2H 2

Bases = Anti-Acids. The process is called neutralization (neither acidic nor basic) O H 3 2H 2 Bases = Anti-Acids Example: HCl(aq) + H 2 (l) à H 3 + (aq) + Cl - (aq) NaH(aq) à Na + (aq) + H - (aq) H 3 + (aq) + H - (aq) à 2H 2 (l) Net: HCl(aq) + NaH(aq) à Na + (aq) + Cl - (aq) + H 2 (l) The process

More information

The Atmospheric Chemistry and Physics of Ammonia

The Atmospheric Chemistry and Physics of Ammonia The Atmospheric Chemistry and Physics of Ammonia Russell Dickerson Dept. Meteorology, The University of Maryland Presented at the National Atmospheric Deposition Program Ammonia Workshop October 23, 2003

More information

ATOC 3500/CHEM 3152 Week 9, March 8, 2016

ATOC 3500/CHEM 3152 Week 9, March 8, 2016 ATOC 3500/CHEM 3152 Week 9, March 8, 2016 Hand back Midterm Exams (average = 84) Interaction of atmospheric constituents with light Haze and Visibility Aerosol formation processes (more detail) Haze and

More information

3) Big Bend s Aerosol and Extinction Budgets during BRAVO

3) Big Bend s Aerosol and Extinction Budgets during BRAVO 3) Big Bend s Aerosol and Extinction Budgets during BRAVO 3.1 Introduction The primary goal of the BRAVO study was to apportion the major aerosol species to their emission sources, with the secondary goals

More information

Slides partly by Antti Lauri and Hannele Korhonen. Liquid or solid particles suspended in a carrier gas Described by their

Slides partly by Antti Lauri and Hannele Korhonen. Liquid or solid particles suspended in a carrier gas Described by their Atmospheric Aerosols Slides partly by Antti Lauri and Hannele Korhonen Aerosol particles Liquid or solid particles suspended in a carrier gas Described by their Size Concentration - Number - Surface -

More information

The Effect of Future Climate Change on Aerosols: Biogenic SOA and Inorganics

The Effect of Future Climate Change on Aerosols: Biogenic SOA and Inorganics The Effect of Future Climate Change on Aerosols: Biogenic SOA and Inorganics GCAP Phase 2 Science Team Meeting October 12, 2007 Havala O. T. Pye 1, Hong Liao 2, John Seinfeld 1, Shiliang Wu 3, Loretta

More information

Lecture 7: quick review

Lecture 7: quick review Lecture 7: quick review We discussed the meaning of the critical r* and ΔG*: since it s unstable, if we can form a drop with r > r*, the system will keep going falling down the energy curve, trying to

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Copyright 2004 by houghton Mifflin Company. Reactions in Aqueous Solutions Chapter 7 All rights reserved. 1 7.1 Predicting if a Rxn Will Occur When chemicals are mixed and one of these driving forces can

More information

Determination of Water Activity in Ammonium Sulfate and Sulfuric Acid Mixtures Using Levitated Single Particles

Determination of Water Activity in Ammonium Sulfate and Sulfuric Acid Mixtures Using Levitated Single Particles Aerosol Science and Technology ISSN: 0278-6826 (Print) 1521-7388 (Online) Journal homepage: http://www.tandfonline.com/loi/uast20 Determination of Water Activity in Ammonium Sulfate and Sulfuric Acid Mixtures

More information

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun DOUBLE DISPLACEMENT REACTIONS Double your pleasure, double your fun Industrial processes produce unwanted by-products. Dissolved toxic metal ions-copper, mercury, and cadmium-are common leftovers in the

More information

NET IONIC EQUATIONS. Electrolyte Behavior

NET IONIC EQUATIONS. Electrolyte Behavior NET IONIC EQUATIONS Net ionic equations are useful in that they show only those chemical species directly participating in a chemical reaction. They are thus simpler than the overall equation, and help

More information

Name Date. 9. Which substance shows the least change in solubility (grams of solute) from 0 C to 100 C?

