Disciplinary Core Ideas

Size: px
Start display at page:

Download "Disciplinary Core Ideas"

Transcription

1 Independence Junior High 7th grade science Pacing Guide Trimester 1 Disciplinary Core Ideas UNIT: Matter and Its Interactions Standard number MS-PS1-2 Learning target Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred I can statements I can use reactions like burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride to analyze the following properties: density, melting point, boiling point, solubility, flammability, and odor. Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. MS-PS1-5. Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. I can use drawings and models to represent atoms to explain the law of conservation of matter. Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. The total number of each type of atom is conserved, and thus the mass does not change.

2 MS-PS1-6. Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes. Matter is conserved because atoms are conserved in physical and chemical processes. I can design, control the transfer of energy to the environment, and modifiy using factors such as type and concentration of a substance to create a device that releases or absorbs thermal energy. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride. Unit: Energy Standard number MS-PS3-2. MS-PS3-3 MS-PS3-4 Learning target Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. I can statements I can recognize relative amounts of potential energy, Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems. I can create a device that minimizes or maximizes thermal energy. Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup. I can compare final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, I can compare the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.

3 MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. I can use evidence in arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object. 1 Does Not Meet 2 Progressing 3 Meets expectations 4 Exceeds expectations The student demonstrates very little understanding of the grade level standard. The student does not show any significant ability to perform the skill. The student demonstrates incomplete understanding of the grade level standard. The student makes significant errors when performing the skill or has significant gaps in applying his or her knowledge. The student demonstrates complete understanding of the grade level standard with very few errors. The student demonstrates complete and detailed understanding of the grade level standard and exhibits some understanding of the next grade level standard. Science and Engineering Practices Practice: Asking Questions and Defining Problems Asking Questions & Defining Problems Asking Questions are In addition, questions Questions link to Formulates, refines, and evaluates

4 questions based on observations asked to seek additional information about/ clarify phenomena, models or results of an investigation or design solution. are asked to clarify evidence used in an argument and determine relationships between independent and dependent variables or relationships in models. unexpected results and seek to clarify information, understand relationships and refine models/explanations/ or problems. empirically testable questions and design problems using models and simulations. Ask questions that arise from careful observation of phenomena, or unexpected results, to clarify and/or seek additional information that arise from examining models or a theory, to clarify and/or seek additional information to determine relationships, including quantitative relationships, between independent and dependent variables. o to clarify and refine a model, an explanation, or an engineering problem. Asking questions that can be answered by an investigation Questions can be investigated and used to predict outcomes. Questions require evidence to answer and a hypothesis can be written from observation and scientific principles. Questions focus on whether an investigation is relevant, doable, and result in a hypothesis that is based on a model or theory. Evaluate a question to determine if it is testable and relevant. Ask questions that can be investigated within the scope of the school laboratory, research facilities, or field (e.g., outdoor environment) with available resources and, when appropriate, frame a hypothesis based on a model or theory. Challenging through questions Questions are asked about phenomena Questions are formed as a response to arguments and challenge arguments. Questions challenge data sets used to support arguments, data sets or designs. Ask and/or evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design. Defining a problem Prior knowledge is used to describe a The problem includes criteria for success A design problem can be defined and solved Define a design problem that involves the development of a

5 simple problem that can be solved through the development of an object, tool, process or system. and constraints on solutions. through the development of an object, tool, process or system that includes criteria and constraints backed by scientific knowledge and limitations. process or system with interacting components and criteria and constraints that may include social, technical, and/or environmental considerations. Practice: Developing and Using Models Developing and Using Models Developing model(s) to describe phenomena Model is incomplete, does not describe some mechanisms, and does not use key content vocabulary. Model is used to describe mechanisms and/or phenomena using key content vocabulary and several pieces of evidence. Model is used to describe unobservable mechanisms and/or phenomena using key content vocabulary and observable and unobservable evidence. Model explains a relationship within the system. Develop a complex model that allows for manipulation and testing of a proposed process or system. Design a test of a model to ascertain its reliability. Develop, revise, and/or use a model based on evidence to illustrate and/or predict the relationships between systems or between components of a system. Analysis of model(s) The model does not explain the benefits and limitations of the Model provides the benefits and limitations of one model. Model provides the benefits and limitations of two different models. Evaluate merits and limitations of two different models of the same proposed tool, process, mechanism or system in order to select or revise a model that

6 system. best fits the evidence or design criteria. Using models to predict phenomena Model does not predict phenomena. Model predicts phenomena. Model clearly defines the areas of the system that lends itself to predict phenomena. Develop and/or use multiple types of models to provide mechanistic accounts and/or predict phenomena, and move flexibly between model types based on merits and limitations. Using models to communicate ideas share with small group/class nor provide reasoning behind the model. Students are able to answer questions about the model when asked to present to the whole class. Student shares advantages and disadvantages of the model with the whole class and is able to answer questions about the model. Modeling for data Model demonstrates no use of data during the investigation. The model clearly demonstrates data used during investigation. The model clearly demonstrates data used during the investigation and suggests data missing or other pieces of data to make the model more comprehensive. Develop and/or use a model (including mathematical and computational) to generate data to support explanations, predict phenomena, analyze systems Practice: Planning and Carrying Out Investigations Planning and Carrying Out Investigations

