Unit 12 Redox and Electrochemistry

Size: px
Start display at page:

Download "Unit 12 Redox and Electrochemistry"

Transcription

1 Unit 12 Redox and Electrochemistry Review of Terminology for Redox Reactions OXIDATION loss of electron(s) by a species; increase in oxidation number. REDUCTION gain of electron(s); decrease in oxidation number. OXIDIZING AGENT electron acceptor; species is reduced. REDUCING AGENT electron donor; species is oxidized. 1

2 Identifying Redox Reactions Double Replacement Reactions and Acid Base Reactions are NOT Redox reactions. Most other reactions are redox reactions. If the oxidation number of at least one element in the reaction is known to change then it is a redox reaction. Which of the following are Redox reactions? a. Fe(OH) 2 + H 2 S > FeS +2H 2 O b. SnS 2 + 2NH 4 HS > (NH 4 ) 2 SnS 3 + H 2 S c. H 2 S + Br 2 > S + 2HBr d. 3CuS + 8HNO 3 > 3Cu(NO 3 ) 2 + 3S + 2NO + 4H 2 O Balancing Equations Step 1- Write unbalanced complete ionic equation. Step 2: Write separate half reactions for oxidation and reduction. Write the number of electrons gained or lost in each process on the appropriate side. Step 3 - Balance atoms using H+ and H 2 O Steps 4 and 5 Multiply each half reaction to be sure the same number of electrons are gained or lost. Steps 6 and 7 - Add half reactions and add back in spectator ions 2

3 Tips on Balancing Equations Never add O 2, O atoms, or O 2- to balance oxygen. Never add H 2 or H atoms to balance hydrogen. Be sure to write the correct charges on all the ions. Check your work at the end to make sure mass and charge are balanced. PRACTICE! 3

4 Practice # 2 Using the half reaction method balance the following reaction: Aqueous sodium iodide plus aqueous sodium hypochlorite react to produce solid iodine and aqueous sodium chloride in basic solution. (OH) 4 2-4

5 CHEMICAL CHANGE --> ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron transfer occurs thru an external wire. Zn Zn 2+ ions wire electrons salt bridge Cu Cu 2+ ions This is accomplished in a. A group of such cells is called a. CHEMICAL CHANGE --> ELECTRIC CURRENT Named after the inventor (Alessandro Volta) are electrochemical cells that turn chemical energy into electrical energy via a spontaneous reaction. Examples include the batteries that power flashlights and calculators. Voltaic cells have a two in which either or occurs. The half-cells are connected by a salt bridge a tube containing a strong electrolyte, often potassium sulfate (K 2 SO 4 ). 5

6 Zn --> Zn e- Oxidation Anode Negative Zn wire electrons salt bridge <--Anions Cations--> Cu e- -->Cu Cu Reduction Cathode Positive Zn 2+ ions Cu 2+ ions Electrons travel allows anions and cations to move between electrode compartments. We can use that energy to do work if we make the electrons flow through a wire or an external circuit. We call such a setup a voltaic cell or battery. A Voltaic Cell 6

7 Reason for a Salt Bridge Once even one electron flows from the anode to the cathode in the external circuit, the charges in each beaker would not be balanced and the flow of electrons would stop (short out). Therefore, we use a salt bridge, usually a U-shaped tube that contains a salt solution, to keep the charges balanced. Cations (+) move toward the cathode. Anions (-) move toward the anode. Voltaic Cells As the electrons reach the cathode, cations in the cathode are attracted to the now negative cathode. The electrons are taken by the cation, and the neutral metal is deposited on the cathode. 7

8 Electromotive Force (emf) Water only spontaneously flows one way in a waterfall. Likewise, electrons only spontaneously flow one way in a redox reaction from higher to lower potential energy; from loser to taker or from anode to cathode. Quantitative Electrochemistry The reaction in an electrochemical cell is a result of a competition for electrons between the two half-cells. The of a voltaic cell is a measure of the cell s ability to produce an electric current. The tendency of a given half-reaction to occur as a reduction is called the. 8