Name Date. 9. Which substance shows the least change in solubility (grams of solute) from 0 C to 100 C? Solubility Curve Practice Problems Directions: Use the graph to answer the questions below. Assume you will be using 100g of water unless otherwise stated. 1. How many grams of potassium chloride (KCl)

More information

Ch 7 Chemical Reactions Study Guide Accelerated Chemistry SCANTRON

Ch 7 Chemical Reactions Study Guide Accelerated Chemistry SCANTRON Ch 7 Chemical Reactions Study Guide Accelerated Chemistry SCANTRON Name /80 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Correct the False statments by changing the

More information

1 A. That the reaction is endothermic when proceeding in the left to right direction as written.

1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 1 Q. If Δ r H is positive, what can you say about the reaction? 1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 2 Q If Δ r H is negative, what can you say

More information

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air Precipitation Processes METR 2011 Introduction In order to grow things on earth, they need water. The way that the earth naturally irrigates is through snowfall and rainfall. Therefore, it is important

More information

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten The basic question is what makes the existence of a droplet thermodynamically preferable to the existence only of water vapor. We have already derived an expression for the saturation vapor pressure over

More information

SOLUTIONS. Solutions - page

SOLUTIONS. Solutions - page SOLUTIONS For gases in a liquid, as the temperature goes up the solubility goes. For gases in a liquid, as the pressure goes up the solubility goes. Example: What is the molarity of a solution with 2.0

More information

Chapter 12 & 13 Test Review. Bond, Ionic Bond

Chapter 12 & 13 Test Review. Bond, Ionic Bond Chapter 12 & 13 Test Review A solid solute dissolved in a solid solvent is an Alloy What is happening in a solution at equilibrium? The Ionic rate of Bond dissolving is equal to the rate of crystallization.

More information

Properties of Compounds

Properties of Compounds Chapter 6. Properties of Compounds Comparing properties of elements and compounds Compounds are formed when elements combine together in fixed proportions. The compound formed will often have properties

More information

D. Ammonia can accept a proton. (Total 1 mark)

D. Ammonia can accept a proton. (Total 1 mark) 1. Which statement explains why ammonia can act as a Lewis base? A. Ammonia can donate a lone pair of electrons. B. Ammonia can accept a lone pair of electrons. C. Ammonia can donate a proton. D. Ammonia

More information

Aerosol Dynamics. Antti Lauri NetFAM Summer School Zelenogorsk, 9 July 2008

Aerosol Dynamics. Antti Lauri NetFAM Summer School Zelenogorsk, 9 July 2008 Aerosol Dynamics Antti Lauri NetFAM Summer School Zelenogorsk, 9 July 2008 Department of Physics, Division of Atmospheric Sciences and Geophysics, University of Helsinki Aerosol Dynamics: What? A way to

More information

Lab 6 Major Anions In Atmospheric Aerosol Particles

Lab 6 Major Anions In Atmospheric Aerosol Particles Georgia Institute of Technology School of Earth and Atmospheric Sciences EAS 4641 Spring 2007 Lab 6 Major Anions In Atmospheric Aerosol Particles Purpose of Lab 6: This experiment will involve determining

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

substance, an element cannot be broken down any further. Each element has a different number of protons and unique set of properties.

substance, an element cannot be broken down any further. Each element has a different number of protons and unique set of properties. Element - The purest form of a substance, an element cannot be broken down any further. Each element has a different number of protons and unique set of properties. Physical Properties - Descriptions unique

More information

Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle

Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle Source: Sulfate aerosols are produced by chemical reactions in the atmosphere from gaseous precursors (with the exception

More information

Equation Writing for a Neutralization Reaction

Equation Writing for a Neutralization Reaction Equation Writing for a Neutralization Reaction An Acid-Base reaction is also called a Neutralization reaction because the acid (generates H + or H 3 O + ) and base (generates OH ) properties of the reactants

More information

2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? 2.2 WHEN IS A SYSTEM AT EQUILIBRIUM? 2.3 THE EQUILIBRIUM CONSTANT

2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? 2.2 WHEN IS A SYSTEM AT EQUILIBRIUM? 2.3 THE EQUILIBRIUM CONSTANT 2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? In general terms equilibrium implies a situation that is unchanging or steady. This is generally achieved through a balance of opposing forces. In chemistry equilibrium