7 Hypothesis Hypothesis is made based on limited knowledge of the purpose of the investigation. A hypothesis is logical and made based on knowledge of the purpose of the investigation. Hypothesis also includes reasoning for claims and predictions for changes in variables. Hypothesis includes models and explanations of scientific principles and theories. Make directional hypotheses that specify what happens to a dependent variable when an independent variable is manipulated. Procedure follow a step by step procedure. Student does not evaluate tools needed and number of trials needed. Create, with assistance, and follow a step by step procedure, including tools needed and number of trials needed. Create and follow a step by step procedure, including tools, number of trials and measurements needed. Consider environmental and social impacts. Manipulate variables and collect data about a complex model of a proposed process or system to identify failure points or improve performance relative to criteria for success or other variables. Select appropriate tools to collect, record, analyze, and evaluate data. Plan an investigation or test a design individually and collaboratively to produce data to serve as the basis for evidence as part of building and revising models, supporting explanations for phenomena, or testing solutions to problems. Plan and conduct an investigation or test a design solution in a safe and ethical manner including considerations of environmental, social, and personal impacts. Variables identify controls and constants or the number of trials Independent and dependent variables are identified as well as controls and constants. Independent and dependent variables are identified as well as controls and constants. Variables Consider possible confounding variables or effects and evaluate the investigation s design to ensure variables are controlled.

8 needed to conduct a fair investigation. are added or manipulated when appropriate. Data Data is not collected when following a procedure. Data is collected when a procedure is developed and is accurate or logical. Data can be used as evidence to support a claim. Limitations on data collection are considered. Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. Results The investigation results cannot be used to explain a model, tool or processes. The investigation results can be used to determine improvements to any part of the investigation. Results are used to back up a claim. The investigation results in a claim that includes data evidence and proven scientific theories and principles. The investigation results can be used to make predictions and explain other phenomena. The investigation results in a claim, can predict and explain phenomena, and serve as the basis for evidence to build and revise models, support explanations for phenomena, or test solutions to problems Practice: Analyzing and Interpreting Data Analyzing and Interpreting Data Using math to interpret data use data to make sense of phenomena. Uses data, statistics and probability to interpret data. Use statistics and probability to answer questions and solve problems. Use digital tools. Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible.

9 . Limitations of data analysis identify a source of error within an investigation. Identify a source of error within an investigation and identify improvements in tools or methods of gathering data. Identify multiple sources of error and explain how this may affect data results. Consider limitations of data analysis (e.g., measurement error, sample selection) when analyzing and interpreting data. Comparing data compare and contrast data from different groups to find similarities and differences in the results. Analyze data from an investigation to determine similarities and differences in the results. Analyze data from several investigations to determine similarities and differences in the results. Compare and contrast several types of data sets to determine consistency of measurement and observation. Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. Compare and contrast various types of data sets (e.g., self-generated, archival) to examine consistency of measurements and observations Evaluate the impact of new data on a working explanation and/or model of a proposed process or system. Analyze data to identify design features or characteristics of the components of a proposed process or system to optimize it relative to criteria for success.

Alignment Guide PHYSICAL GLENCOE

Alignment Guide PHYSICAL GLENCOE Alignment Guide PHYSICAL GLENCOE Glencoe Science Your Partner in Understanding and Implementing NGSS* Ease the Transition to Next Generation Science Standards Meeting NGSS Glencoe Science helps ease the

More information

*For additional details, see NGSS and full curriculum map

*For additional details, see NGSS and full curriculum map Unit 1 Structure and Properties of Matter Atomic and molecular interactions can explain the properties of matter that we see and feel. 1. What are the physical characteristics and chemical properties of

More information

All instruction should be three-dimensional. Page 1 of 12

All instruction should be three-dimensional. Page 1 of 12 High School Conceptual Progressions Model Course 1 - Bundle 2 Electrical Forces and Matter or Interactions Between Particles This is the second bundle of the High School Conceptual Progressions Model Course

More information

MS. Structure and Properties of Matter Students who demonstrate understanding can:

MS. Structure and Properties of Matter Students who demonstrate understanding can: PHYSICAL SCIENCE Correlation to Show Compatibility of Thrive Physical Science with the Next Generation Science Standards Performance Expectations and Disciplinary Core Ideas Thrive provides optimal flexibility

More information

B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade

B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade ORGANIZING THEME/TOPIC UNIT 1: ENERGY Definitions of Energy Potential and Kinetic Energy Conservation of Energy Energy Transfer MS-PS3-1:

More information

MS.PS1.A: Structure and Properties of Matter

MS.PS1.A: Structure and Properties of Matter MS.PS1.A: Structure and Properties of Matter Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS

More information

MS.PS3.A: Definitions of Energy. MS.PS3.A: Definitions of Energy. MS.PS3.A: Definitions of Energy. Disciplinary Core Idea. Disciplinary Core Idea

MS.PS3.A: Definitions of Energy. MS.PS3.A: Definitions of Energy. MS.PS3.A: Definitions of Energy. Disciplinary Core Idea. Disciplinary Core Idea MS.PS3.A: Definitions of Energy Temperature is not a measure of energy; the relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present.