9 Voltaic Cells - Current Direction Why do the electrons flow from Zn to Cu instead of the other way? Zn e -----> Zn Reduction Potential = Volts Cu e -----> Cu Reduction Potential = Volts Standard Hydrogen Electrode The reduction potential of other elements are referenced to a standard hydrogen electrode (SHE). By definition, the reduction potential for hydrogen is 0 V: 2 H + (aq, 1M) + 2 e H 2 (g, 1 atm) 9

10 Standard Reduction Potentials Reduction potentials for many electrodes have been measured and tabulated. Standard Electric Potential (E 0 ) Or Electromotive Force (EMF) The difference between the reduction potentials of the two halfcells is called the. (0r ). E 0 of a voltaic cell is a measure (in volts) of the cell s ability to produce an electric current. 10

11 How to Calculate a Cell Potential 1. Write the individual half-cell reactions with the correct number of electrons. Write them both as reduction half reactions. 2. For each reduction half-reaction look up the standard reduction potential in a table of standard reduction potentials. 3. For Galvanic cells the electron transfer between anode and cathode is spontaneous, so E cell has to be positive. The more positive reduction potential will denote the specie that is reduced. The other specie is oxidized and you will have to reverse the reaction and change the sign of the reduction potential. Example # 1 1. Determine the cell potential where iron(iii) reacts with nickel to become iron(ii) and nickel(ii). Fe 3+ (aq) + e > Fe 2+ (aq) Ni 2+ (aq) + 2e > Ni(s) E 0 Fe3+ = V E 0 Ni2+ = 0.25 V Reduction occurs in the Iron half-cell since it is the more positive reduction potential 11

12 Example # 2 Determine whether the following reaction is spontaneous: 2Ag(s) + Zn 2+ (aq) > 2Ag + (aq) + Zn(s) Dry Cells A dry cell is a voltaic cell in which the electrolyte is a paste. Both dry cells and alkaline batteries are single electrochemical cells that produce about 1.5 V 12

13 Half-Reactions in a Dry Cell Oxidation (anode reaction) Zn(s) > Zn 2+ (aq) + 2e Reduction (cathode reaction) 2MnO 2 (s) +2NH 4 + (aq) +2e --> Mn 2 O 3 (s) +2NH 3 (aq) +H 2 O(l) In a normal dry cell the graphite only serves as an electrical conductor and does not undergo reduction. Lead Storage Batteries A battery is a group of cells connected together. The half-reactions for a lead storage battery are as follows: 13

14 Lead Storage Batteries A 12-V car battery consists of six voltaic cells connected together. One cell of a 12-V lead storage battery is illustrated here: Lead Storage Batteries When using the battery the sulfuric acid is slowly used up and a lead(ii) sulfate coating builds up on the plates. This overall net reaction is spontaneous. The reverse reaction is not. However, when a car is running, the generator sends electricity to battery and the current supplies the energy necessary to run the reaction in reverse. In theory this reversible reaction should lead to a battery that is good forever. However, in practice some of the lead(ii) sulfate falls off the electrodes to the bottom of the cell and are lost from the recharging process. 14

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Learning goals and key skills: Identify oxidation, reduction, oxidizing agent, and reducing agent in a chemical equation Complete and balance redox equations using the method

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College Cottleville, MO Chapter 20 Problems

More information

Introduction to electrochemistry

Introduction to electrochemistry Introduction to electrochemistry Oxidation reduction reactions involve energy changes. Because these reactions involve electronic transfer, the net release or net absorption of energy can occur in the

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry Electricity from Chemistry Many chemical reactions involve the transfer of electrons between atoms or ions electron transfer

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Oxidation and Reduction by Christopher Hamaker 1 Oxidation Reduction Reactions Oxidation reduction reactions are

More information

Redox and Electrochemistry

Redox and Electrochemistry Redox and Electrochemistry 1 Electrochemistry in Action! 2 Rules for Assigning Oxidation Numbers The oxidation number of any uncombined element is 0. The oxidation number of a monatomic ion equals the

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

Chapter 19: Redox & Electrochemistry

Chapter 19: Redox & Electrochemistry Chapter 19: Redox & Electrochemistry 1. Oxidation-Reduction Reactions Definitions Oxidation - refers to the of electrons by a molecule, atom or ion Reduction - refers to the of electrons by an molecule,