More information

ACIDS AND BASES 4/19/15. 1) Given the reactions:

ACIDS AND BASES 4/19/15. 1) Given the reactions: NAME: ACIDS AND BASES 4/19/15 ROW PD 1) Given the reactions: (A) NH3(g) + H2O(l) NH4 + + OH (B) HCl + H2O (l) H3O + + Cl As shown in equations (A) and (B) and based on the Bronsted theory, water is an

More information

The solvent is the dissolving agent -- i.e., the most abundant component of the solution

The solvent is the dissolving agent -- i.e., the most abundant component of the solution SOLUTIONS Definitions A solution is a system in which one or more substances are homogeneously mixed or dissolved in another substance homogeneous mixture -- uniform appearance -- similar properties throughout

More information

NET IONIC REACTIONS in AQUEOUS SOLUTIONS AB + CD AD + CB

NET IONIC REACTIONS in AQUEOUS SOLUTIONS AB + CD AD + CB NET IONIC REACTIONS in AQUEOUS SOLUTIONS Double replacements are among the most common of the simple chemical reactions. Consider the hypothetical reaction: AB + CD AD + CB where AB exists as A + and B

More information

VOCALS REx: Aerosol Physics at the Ocean Surface On the NOAA RV Ronald H. Brown October, November 2008

VOCALS REx: Aerosol Physics at the Ocean Surface On the NOAA RV Ronald H. Brown October, November 2008 VOCALS REx: Aerosol Physics at the Ocean Surface On the NOAA RV Ronald H. Brown October, November 8 Catherine Hoyle, NOAA PMEL Derek Coffman, NOAA PMEL Tim Bates, NOAA PMEL Trish Quinn, NOAA PMEL Lelia

More information

Net Ionic Equations. Making Sense of Chemical Reactions

Net Ionic Equations. Making Sense of Chemical Reactions Making Sense of Chemical Reactions Now that you have mastered writing balanced chemical equations it is time to take a deeper look at what is really taking place chemically in each reaction. There are

More information

Chapter 8 Acids, Bases, and Acid-Base Reactions. An Introduction to Chemistry by Mark Bishop

Chapter 8 Acids, Bases, and Acid-Base Reactions. An Introduction to Chemistry by Mark Bishop Chapter 8 Acids, Bases, and Acid-Base Reactions An Introduction to Chemistry by Mark Bishop Chapter Map Arrhenius Base Definitions A base is a substance that generates OH when added to water. A basic solution

More information

Section 6.2A Intermolecular Attractions

Section 6.2A Intermolecular Attractions Section 6.2A Intermolecular Attractions As we know, molecules are held together by covalent bonds, but there are also attractive forces BETWEEN individual molecules (rather than within). These are called

More information

Water & Solutions Chapter 17 & 18 Assignment & Problem Set

Water & Solutions Chapter 17 & 18 Assignment & Problem Set Water & Solutions Chapter 17 & 18 Assignment & Problem Set Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Water & Solutions 2 Vocabulary (know

More information

Types of Reactions: Reactions

Types of Reactions: Reactions 1 Reactions On the A.P. Test there will be one question (question #4) that will say: Give the formulas to show the reactants and the products for the following chemical reactions. Each occurs in aqueous

More information

Chemistry 192 Problem Set 7 Spring, 2018

Chemistry 192 Problem Set 7 Spring, 2018 Chemistry 192 Problem Set 7 Spring, 2018 1. Use Table D2 to calculate the standard enthalpy change for the combustion of liquid benzene (C 6 H 6 ) in pure oxygen gas to produce gas phase carbon dioxide

More information

H 2 O WHAT PROPERTIES OF WATER MAKE IT ESSENTIAL TO LIFE OF EARTH? Good solvent High Surface tension Low vapor pressure High boiling point

H 2 O WHAT PROPERTIES OF WATER MAKE IT ESSENTIAL TO LIFE OF EARTH? Good solvent High Surface tension Low vapor pressure High boiling point Unit 9: Solutions H 2 O WHAT PROPERTIES OF WATER MAKE IT ESSENTIAL TO LIFE OF EARTH? Good solvent High Surface tension Low vapor pressure High boiling point Water is a polar molecule. It experiences hydrogen