More information

8th Grade Physical Science Curriculum ~Motion and Energy in Our Everyday World~ Throughout the year students will behave like scientists/engineers by:

8th Grade Physical Science Curriculum ~Motion and Energy in Our Everyday World~ Throughout the year students will behave like scientists/engineers by: 8th Grade Physical Science Curriculum ~Motion and Energy in Our Everyday World~ Overview: Unit 1: Fundamental Review (15 days) Unit 2: Structure and Properties of Matter (20 days) Unit 3: Chemical Reactions

More information

Page 1 of 13. Version 1 - published August 2016 View Creative Commons Attribution 3.0 Unported License at

Page 1 of 13. Version 1 - published August 2016 View Creative Commons Attribution 3.0 Unported License at High School Conceptual Progressions Model Course II Bundle 3 Matter and Energy in Organisms This is the third bundle of the High School Conceptual Progressions Model Course II. Each bundle has connections

More information

Mixtures and Solutions

Mixtures and Solutions Grade 5 Physical Science Module Mixtures and Solutions In a code such as 5.2.8.D.1, the 5 indicates the science standards, the 2 indicates the physical science standard within the set of science standards,

More information

Middle School Physical Science

Middle School Physical Science Middle School Physical Science Students in middle school continue to develop understanding of four core ideas in the physical sciences. The middle school performance expectations in the Physical Sciences

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 6, LESSON 1: WHAT IS A CHEMICAL REACTION? MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact

More information

Topic: Rubber Band Robot Build

Topic: Rubber Band Robot Build Topic: Rubber Band Robot Build Teachers: Laura Scarfogliero and Donna Gobin Genre: Science Grade Level: 8th grade Unit: Energy Estimated Duration: 1 2 single period Essential Question (Domain 1: Planning

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 2, LESSON 1 HEAT, TEMPERATURE, AND CONDUCTION MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state

More information

What is so different about NGSS? Chemistry PD. Joe Krajcik. CREATE for STEM. Michigan State University. Atlanta, GA

What is so different about NGSS? Chemistry PD. Joe Krajcik. CREATE for STEM. Michigan State University. Atlanta, GA What is so different about NGSS? Chemistry PD Joe Krajcik CREATE for STEM Michigan State University Atlanta, GA Institute for Collaborative Research in Education, Assessment, and Teaching Environments

More information

Madison Public Schools

Madison Public Schools Madison Public Schools 8th Grade Science Written by: Monica Brady Jason Erdreich Reviewed by: Diane Schulthes Director of Curriculum and Instruction Tom Paterson K-12 Supervisor of Science and Technology

More information

Middle School Physical Science

Middle School Physical Science Middle School Physical Science Students in middle school continue to develop understanding of four core ideas in the physical sciences. The middle school performance expectations in the Physical Sciences

More information

All instruction should be three-dimensional. Page 1 of 11

All instruction should be three-dimensional. Page 1 of 11 High School Modified Domains Model Course II - Physics Bundle 4: How Do We Use Energy to Communicate with Each Other? This is the fourth bundle of the High School Domains Model Course II - Physics. Each

More information

07-PS4-2. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

07-PS4-2. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. Boone County 7 th Grade Science Curriculum Map Unit 1: Electromagnetic and Mechanical Waves How can we describe a wave using both quantitative and qualitative ideas? How can we model the ways in which

More information

Topic: Data Interpretation of Acceleration

Topic: Data Interpretation of Acceleration Topic: Data Interpretation of Acceleration Teachers: Laura Scarfogliero and Donna Gobin Genre: Mathematics Grade Level: 8 9 th grade Unit: Linear and Nonlinear Estimated Duration: 1 2 single period Essential

More information

Energy and Forces in Motion

Energy and Forces in Motion Energy and Forces in Motion In this unit, students develop a conceptual understanding of Newton s 3 laws. Daily life provides students with many experiences through which they can see evidence of forces

More information

Next Generation Science Standards for California Public Schools, Kindergarten through Grade Twelve

Next Generation Science Standards for California Public Schools, Kindergarten through Grade Twelve California Department of Education Clarification statements were created by the writers of NGSS to supply examples or additional clarification to the performance expectations and assessment boundary statements.