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Section 17.1 Spontaneous Processes and Entropy Section 17.1 http://www.bozemanscience.com/ap-chemistry/ Spontaneous Processes and Entropy Section 17.1 Spontaneous Processes

More information

Chapter 18 Electrochemistry

Chapter 18 Electrochemistry Chapter 18 Electrochemistry Definition The study of the interchange of chemical and electrical energy in oxidation-reduction (redox) reactions This interchange can occur in both directions: 1. Conversion

More information

ELECTROCHEMICAL CELLS

ELECTROCHEMICAL CELLS ELECTROCHEMICAL CELLS Electrochemistry 1. Redox reactions involve the transfer of electrons from one reactant to another 2. Electric current is a flow of electrons in a circuit Many reduction-oxidation

More information

Electrochemistry Pulling the Plug on the Power Grid

Electrochemistry Pulling the Plug on the Power Grid Electrochemistry 18.1 Pulling the Plug on the Power Grid 18.3 Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions 18.4 Standard Electrode Potentials 18.7 Batteries:

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 OxidationReduction Reactions Oxidationreduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

ELECTROCHEMISTRY. Oxidation/Reduction

ELECTROCHEMISTRY. Oxidation/Reduction ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Examples: voltaic cells, batteries. NON-SPONTANEOUS

More information

Electrochemistry. Dr. A. R. Ramesh Assistant Professor of Chemistry Govt. Engineering College, Kozhikode

Electrochemistry. Dr. A. R. Ramesh Assistant Professor of Chemistry Govt. Engineering College, Kozhikode Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt. Engineering College, Kozhikode 1 Electro Chemistry : Chemistry of flow of electrons Redox Reaction The electrons flow through the

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0 Electrochemistry 1. Element M reacts with oxygen to from an oxide with the formula MO. When MO is dissolved in water, the resulting solution is basic. Element M is most likely: A. Na B. Ba C. S D. N E.

More information

Redox reactions & electrochemistry

Redox reactions & electrochemistry Redox reactions & electrochemistry Electrochemistry Electrical energy ; Chemical energy oxidation/reduction = redox reactions Electrochemistry Zn + Cu 2+ º Zn 2+ + Cu Oxidation-reduction reactions always

More information

Chemistry: The Central Science. Chapter 20: Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry Chemistry: The Central Science Chapter 20: Electrochemistry Redox reaction power batteries Electrochemistry is the study of the relationships between electricity and chemical reactions o It includes the

More information

Oxidation & Reduction (Redox) Notes

Oxidation & Reduction (Redox) Notes Oxidation & Reduction (Redox) Notes Chemical Activity (or Chemical Reactivity) is the measure of the reactivity of elements. If an element has high activity, then it means that the element is willing to

More information

(c) In marble, we assign calcium ion an oxidation number of +2, and oxygen a value of 2. We can determine the value of carbon in CaCO 3 as follows:

(c) In marble, we assign calcium ion an oxidation number of +2, and oxygen a value of 2. We can determine the value of carbon in CaCO 3 as follows: Example Exercise 17.1 Calculating Oxidation Numbers for Carbon Calculate the oxidation number for carbon in each of the following compounds: (a) diamond, C (b) dry ice, CO 2 (c) marble, CaCO 3 (d) baking

More information

Oxidation-Reduction (Redox)

Oxidation-Reduction (Redox) Oxidation-Reduction (Redox) Electrochemistry involves the study of the conversions between chemical and electrical energy. Voltaic (galvanic) cells use chemical reactions to produce an electric current.