More information

Aerosols and climate. Rob Wood, Atmospheric Sciences

Aerosols and climate. Rob Wood, Atmospheric Sciences Aerosols and climate Rob Wood, Atmospheric Sciences What are aerosols? Solid or liquid particles suspended in air Sizes range from a few nm to a few thousand nm Huge range of masses Where do aerosols come

More information

CHEMISTRY 2b SUMMARY

CHEMISTRY 2b SUMMARY CHEMISTRY 2b SUMMARY Items in ITALLICS are HIGHER TIER NLY C2.4.1 RATES F REACTIN Speeding up, or slowing down, chemical reactions is important in everyday life and in industry The rate of a chemical reaction

More information

Chapter 16. Solubility and Complex Ion Equilibria

Chapter 16. Solubility and Complex Ion Equilibria Chapter 16 Solubility and Complex Ion Equilibria Section 16.1 Solubility Equilibria and the Solubility Product Solubility Equilibria Solubility product (K sp ) equilibrium constant; has only one value

More information

The fertiliser industry

The fertiliser industry The fertiliser industry The industrial production of fertilisers For more information on this section refer to the Chemical Industries Resource Pack. The industrial production of fertilisers involves several

More information

ICSE Board Class IX Chemistry Paper 3 Solution

ICSE Board Class IX Chemistry Paper 3 Solution ICSE Board Class IX Chemistry Paper 3 Solution SECTION I Answer 1 i. The number of electrons, that atom can lose, gain or share during a chemical reaction is called its valency. ii. Solute: A solute is

More information

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent Quick Review - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent Water H 2 O Is water an ionic or a covalent compound? Covalent,

More information

1. When the following reaction is balanced using smallest whole-number integers, what is the coefficient for oxygen?

1. When the following reaction is balanced using smallest whole-number integers, what is the coefficient for oxygen? Chemistry 11 Fall 2009 Examination #2 ANSWER KEY For the first portion of this exam, select the best answer choice for the questions below and mark the answers on your scantron. Then answer the free response

More information

For Practice 4.1 Magnesium hydroxide, the active ingredient in milk of magnesia, neutralizes stomach acid, primarily HCl, according to the reaction:

For Practice 4.1 Magnesium hydroxide, the active ingredient in milk of magnesia, neutralizes stomach acid, primarily HCl, according to the reaction: Stoichiometry For Practice 4.1 Magnesium hydroxide, the active ingredient in milk of magnesia, neutralizes stomach acid, primarily HCl, according to the reaction: What mass of HCl, in grams, is neutralized

More information

Page 1. Exam 2 Review Summer A 2002 MULTIPLE CHOICE. 1. Consider the following reaction: CaCO (s) + HCl(aq) CaCl (aq) + CO (g) + H O(l)

Page 1. Exam 2 Review Summer A 2002 MULTIPLE CHOICE. 1. Consider the following reaction: CaCO (s) + HCl(aq) CaCl (aq) + CO (g) + H O(l) Page 1 MULTIPLE CHOICE 1. Consider the following reaction: CaCO (s) + HCl(aq) CaCl (aq) + CO (g) + H O(l) The coefficient of HCl(aq) in the balanced reaction is. a) 1 b) 2 c) 3 d) 4 e) 0 2. Given the information

More information

Variability in ammonium nitrate formation and nitric acid depletion with altitude and location over California

Variability in ammonium nitrate formation and nitric acid depletion with altitude and location over California JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D17, 4557, doi:10.1029/2003jd003616, 2003 Variability in ammonium nitrate formation and nitric acid depletion with altitude and location over California J.

More information

Test Booklet. Subject: SC, Grade: HS CST High School Chemistry Part 2. Student name:

Test Booklet. Subject: SC, Grade: HS CST High School Chemistry Part 2. Student name: Test Booklet Subject: SC, Grade: HS Student name: Author: California District: California Released Tests Printed: Thursday January 16, 2014 1 Theoretically, when an ideal gas in a closed container cools,

More information

Year 10 Chemistry TRIPLE Learning Cycle 4 Overview Can a knowledge of atomic structure allow us to predict how elements will react with eachother?