More information

East Penn School District Curriculum and Instruction

East Penn School District Curriculum and Instruction East Penn School District Curriculum and Instruction Curriculum for: Science, Grade 7 Course(s): 7th Grade Science Grades: 7th Grade Department: Middle Level Science Periods per cycle: 6 periods Type of

More information

Investigation 4: Fizz Quiz

Investigation 4: Fizz Quiz 5 th Science Notebook Mixtures and Solutions Investigation 4 Investigation 4: Fizz Quiz Name: Big Question: How can matter be changed? Explain. 1 Alignment with New York State Science Standards & Performance

More information

CURRICULUM COURSE OUTLINE

CURRICULUM COURSE OUTLINE CURRICULUM COURSE OUTLINE Course Name(s): Grade(s): Department: Course Length: Pre-requisite: Introduction to Physics 9 th grade Science 1 semester Textbook/Key Resource: Conceptual Physical Science Explorations

More information

HS-PS1-1 Matter and Its Interactions. Disciplinary Core Ideas

HS-PS1-1 Matter and Its Interactions. Disciplinary Core Ideas Modeling in 9 12 builds on K 8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed

More information

GRADE 8 Physical Science

GRADE 8 Physical Science GRADE 8 Physical Science Students in eighth grade exhibit a wide range of learning styles and intellectual abilities. This diversity in development requires the implementation of a science curriculum that

More information

Middle School - Physical Science. SAS Standards. Grade Big Idea Essential Questions Concepts Competencies Vocabulary 2002 Standards

Middle School - Physical Science. SAS Standards. Grade Big Idea Essential Questions Concepts Competencies Vocabulary 2002 Standards Grade Big Idea Essential Questions Concepts Competencies Vocabulary 2002 Standards SAS Standards Assessment Anchor Eligible Content Pure substances are made from a single type of atom or compound; each

More information

Energy Changes in Chemical Reactions

Energy Changes in Chemical Reactions Energy Changes in Chemical Reactions Author(s): Ashley Colvin, Yunus Kinkhabwala, Prof. Song Lin, Jonathan Neff, & Greg Sauer Date Created: October 2016 Subject: Chemistry Grade Level: Middle School Standards:

More information

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas HS-PS1-1 HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. [Clarification Statement:

More information

Subject: Regents Chemistry Grade: 9-12 Unit #: 1 Title: Movie Special Effects

Subject: Regents Chemistry Grade: 9-12 Unit #: 1 Title: Movie Special Effects UNIT OVERVIEW S Chemistry Standards: 3.2l, 3.3a, 3.1cc, 3.1kk, 4.2a, 4.2b, 4.2c, 3.1s, 3.1w, 3.1v, 3.2c, 3.1k, 3.1ff, 3.1gg STAGE ONE: Identify Desired Results Long-Term Transfer Goal At the end of this

More information

MS. Structure and Properties of Matter

MS. Structure and Properties of Matter MIDDLE SCHOOL PHYSICAL SCIENCE Alignment with National Science Standards Use the chart below to find Science A-Z units that best support the Next Generation Science Standards* for Middle School Physical

More information

MS.ESS3.C: Human Impacts on Earth Systems

MS.ESS3.C: Human Impacts on Earth Systems Disciplinary Core Idea MS.ESS3.B: Natural Hazards Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods

More information

Connection to PASS Coming Soon

Connection to PASS Coming Soon Modeling in 9 12 builds on K 8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed

More information

BENCHMARK REPORT SCIENCE GRADE 6

BENCHMARK REPORT SCIENCE GRADE 6 8 6 MS-PS-. Develop models to describe the atomic composition of simple molecules and extended structures. 6-PS-.a Identify the atomic composition of simple molecules and extended molecular structures

More information

Collierville Schools 6 th Grade Science Scope and Sequence

Collierville Schools 6 th Grade Science Scope and Sequence Collierville Schools 6 th Grade Science Scope and Sequence Pacing s 1 2 Performance Expectation & (s) Lab Safety Scientific Methods Engineering Design Process 1 st Quarter & Practice Learning Targets &

More information

All instruction should be three-dimensional. Page 1 of 9

All instruction should be three-dimensional. Page 1 of 9 High School Conceptual Progressions Model Course II Bundle 5 Inheritance of Genetic Variation This is the fifth bundle of the High School Conceptual Progressions Model Course II. Each bundle has connections

More information

Grade Level 8 Teacher/Room: Sue Watters/ 143 Week of: September 22, 2014

Grade Level 8 Teacher/Room: Sue Watters/ 143 Week of: September 22, 2014 Grade Level 8 Teacher/Room: Sue Watters/ 143 Week of: September 22, 2014 Unit Vocabulary: kinetic theory of matter; temperature; degrees; thermometer; thermal energy; calorie; joule; specific heart; conduction;

More information

This is a DRAFT form of the document

This is a DRAFT form of the document This is a DRAFT form of the document Subject: CHEMISTRY Updated: August, 2017 Time: 4-4 ½ weeks Unit/Theme: Unit 1 Fundamentals, part 1 Goals/Big Ideas/Learning Focus/Essential Questions: Apply the Science

More information

MS.PS2.A: Forces and Motion. MS.PS2.A: Forces and Motion. MS.PS2.A: Forces and Motion. DCI: Motion and Stability: Forces and Interactions

MS.PS2.A: Forces and Motion. MS.PS2.A: Forces and Motion. MS.PS2.A: Forces and Motion. DCI: Motion and Stability: Forces and Interactions DCI: Motion and Stability: Forces and Interactions MS.PS2.A: Forces and Motion For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the

More information

Investigation 1: Separating Mixtures

Investigation 1: Separating Mixtures 5 th Science Notebook Mixtures and Solutions Investigation 1 Investigation 1: Separating Mixtures Name: Big Question: How are mixtures and solutions similar and different and how can they be separated?