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

Name AP CHEM / / Collected Essays Chapter 17

Name AP CHEM / / Collected Essays Chapter 17 Name AP CHEM / / Collected Essays Chapter 17 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the reaction

More information

Chapter 19: Electrochemistry

Chapter 19: Electrochemistry Chapter 19: Electrochemistry Overview of the Chapter review oxidation-reduction chemistry basics galvanic cells spontaneous chemical reaction generates a voltage set-up of galvanic cell & identification

More information

Oxidation-Reduction Reactions and Introduction to Electrochemistry

Oxidation-Reduction Reactions and Introduction to Electrochemistry ADVANCED PLACEMENT CHEMISTRY Oxidation-Reduction Reactions and Introduction to Electrochemistry Students will be able to: identify oxidation and reduction of chemical species; identify oxidants and reductants

More information

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 18 Electrochemistry Sherril Soman Grand Valley State University Harnessing the Power in Nature The goal of scientific research is to understand nature. Once we understand the

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction Oxidation-Reduction Oxidation numbers are charges on each atom. 1 2 Electrochemical Reactions Oxidation Numbers In electrochemical reactions, electrons are transferred from one species to another. In order

More information

OXIDATION-REDUCTIONS REACTIONS. Chapter 19 (From next years new book)

OXIDATION-REDUCTIONS REACTIONS. Chapter 19 (From next years new book) OXIDATION-REDUCTIONS REACTIONS Chapter 19 (From next years new book) ELECTROCHEMICAL REACTIONS: What are electrochemical reactions? Electrons are transferred from one species to another ACTIVATING PRIOR

More information

Electrochem: It s Got Potential!

Electrochem: It s Got Potential! Electrochem: It s Got Potential! Presented by: Denise DeMartino Westlake High School, Eanes ISD Pre-AP, AP, and Advanced Placement are registered trademarks of the College Board, which was not involved

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry Sample Exercise 20.1 (p. 845) The nickelcadmium (nicad) battery, a rechargeable dry cell used in batteryoperated devices, uses the following redox reaction to generate electricity:

More information

Reducing Agent = a substance which "gives" electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized.

Reducing Agent = a substance which gives electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized. Oxidation = a loss of electrons; an element which loses electrons is said to be oxidized. Reduction = a gain of electrons; an element which gains electrons is said to be reduced. Oxidizing Agent = a substance

More information

11.1. Galvanic Cells. The Galvanic Cell

11.1. Galvanic Cells. The Galvanic Cell Galvanic Cells 11.1 You know that redox reactions involve the transfer of electrons from one reactant to another. You may also recall that an electric current is a flow of electrons in a circuit. These

More information

Section A: Summary Notes

Section A: Summary Notes ELECTROCHEMICAL CELLS 25 AUGUST 2015 Section A: Summary Notes Important definitions: Oxidation: the loss of electrons by a substance during a chemical reaction Reduction: the gain of electrons by a substance

More information

9.1 Introduction to Oxidation and Reduction

9.1 Introduction to Oxidation and Reduction 9.1 Introduction to Oxidation and Reduction 9.1.1 - Define oxidation and reduction in terms of electron loss and gain Oxidation The loss of electrons from a substance. This may happen through the gain

More information

Chapter 17. Electrochemistry

Chapter 17. Electrochemistry Chapter 17 Electrochemistry Contents Galvanic cells Standard reduction potentials Cell potential, electrical work, and free energy Dependence of cell potential on concentration Batteries Corrosion Electrolysis

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. chem10b 20.4-3 In a voltaic cell electrons flow from the anode to the cathode. Value 2. chem10b 20.1-35 How many grams

More information

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells.

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells. Lecture 14 Thermodynamics of Galvanic (Voltaic) Cells. 51 52 Ballard PEM Fuel Cell. 53 Electrochemistry Alessandro Volta, 1745-1827, Italian scientist and inventor. Luigi Galvani, 1737-1798, Italian scientist

More information

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions).

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Electrochemistry Oxidation-Reduction: Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Half Reactions Method for Balancing Redox Equations: Acidic solutions: 1.

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis)

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis) CHAPTER 19: ELECTROCHEMISTRY Part One: Introduction A. Terminology. 1. Electrochemistry deals with: a. Chemical reactions produced by electric current. (electrolysis) b. Production of electric current

More information

Electrochemical Cells

Electrochemical Cells Electrochemical Cells There are two types: Galvanic and Electrolytic Galvanic Cell: a cell in which a is used to produce electrical energy, i.e., Chemical energy is transformed into Electrical energy.