Year 10 Chemistry TRIPLE Learning Cycle 4 Overview Can a knowledge of atomic structure allow us to predict how elements will react with eachother? Learning Cycle Overview: Year 10 Chemistry TRIPLE Learning Cycle 4 Overview Can a knowledge of atomic structure allow us to predict how elements will react with eachother? Commented [T1]: Good overarching

More information

A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, di!erences, and their likely causes

A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, di!erences, and their likely causes Atmospheric Environment 34 (2000) 117}137 A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, di!erences, and their likely causes Yang Zhang*, Christian Seigneur,

More information

Phase Transformations of the Ternary System (NH 4 ) 2 SO 4 - H 2 SO 4 -H 2 O and the Implications for Cirrus Cloud Formation

Phase Transformations of the Ternary System (NH 4 ) 2 SO 4 - H 2 SO 4 -H 2 O and the Implications for Cirrus Cloud Formation Phase Transformations of the Ternary System (NH 4 ) 2 SO 4 - H 2 SO 4 -H 2 O and the Implications for Cirrus Cloud Formation Scot T. Martin Department of Environmental Sciences and Engineering, The University

More information

AP* Chapter 16. Solubility and Complex Ion Equilibria

AP* Chapter 16. Solubility and Complex Ion Equilibria AP* Chapter 16 Solubility and Complex Ion Equilibria AP Learning Objectives LO 6.1 The student is able to, given a set of experimental observations regarding physical, chemical, biological, or environmental

More information

An assessment of the ability of three-dimensional air quality models with current thermodynamic equilibrium models to predict aerosol NO 3

An assessment of the ability of three-dimensional air quality models with current thermodynamic equilibrium models to predict aerosol NO 3 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jd004718, 2005 An assessment of the ability of three-dimensional air quality models with current thermodynamic equilibrium models to predict

More information

CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS

CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS 17 CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS WHAT IS A CHEMICAL EQUATION? A chemical equation is a way of representing a chemical reaction in symbolic form. For example, when hydrochloric acid

More information

flame test acidified silver nitrate solution added

flame test acidified silver nitrate solution added 1 The results of two tests on solid X are shown. test aqueous sodium hydroxide added acidified silver nitrate added observation green precipitate formed yellow precipitate formed What is X? copper(ii)

More information

Properties of Solutions

Properties of Solutions Properties of Solutions The States of Matter The state a substance is in at a particular temperature and pressure depends on two antagonistic entities: The kinetic energy of the particles The strength

More information

Measurement of atmospheric aerosols during monsoon and winter seasons at Roorkee, India

Measurement of atmospheric aerosols during monsoon and winter seasons at Roorkee, India Indian Journal of Radio & Space Physics Vol. 39, August 2010, pp. 208-217 Measurement of atmospheric aerosols during monsoon and winter seasons at Roorkee, India Deepti Saxena 1, R Yadav 1, Adarsh Kumar

More information

] [ SO 4 ] let sol y x x = x x be x = x 2 if sol y = 7.94 x 10 4 mol/l = 6.3 x 10 7

] [ SO 4 ] let sol y x x = x x be x = x 2 if sol y = 7.94 x 10 4 mol/l = 6.3 x 10 7 SCH 4U: UNIT 4 LESSONS Heterogeneous EQUILIBRIUM (Chap 17-pg 759) 1. Rationale: The principles of Chemical Equilibrium developed earlier (in Unit 3) also apply to weakly soluble salts. In this unit we

More information

Unit 15 Solutions and Molarity

Unit 15 Solutions and Molarity Unit 15 s and Molarity INTRODUCTION In addition to chemical equations chemists and chemistry students encounter homogeneous mixtures or solutions quite frequently. s are the practical means to deliver

More information

Definition of Acid. HCl + H 2 O H 3 O + + Cl

Definition of Acid. HCl + H 2 O H 3 O + + Cl Acids Definition of Acid Acids are substances that contain H + ions that ionize when dissolved in water. Arrhenius acid: a compound that increases the concentration of H + ions that are present when added