More information

NGSS. Science Items Grade 5 Middle School High School. Table of Contents. Grade Middle School... 5 High School... 10

NGSS. Science Items Grade 5 Middle School High School. Table of Contents. Grade Middle School... 5 High School... 10 NGSS Science Items Grade 5 Middle School High School As printed in Translating the NGSS for Classroom Instruction (Bybee, 2013) Table of Contents Grade 5...1 Middle School.... 5 High School... 10 Grade

More information

STRUCTURE AND PROPERTIES OF MATTER PATTERNS

STRUCTURE AND PROPERTIES OF MATTER PATTERNS Performance Expectation and Louisiana Connectors HS-PS1-1 Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level

More information

Correlation to New Jersey Core Curriculum Content Standards for Science CPO Science Physical Science (Middle School)

Correlation to New Jersey Core Curriculum Content Standards for Science CPO Science Physical Science (Middle School) 5.1.08.A.1 5-8 Practices Understand Scientific Explanations Demonstrate understanding and use interrelationships among central scientific concepts to revise explanations and to consider alternative explanations.

More information

Lesson Plans. Year 9 Science Chapter 5. Chemical Reactions I. Assessment. Content Description (5 weeks)

Lesson Plans. Year 9 Science Chapter 5. Chemical Reactions I. Assessment. Content Description (5 weeks) Lesson Plans Year 9 Science Chapter 5 Chemical Reactions I Some general points about the following lesson plans: The lesson plans outline only one way of sequencing the learning material in this chapter

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 4, LESSON 1: PROTONS, NEUTRONS, AND ELECTRONS HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the

More information

Science Grade-Level Expectations: Grade 6 Color Coded

Science Grade-Level Expectations: Grade 6 Color Coded Science Grade-Level Expectations: Grade 6 Color Coded 1 Science as Inquiry The Abilities Necessary to Do Scientific Inquiry 1. Generate testable questions about objects, organisms, and events that can

More information

Amarillo ISD Science Curriculum

Amarillo ISD Science Curriculum Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

More information

Characteristic Properties of Matter

Characteristic Properties of Matter Grade 8 Science, Quarter 2, Unit 2.1 Characteristic Properties of Matter Overview Number of instructional days: 15 (1 day = 50 minutes) Content to be learned Measure the mass and volume of regular and

More information

SC101 Physical Science A

SC101 Physical Science A SC101 Physical Science A Science and Matter AZ 1.1.3 Formulate a testable hypothesis. Unit 1 Science and Matter AZ 1.1.4 Predict the outcome of an investigation based on prior evidence, probability, and/or

More information

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science Physics

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science Physics B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science Physics ORGANIZING THEME/TOPIC UNIT 1: KINEMATICS Mathematical Concepts Graphs and the interpretation thereof Algebraic manipulation of equations

More information

New York State P-12 Science Learning Standards

New York State P-12 Science Learning Standards MS. Structure and Properties of Matter MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures. [Clarification Statement: Emphasis is on developing models

More information

Highland Park Public School District

Highland Park Public School District 435 Mansfield Street Highland Park, New Jersey 08904 7 Version 1 Slated for Revision Final Review 6/30/2017 Mastery Skills Students will be able to understand, explain, and apply the following concepts

More information

Fairfield Public Schools Science Curriculum Physics

Fairfield Public Schools Science Curriculum Physics Fairfield Public Schools Science Curriculum Physics BOE Approved 5/8/2018 1 Physics: Description Physics is the study of natural phenomena and interactions and between matter and energy using mathematical

More information

Physical Science Science

Physical Science Science Course Description The Physical Standards stress an in depth understanding of the nature and structure of matter and the characteristic of energy. The standards place considerable emphasis on the technological

More information

Unit of Study 1: Comparing Forms of Energy 1 st MP

Unit of Study 1: Comparing Forms of Energy 1 st MP Neshaminy School District Grade 6 Science Teacher Curriculum Map Unit of Study 1: Comparing Forms of Energy 1 st MP Standards that appear in this unit: MS-PS3-1, MS-PS3-2, MS-PS3-5 Big Idea 3: How is energy

More information

GRADE EIGHT CURRICULUM. Unit 1: The Makeup and Interactions of Matter

GRADE EIGHT CURRICULUM. Unit 1: The Makeup and Interactions of Matter Chariho Regional School District - Science Curriculum September, 2016 GRADE EIGHT CURRICULUM Unit 1: The Makeup and Interactions of Matter OVERVIEW Summary The performance expectations for this unit help