More information

Chapter 17 Electrochemistry

Chapter 17 Electrochemistry Chapter 17 Electrochemistry 17.1 Galvanic Cells A. Oxidation-Reduction Reactions (Redox Rxns) 1. Oxidation = loss of electrons a. the substance oxidized is the reducing agent 2. Reduction = gain of electrons

More information

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 SCHOOL YEAR 2017-18 NAME: CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 TEST A Choose the best answer from the options that follow each question. 1. During oxidation, one or more electrons

More information

Page 1 Name: 2Al 3+ (aq) + 3Mg(s) 3Mg 2+ (aq) + 2Al(s) Fe 2 O 3 + 2Al Al 2 O 3 + 2Fe

Page 1 Name: 2Al 3+ (aq) + 3Mg(s) 3Mg 2+ (aq) + 2Al(s) Fe 2 O 3 + 2Al Al 2 O 3 + 2Fe 9666-1 - Page 1 Name: 1) What is the oxidation number of chromium in the chromate ion, CrO 2-4? A) +8 B) +3 C) +2 D) +6 2) What is the oxidation number of sulfur in Na 2 S 2 O 3? A) +6 B) +4 C) +2 D) -1

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Electrochemical Cell Consists of electrodes which dip into an electrolyte & in which a chem. rxn. uses or generates an electric current Voltaic (Galvanic) Cell Spont. rxn. -

More information

11.3. Electrolytic Cells. Electrolysis of Molten Salts. 524 MHR Unit 5 Electrochemistry

11.3. Electrolytic Cells. Electrolysis of Molten Salts. 524 MHR Unit 5 Electrochemistry 11.3 Electrolytic Cells Section Preview/ Specific Expectations In this section, you will identify the components of an electrolytic cell, and describe how they work describe electrolytic cells using oxidation

More information

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox Electrochemistry Applications of Redox Review Oxidation reduction reactions involve a transfer of electrons. OIL- RIG Oxidation Involves Loss Reduction Involves Gain LEO-GER Lose Electrons Oxidation Gain

More information

Introduction. can be rewritten as follows: Oxidation reaction. H2 2H + +2e. Reduction reaction: F2+2e 2F. Overall Reaction H2+F2 2H + +2F

Introduction. can be rewritten as follows: Oxidation reaction. H2 2H + +2e. Reduction reaction: F2+2e 2F. Overall Reaction H2+F2 2H + +2F Electrochemistry is the study of chemical processes that cause electrons to move. This movement of electrons is called electricity, which can be generated by movements of electrons from one element to

More information

Electrochemistry. Outline

Electrochemistry. Outline Electrochemistry Outline 1. Oxidation Numbers 2. Voltaic Cells 3. Calculating emf or Standard Cell Potential using Half-Reactions 4. Relationships to Thermo, Equilibrium, and Q 5. Stoichiometry 6. Balancing

More information

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS Review: OXIDATION-REDUCTION REACTIONS the changes that occur when electrons are transferred between reactants (also known as a redox reaction)

More information

Introduction to Electrochemical reactions. Schweitzer

Introduction to Electrochemical reactions. Schweitzer Introduction to Electrochemical reactions Schweitzer Electrochemistry Create and or store electricity chemically. Use electricity to drive a reaction that normally would not run. Plating metal onto a metal

More information

Electrochemistry 1 1

Electrochemistry 1 1 Electrochemistry 1 1 Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Voltaic Cells 2. Construction of Voltaic Cells 3. Notation for Voltaic Cells 4. Cell Potential

More information

Chapter 19 ElectroChemistry

Chapter 19 ElectroChemistry Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 11July2009 Chapter 19 ElectroChemistry These Notes are to SUPPLIMENT the Text,

More information

Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part

Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part In oxidation-reduction (or redox) reactions, the key chemical event is the net movement of electrons from one reactant to the

More information

Section Electrochemistry represents the interconversion of chemical energy and electrical energy.