More information

model to data comparison over Europe for year 2001

model to data comparison over Europe for year 2001 Model Model by model to for year 2001 Model to CEREA (joint laboratory ENPC & EdF) Friday 15 September 2006 Model Air quality modeling (PAM project, PRIMEQUAL-PREDIT). Transboundary pollution, transfer

More information

1. How many grams of gas are present in 1.50 L of hydrogen peroxide, H 2 O 2 (g), at STP?

1. How many grams of gas are present in 1.50 L of hydrogen peroxide, H 2 O 2 (g), at STP? Chemistry 11 Fall 2010 Examination #2 ANSWER KEY For the first portion of this exam, select the best answer choice for the questions below and mark the answers on your scantron. Then answer the free response

More information

Types of Reactions: Reactions

Types of Reactions: Reactions 1 Reactions On the A.P. Test there will be one question (question #4) that will say: Give the formulas to show the reactants and the products for the following chemical reactions. Each occurs in aqueous

More information

Solutions Solubility. Chapter 14

Solutions Solubility. Chapter 14 Copyright 2004 by Houghton Mifflin Company. Solutions Chapter 14 All rights reserved. 1 Solutions Solutions are homogeneous mixtures Solvent substance present in the largest amount Solute is the dissolved

More information

Growth of upper tropospheric aerosols due to uptake of HNO3

Growth of upper tropospheric aerosols due to uptake of HNO3 Growth of upper tropospheric aerosols due to uptake of HNO3 S. Romakkaniemi, H. Kokkola, A. Petzold, A. Laaksonen To cite this version: S. Romakkaniemi, H. Kokkola, A. Petzold, A. Laaksonen. Growth of

More information

Gas Laws. Bonding. Solutions M= moles solute Mass %= mass solute x 100. Acids and Bases. Thermochemistry q = mc T

Gas Laws. Bonding. Solutions M= moles solute Mass %= mass solute x 100. Acids and Bases. Thermochemistry q = mc T Name Period Teacher Practice Test: OTHS Academic Chemistry Spring Semester 2017 The exam will have 100 multiple choice questions (1 point each) Formula sheet (see below) and Periodic table will be provided

More information

Who is polluting the Columbia River Gorge?

Who is polluting the Columbia River Gorge? Who is polluting the Columbia River Gorge? Final report to the Yakima Nation Prepared by: Dan Jaffe, Ph.D Northwest Air Quality, Inc. 7746 Ravenna Avenue NE Seattle WA 98115 NW_airquality@hotmail.com December

More information

Incremental Aerosol Reactivity: Application to Aromatic and Biogenic Hydrocarbons

Incremental Aerosol Reactivity: Application to Aromatic and Biogenic Hydrocarbons Environ. Sci. Technol. 1999, 33, 2403-2408 Incremental Aerosol Reactivity: Application to Aromatic and Biogenic Hydrocarbons ROBERT J. GRIFFI, DAVID R. COCKER III, AD JOH H. SEIFELD*, Department of Chemical

More information

A New Atmospheric Aerosol Phase Equilibrium Model

A New Atmospheric Aerosol Phase Equilibrium Model 76 Chapter 4 A New Atmospheric Aerosol Phase Equilibrium Model (UHAERO): Organic Systems * * This chapter is reproduced by permission from A new atmospheric aerosol phase equilibrium model (UHAERO): organic

More information

A-level CHEMISTRY (7405/1)

A-level CHEMISTRY (7405/1) SPECIMEN MATERIAL A-level CHEMISTRY (7405/1) Paper 1: Inorganic and Physical Chemistry Specimen 2015 Session Time allowed: 2 hours Materials For this paper you must have: the Data Booklet, provided as

More information

2. If a gas is released in a reaction (ex: Hydrogen gas bubbles off), is it written as a reactant or a product?

2. If a gas is released in a reaction (ex: Hydrogen gas bubbles off), is it written as a reactant or a product? PRE-AP CHEMISTRY SPRING FINAL EXAM REVIEW Name _ Period Exam Date 100% COMPLETION OF THIS REVIEW BY THE DAY OF YOUR FINAL EXAM WILL COUNT AS A 5 POINT BONUS ADDED TO YOUR FINAL EXAM SCORE. THERE WILL BE

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

THESIS AN INVESTIGATION OF AMMONIA AND INORGANIC PARTICULATE MATTER IN CALIFORNIA DURING THE CALNEX CAMPAIGN. Submitted by. Luke D.