More information

Quarter 1 Quarter 2 Quarter 3 Quarter 4. Unit 3 4 weeks

Quarter 1 Quarter 2 Quarter 3 Quarter 4. Unit 3 4 weeks Ph Physical Science 8 th Grade Physical Science Teaching & Learning Framework Quarter 1 Quarter 2 Quarter 3 Quarter 4 Unit 1 9 weeks Unit 2 9 weeks Unit 3 4 weeks Unit 4 5 weeks Unit 5 6 weeks Nature of

More information

Prentice Hall Chemistry (Wilbraham) 2008 Correlated to: (High School)

Prentice Hall Chemistry (Wilbraham) 2008 Correlated to: (High School) Standard 1: Scientific Investigation - Discover, invent, and investigate using the skills necessary to engage in the scientific process Topic - Scientific Inquiry Benchmark SC.CH.1.1 - Describe how a testable

More information

Dublin City Schools Science Graded Course of Study Physical Science

Dublin City Schools Science Graded Course of Study Physical Science I. Content Standard: Students demonstrate an understanding of the composition of physical systems and the concepts and principles that describe and predict physical interactions and events in the natural

More information

8th Grade Science Q1 Topic Proficiency Scale Domain: Physical Science Topic: Electrical and Magnetic Forces

8th Grade Science Q1 Topic Proficiency Scale Domain: Physical Science Topic: Electrical and Magnetic Forces 8th Grade Science Q1 Topic Proficiency Scale Domain: Physical Science 4.0 I know all of the Simple and Complex Learning Goals and my understanding goes beyond the grade level target. COMPLEX 3.0 I know

More information

Crosswalk of Georgia Performance Standards & Georgia Standards of Excellence GSE Implementation in Eighth Grade

Crosswalk of Georgia Performance Standards & Georgia Standards of Excellence GSE Implementation in Eighth Grade S8P1. Students will examine the scientific view of the nature of matter. a. Distinguish between atoms and molecules. b. Describe the difference between pure substances (elements and compounds) and mixtures.

More information

Greenwich Public Schools Science Curriculum Objectives. Grade 8

Greenwich Public Schools Science Curriculum Objectives. Grade 8 Greenwich Public Schools Science Curriculum Objectives Grade 8 1 Greenwich Science Objectives Grade 8 The Nature of Scientific Inquiry, Literacy and Numeracy The objectives listed under The Nature of Scientific

More information

Arkansas 5-8 Science Standards Topic Arrangement Grade 8

Arkansas 5-8 Science Standards Topic Arrangement Grade 8 A Correlation of Course 3, 2019 To the Arkansas 5-8 Science Standards Topic Arrangement Grade 8 A Correlation of, Introduction This document demonstrates how 2019 meets the Arkansas 5-8 Science Standards,

More information

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas HS-PS3-1 HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the

More information

Reviewing the Alignment of IPS with NGSS

Reviewing the Alignment of IPS with NGSS Reviewing the Alignment of IPS with NGSS Harold A. Pratt & Robert D. Stair Introductory Physical Science (IPS) was developed long before the release of the Next Generation Science Standards (NGSS); nevertheless,

More information

6.7 Design Your Own Experiment: Factors

6.7 Design Your Own Experiment: Factors 6.7 Design Your Own Experiment: Factors That Affect the Rate of Dissolving Page 158 PRESCRIBED LEARNING OUTCOMES measure substances and solutions according to ph, solubility, and concentration conduct

More information

Next Generation Science Standards

Next Generation Science Standards A Correlation of Prentice Hall Conceptual Integrated Science 2013 To the Next Generation Science Standards Physical Science Life Science Earth and Space Science Table of Contents HS-PS1 Matter and Its

More information

INTRODUCTION TO PERFORMANCE EXPECTATIONS

INTRODUCTION TO PERFORMANCE EXPECTATIONS Framework and NGSS 2018-2019-C Copyright The Regents of the University of California Berkeley Not for resale, redistribution, or use other than classroom use without further permission. www.fossweb.com

More information

5.PS1.A: Structure and Properties of Matter

5.PS1.A: Structure and Properties of Matter Disciplinary Core Idea 5.PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected

More information

Activity Sheet Transferring thermal energy by dissolving salts

Activity Sheet Transferring thermal energy by dissolving salts Student Name: Date: Activity Sheet Transferring thermal energy by dissolving salts 1) Define Thermal energy and temperature in the boxes below. Thermal Energy Temperature Practice Experiment: Aim: To practice

More information

Accelerated Physical Science-Integrated Year-at-a-Glance ARKANSAS STATE SCIENCE STANDARDS

Accelerated Physical Science-Integrated Year-at-a-Glance ARKANSAS STATE SCIENCE STANDARDS Accelerated Physical Science-Integrated Year-at-a-Glance ARKANSAS STATE SCIENCE STANDARDS FIRST SEMESTER SECOND SEMESTER Unit 1 Forces and Motion Unit 2 Energy Transformation Unit 3 Chemistry of Matter

More information

MATTER AND ITS INTERACTIONS

MATTER AND ITS INTERACTIONS 6-MS-PS1-1 MATTER AND ITS INTERACTIONS Develop models to describe the atomic composition of simple molecules and extended structures. Emphasis is on developing models of molecules that vary in complexity.