Section Electrochemistry represents the interconversion of chemical energy and electrical energy. Chapter 21 Electrochemistry Section 21.1. Electrochemistry represents the interconversion of chemical energy and electrical energy. Electrochemistry involves redox (reduction-oxidation) reactions because

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

IB Topics 9 & 19 Multiple Choice Practice

IB Topics 9 & 19 Multiple Choice Practice IB Topics 9 & 19 Multiple Choice Practice 1. What are the oxidation states of chromium in (NH 4) 2Cr 2O 7 (s) and Cr 2O 3 (s)? 2. Which of the following is a redox reaction? 3Mg (s) + 2AlCl 3 (aq) 2Al

More information

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Electrochemistry Chapter 18 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Electrochemical processes are oxidation-reduction reactions in which: the energy

More information

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Lesson Topics Covered Homework Questions and Assignments 1 Introduction to Electrochemistry definitions 1. Read pages 462 467 2. On page

More information

Electrochemistry Worksheets

Electrochemistry Worksheets Electrochemistry Worksheets Donald Calbreath, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Zn + Cr 3+ Zn 2+ + Cr. 9. neutrons remain the same: C. remains the same. Redox/Electrochemistry Regents Unit Review. ANSWERS

Zn + Cr 3+ Zn 2+ + Cr. 9. neutrons remain the same: C. remains the same. Redox/Electrochemistry Regents Unit Review. ANSWERS Redox/Electrochemistry Regents Unit Review. ANSWERS 1. ½ red = Cr 3+ + 3e Cr 2. ½ ox = Zn Zn +2 + 2e 3. Balanced = 3Zn + 2Cr 3+ 3Zn +2 + 2Cr 4. Zn loses electrons, 2Cr 3+ gains electrons Zn + Cr 3+ Zn

More information

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions Honors Chemistry Mrs. Agostine Chapter 19: Oxidation- Reduction Reactions Let s Review In chapter 4, you learned how atoms rearrange to form new substances Now, you will look at how electrons rearrange

More information

CHAPTER 10 ELECTROCHEMISTRY TEXT BOOK EXERCISE Q1. Multiple choice questions. (i) The cathode reaction in the electrolysis of dill. H2SO4 with Pt electrode is (a) Reduction (b) Oxidation (c) Both oxidation

More information

Electrochemistry. The study of the interchange of chemical and electrical energy.

Electrochemistry. The study of the interchange of chemical and electrical energy. Electrochemistry The study of the interchange of chemical and electrical energy. Oxidation-reduction (redox) reaction: involves a transfer of electrons from the reducing agent to the oxidizing agent. oxidation:

More information

Name Date Class ELECTROCHEMICAL CELLS

Name Date Class ELECTROCHEMICAL CELLS 21.1 ELECTROCHEMICAL CELLS Section Review Objectives Use the activity series to identify which metal in a pair is more easily oxidized Identify the source of electrical energy in a voltaic cell Describe

More information

Ch 18 Electrochemistry OIL-RIG Reactions

Ch 18 Electrochemistry OIL-RIG Reactions Ch 18 Electrochemistry OIL-RIG Reactions Alessandro Volta s Invention Modified by Dr. Cheng-Yu Lai Daily Electrochemistry Appliactions Electrochemistry: The area of chemistry that examines the transformations

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

18.2 Voltaic Cell. Generating Voltage (Potential) Dr. Fred Omega Garces. Chemistry 201. Miramar College. 1 Voltaic Cell.

18.2 Voltaic Cell. Generating Voltage (Potential) Dr. Fred Omega Garces. Chemistry 201. Miramar College. 1 Voltaic Cell. 18.2 Voltaic Cell Generating Voltage (Potential) Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Voltaic Cell Redox Between If Zn (s) and Cu 2+ (aq) is in the same solution, then the electrons transfer

More information

Chapter 7. Oxidation-Reduction Reactions

Chapter 7. Oxidation-Reduction Reactions Chapter 7 Oxidation-Reduction Reactions Chapter Map Oxidation Historically oxidation meant reacting with oxygen. 2Zn(s) + O 2 (g) 2ZnO(s) Zn Zn 2+ + 2e or 2Zn 2Zn 2+ + 4e O + 2e O 2 or O 2 + 4e 2O 2 Oxidation

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

Applications of Voltaic Cells

Applications of Voltaic Cells Applications of Voltaic Cells Lesson 4 chapter 13 Objective You will be able to explain how the development of the voltaic cell had affected society. Dry Cells Since voltaic cells are not portable, dry

More information

Electrochemistry C020. Electrochemistry is the study of the interconversion of electrical and chemical energy