THESIS AN INVESTIGATION OF AMMONIA AND INORGANIC PARTICULATE MATTER IN CALIFORNIA DURING THE CALNEX CAMPAIGN. Submitted by. Luke D. THESIS AN INVESTIGATION OF AMMONIA AND INORGANIC PARTICULATE MATTER IN CALIFORNIA DURING THE CALNEX CAMPAIGN Submitted by Luke D. Schiferl Department of Atmospheric Science In partial fulfillment of the

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium Sample Exercise 17.1 (p. 726) What is the ph of a 0.30 M solution of acetic acid? Be sure to use a RICE table, even though you may not need it. (2.63) What

More information

Water content of ambient aerosol during the Pittsburgh Air Quality Study

Water content of ambient aerosol during the Pittsburgh Air Quality Study JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jd004651, 2005 Water content of ambient aerosol during the Pittsburgh Air Quality Study Andrey Khlystov Department of Civil and Environmental

More information

Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: case study based on MINOS results

Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: case study based on MINOS results Atmos. Chem. Phys., 6, 2549 2567, 26 www.atmos-chem-phys.net/6/2549/26/ Author(s) 26. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Importance of mineral cations

More information

Exam 3: Mon, Nov. 7, 6:30 7:45 pm

Exam 3: Mon, Nov. 7, 6:30 7:45 pm Week 10: Lectures 28 30 Lecture 28: W 10/26 Lecture 29: F 10/28 Lecture 30: M 10/31 (Halloween Demo Show) Reading: BLB Ch 4.1, 4.5, 13.1 13.4 Homework: BLB 4: 3, 37, 72; Supp 4: 1 5; BLB 13: 7, 21, 23;

More information

Mixtures. Chapters 12/13: Solutions and Colligative Properties. Types of Solutions. Suspensions. The Tyndall Effect: Colloid

Mixtures. Chapters 12/13: Solutions and Colligative Properties. Types of Solutions. Suspensions. The Tyndall Effect: Colloid Mixtures Chapters 12/13: Solutions and Colligative Properties Solution - a homogeneous mixture of two or more substances in a single phase Soluble - capable of being dissolved Solutions - 2 Parts Solvent

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, D07S14, doi: /2004jd005038, 2005

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, D07S14, doi: /2004jd005038, 2005 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jd005038, 2005 Simulation of the thermodynamics and removal processes in the sulfate-ammonia-nitric acid system during winter: Implications for

More information

CHEM 200/202. Professor Jing Gu Office: EIS-210. All s are to be sent to:

CHEM 200/202. Professor Jing Gu Office: EIS-210. All  s are to be sent to: CHEM 200/202 Professor Jing Gu Office: EIS-210 All emails are to be sent to: chem200@mail.sdsu.edu My office hours will be held in GMCS-212 on Monday from 9 am to 11 am or by appointment. ANNOUNCEMENTS

More information

Chapter 6. Acids, Bases, and Acid-Base Reactions

Chapter 6. Acids, Bases, and Acid-Base Reactions Chapter 6 Acids, Bases, and Acid-Base Reactions Chapter Map Arrhenius Acid Definition Anacid is a substance that generates hydronium ions, H 3 O + (often described as H + ), when added to water. An acidic

More information

Wet deposition and estimates of aerosol wet scavenging coefficient for the location in north suburb of Nanjing

Wet deposition and estimates of aerosol wet scavenging coefficient for the location in north suburb of Nanjing Wet deposition and estimates of aerosol wet scavenging coefficient for the location in north suburb of Nanjing Yale-NUIST Center on Atmospheric Environment, NUIST School of Environmental Science and Engineering,

More information