More information

MATTER AND ITS INTERACTIONS

MATTER AND ITS INTERACTIONS Louisiana MATTER AND ITS INTERACTIONS Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level and the composition

More information

CHAPTER 1: Chemistry, An Introduction

CHAPTER 1: Chemistry, An Introduction CHAPTER 1: Chemistry, An Introduction science: the study of nature to explain what one observes 1.4 THE SCIENTIFIC METHOD: How Chemists Think Applying the Scientific Method 1. Make an observation, and

More information

HIGH SCHOOL CHEMICAL REACTIONS

HIGH SCHOOL CHEMICAL REACTIONS 3D Science Performance Assessment Tasks HIGH SCHOOL CHEMICAL REACTIONS Task Title Where did the CO 2 Go? PEs Standards Bundle HS-PS1-5 Apply scientific principles and evidence to provide an explanation

More information

GRADES To Our Solar System and Back. Discover the STEM Behind Sustainable Rocketry DIGITAL EXPLORATION EDUCATOR GUIDE

GRADES To Our Solar System and Back. Discover the STEM Behind Sustainable Rocketry DIGITAL EXPLORATION EDUCATOR GUIDE GRADES 6 12 To Our Solar System and Back Discover the STEM Behind Sustainable Rocketry DIGITAL EXPLORATION EDUCATOR GUIDE Using this Digital Exploration, students will act as planetary scientists who have

More information

1 st Six Weeks 25 Days Focal Points Unit Unit 1 Introduction and Safety

1 st Six Weeks 25 Days Focal Points Unit Unit 1 Introduction and Safety 1 st Six Weeks 25 Days 1 Introduction and Safety The Process Standards Must Be Included in Each 10 days (1) Scientific processes. The student, for at least 40% of instructional time, conducts laboratory

More information

Science Curriculum. Fourth Grade

Science Curriculum. Fourth Grade Science Curriculum Fourth Grade The performance expectations in fourth grade help students formulate answers to questions such as: What are waves and what are some things they can do? How can water, ice,

More information

CHEM.A.1.1.1: CHEM.A.1.1.2: CHEM.A.1.1.3: CHEM.A.1.1.4: CHEM.A.1.2.1: CHEM.A.1.2.2:

CHEM.A.1.1.1: CHEM.A.1.1.2: CHEM.A.1.1.3: CHEM.A.1.1.4: CHEM.A.1.2.1: CHEM.A.1.2.2: Topic: Matter and Energy Duration: Traditional (50 minute periods) : 12-23 days (adjust to student needs using professional discretion) Block Schedule (90 minute periods) : 6-12 days (adjust to student

More information

An Introduction to The Next Generation Science Standards. NSTA National Conference San Antonio, Texas April 11-14, 2013

An Introduction to The Next Generation Science Standards. NSTA National Conference San Antonio, Texas April 11-14, 2013 An Introduction to The Next Generation Science Standards NSTA National Conference San Antonio, Texas April 11-14, 2013 Science and Engineering Practices in the NGSS Colorado Science Education Network Denver,

More information

2 nd. Science Notebook Insects & Plants. Investigation 2: Brassica Seeds. Name:

2 nd. Science Notebook Insects & Plants. Investigation 2: Brassica Seeds. Name: 2 nd Science Notebook Insects & Plants Investigation 2: Brassica Seeds Name: 1 Alignment with New York State Science Standards & Performance Indicators Standard 1: Mathematical Analysis M1.1 Use mathematical

More information

Colorado Academic Standards for Science

Colorado Academic Standards for Science A Correlation of Pearson Chemistry To the Physical Science Standards High School INTRODUCTION This document demonstrates how meets the Colorado Academic Standards, Physical Science Standards, grades 9-12.

More information

6.1 Properties of Matter Outline

6.1 Properties of Matter Outline 6.1 Properties of Matter Outline Enduring Understandings: Everything is made of matter. The structure of matter affects the properties and uses of materials. Essential Question: How can we classify different

More information

Chemistry: classifying chemical and physical changes in various materials/substances

Chemistry: classifying chemical and physical changes in various materials/substances Chemistry: classifying chemical and physical changes in various materials/substances Nikki Schilling, Ames, St. Paul Mn Based on original activity from Cool Chemistry Concoctions by Joe Rhatigan and Veronika

More information

2/22/2019 NEW UNIT! Chemical Interactions. Atomic Basics #19

2/22/2019 NEW UNIT! Chemical Interactions. Atomic Basics #19 NEW UNIT! Chemical Interactions Atomic Basics #19 1 Vocabulary: Matter: Anything that has mass and takes up space. Atom: the smallest particle of matter. Element: A pure substance made up of only one type

More information

EngrTEAMS 12/13/2017. Set up the first page of your EngrTEAMS notebook with a TABLE OF CONTENTS page.