Electrochemistry C020. Electrochemistry is the study of the interconversion of electrical and chemical energy Electrochemistry C020 Electrochemistry is the study of the interconversion of electrical and chemical energy Using chemistry to generate electricity involves using a Voltaic Cell or Galvanic Cell (battery)

More information

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions:

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions: ELECTROCHEMISTRY A. INTRODUCTION 1. Electrochemistry is the branch of chemistry which is concerned with the conversion of chemical energy to electrical energy, and vice versa. Electrochemical reactions

More information

Chapter 9 Oxidation-Reduction Reactions. An Introduction to Chemistry by Mark Bishop

Chapter 9 Oxidation-Reduction Reactions. An Introduction to Chemistry by Mark Bishop Chapter 9 Oxidation-Reduction Reactions An Introduction to Chemistry by Mark Bishop Chapter Map Oxidation Historically, oxidation meant reacting with oxygen. 2Zn(s) + O 2 (g) 2ZnO(s) Zn Zn 2+ + 2e or 2Zn

More information

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3 CHAPTER 17: ELECTROCHEMISTRY Big Idea 3 Electrochemistry Conversion of chemical to electrical energy (discharge). And its reverse (electrolysis). Both subject to entropic caution: Convert reversibly to

More information

Galvanic Cells Spontaneous Electrochemistry. Electrolytic Cells Backwards Electrochemistry

Galvanic Cells Spontaneous Electrochemistry. Electrolytic Cells Backwards Electrochemistry Today Galvanic Cells Spontaneous Electrochemistry Electrolytic Cells Backwards Electrochemistry Balancing Redox Reactions There is a method (actually several) Learn one (4.10-4.12) Practice (worksheet)

More information

What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful

What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful work. This is accomplished by constructing a voltaic

More information

(c) dilute solution of glucose (d) chloroform 12 Which one of the following represents the same net reaction as the electrolysis of aqueous H2SO4

(c) dilute solution of glucose (d) chloroform 12 Which one of the following represents the same net reaction as the electrolysis of aqueous H2SO4 1 Electrolysis is the process in which a chemical reaction takes place at the expense of (a) chemical energy (b) electrical energy (c) heat energy (d) none of these 2 Standard hydrogen electrode has an

More information

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell Electrochemistry Electrochemical Process The conversion of chemical energy into electrical energy and the conversion of electrical energy into chemical energy are electrochemical process. Recall that an

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

Electrochemical System

Electrochemical System Electrochemical System Topic Outcomes Week Topic Topic Outcomes 8-10 Electrochemical systems It is expected that students are able to: Electrochemical system and its thermodynamics Chemical reactions in

More information

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chemistry Instrumental Analysis Lecture 18. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 18 Oxidation/Reduction Reactions Transfer of electrons in solution from one reactant to another. Ce +4 + Fe +2 Ce +3 + Fe +3 Ce +4 and Fe 3+ Fe 2+ and Ce 3+

More information

Electrochemical cells. Section 21.1

Electrochemical cells. Section 21.1 Electrochemical cells Section 21.1 Electrochemical processes Chemical process either release energy or absorb energy This does not have to be solely heat or light - sometimes it can be in the form of electricity

More information

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18 Chemistry 1011 Slot 5 1 18.5 Electrolytic Cells YOU ARE EXPECTED TO BE ABLE TO: Construct a labelled diagram to show

More information

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5 (Hebden Unit 5 ) is the study of the interchange of chemical energy and electrical energy. 2 1 We will cover the following topics: Review oxidation states and assigning oxidation numbers Redox Half-reactions

More information

Redox Reactions, Chemical Cells and Electrolysis

Redox Reactions, Chemical Cells and Electrolysis Topic 5 Redox Reactions, Chemical Cells and Electrolysis Part A Unit-based exercise Unit 19 Chemical cells in daily life Fill in the blanks 1 chemical; electrical 2 electrolyte 3 voltmeter; multimeter

More information

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A?

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A? CHEM161 014-N-1 November 014 In the electrolytic production of Al, what mass of Al can be deposited in.00 hours by a current of 1.8 A? What products would you expect at the anode and the cathode on electrolysis

More information