EngrTEAMS 12/13/2017. Set up the first page of your EngrTEAMS notebook with a TABLE OF CONTENTS page. TABLE OF CONTENTS EngrTEAMS Ecuadorian Fishermen Set up the first page of your EngrTEAMS notebook with a TABLE OF CONTENTS page. VOCABULARY On the next to last page, write Vocabulary across the top of

More information

8 th Grade Integrated Science Curriculum

8 th Grade Integrated Science Curriculum Date Hobbs Science By being embedded throughout the curriculum, these Processing Skills will be addressed throughout the year. 8.1 Scientific Thinking and Practice 1. Use scientific methods to develop

More information

CURRICULUM UNIT MAP 1 ST QUARTER. COURSE TITLE: Physical Science GRADE: 9

CURRICULUM UNIT MAP 1 ST QUARTER. COURSE TITLE: Physical Science GRADE: 9 1 ST QUARTER Students complete a pre- test on science WEEKS 1-3 OBJECTIVES concepts Explain how science concepts apply to Students practice outlining skills over the main the real world ideas of physical

More information

Chemistry Review Unit

Chemistry Review Unit Correlation of Nelson Chemistry Alberta 20 30 to the Alberta Chemistry 20 30 Curriculum Chemistry Unit Specific Outcomes Knowledge 20 A1.1k recall principles for assigning names to ionic compounds Section

More information

Unit Title: Unit 1 Lenses, Microscopes and Microorganisms. Summary and Rationale. Recommended Pacing. State Standards

Unit Title: Unit 1 Lenses, Microscopes and Microorganisms. Summary and Rationale. Recommended Pacing. State Standards West Windsor-Plainsboro Regional School District Science Curriculum Grade 5 Page 1 of 10 Unit Title: Unit 1 Lenses, Microscopes and Microorganisms Content Area: Science Course & Grade Level: Science 5,

More information

Concepts Experimenting with Mixtures, chemical means. Lesson 6. SUBCONCEPT 5 Elements can be combined

Concepts Experimenting with Mixtures, chemical means. Lesson 6. SUBCONCEPT 5 Elements can be combined Quarter 1 PS21.A Structure and Properties of Matter Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to

More information

Introductory Physical Science & Force, Motion, and Energy Correlation with the New Hampshire Grade 10 Science Curriculum Frameworks

Introductory Physical Science & Force, Motion, and Energy Correlation with the New Hampshire Grade 10 Science Curriculum Frameworks Introductory Physical Science & Force, Motion, and Energy Correlation with the New Hampshire Grade 10 Science Curriculum Frameworks Curriculum Strand Curriculum Standard Proficiency Standard Science as

More information

Bay Area Scientists in Schools Presentation Plan

Bay Area Scientists in Schools Presentation Plan Bay Area Scientists in Schools Presentation Plan Lesson Name Presenter(s) Grade Level 3rd Melting, Freezing, and More!: Phase Transitions Steven Scroggins, Ailey Crow, Tom Holcombe, and Terence Choy California

More information

Science Geophysical Science Unit 7: Atomic Structure

Science Geophysical Science Unit 7: Atomic Structure Understandings Questions Knowledge Vocabulary Skills Causation: Nothing just happens. Everything is caused. Interrelatedness: Everything in the universe is connected to everything else in the universe.

More information

Quarter 1 Quarter 2 Quarter 3 Quarter 4. Unit 4 5 weeks

Quarter 1 Quarter 2 Quarter 3 Quarter 4. Unit 4 5 weeks Physical Science 8 th Grade Physical Science Teaching & Learning Framework Quarter 1 Quarter 2 Quarter 3 Quarter 4 Unit 1 9 weeks Nature of Matter S8P1. Obtain, evaluate, and the structure and properties

More information

Colorado Academic Standards for High School Science Physical Science

Colorado Academic Standards for High School Science Physical Science A Correlation of Pearson Physics To the Colorado Academic Standards , Introduction This document demonstrates the alignment between,, and the,. Correlation page references are Student and Teacher s Editions.

More information

Science Department-High School

Science Department-High School Science Department-High School Course Description SUBJECT: CHEMISTRY I GRADE LEVEL: 11 DURATION: 1 ACADEMIC YEAR of 250 min per Week NUMBER OF CREDITS: 1.25 BOOK : MODERN CHEMISTRY (HOLT) - To cover part

More information

Honors Physics. Grade 11 and 12. Hopatcong Board of Education

Honors Physics. Grade 11 and 12. Hopatcong Board of Education Honors Physics Grade 11 and 12 Hopatcong Board of Education August 2006 Honors Physics Revised August 2006 COURSE DESCRIPTION: (The course description sets the parameters, scope and sequence for the course:

More information

LESSON 1. Chemical Reactions. Fireflies, also called lightning bugs, are small insects that generate their own light using chemical reactions.

LESSON 1. Chemical Reactions. Fireflies, also called lightning bugs, are small insects that generate their own light using chemical reactions. LESSON 1 Chemical Reactions Fireflies, also called lightning bugs, are small insects that generate their own light using chemical reactions. By the end of this lesson... you will be able to explain ways

More information