The Equilibrium Constant, K P

Size: px
Start display at page:

Download "The Equilibrium Constant, K P"

Transcription

1 The Equilibrium Constant, K Consider the gas-phase reaction: aa + bb yy + zz The thermodynamic equilibrium constant K is Yy z Z K = aa b B (standard state is 1 bar pressure) And by the same argument used earlier, we find G = RT ln K

2 Concentration Equilibrium Constant, K C Consider again the gas-phase reaction: nrt V aa + bb yy + zz crt, where is now a concentration, with units 3 c mol/ dm. Define the standard equilibrium constant K C K Y Z A B (Usual standard state is 1 mol dm -3 ) y z o C a b G = RT ln K C Note that K = K C (RT) n n y z a b K C = K / (RT) n

3 ConcepTest 1 NO (g) N O 4 (g) 300K A. For the above reaction, find K C if K = 6.9 bar 1 RT=0.083 bar dm 3 K -1 mol -1 x 300 K = 4.9 bar dm 3 mol -1 K C = K /(RT) -1 A 17 dm 3 /mol B 0.8 dm 3 /mol C 0.8 mol/dm 3 D 17 mol/dm 3 B. If mol NO is introduced into an empty 1 dm 3 vessel, find the number of moles of [N O 4 ] at equilibrium. (still 300K) A. Approximately 0.0 D. Approximately 0.75 B. Approximately 0.5 E. Approximately 1.0 C. Approximately 0.5 Work in groups, and take 5-10 minutes to get an answer. I will then harrass someone to explain each answer. Let s now look at a solution:

4 Solution If 1.00 mol NO is injected into a 1 dm 3 vessel, find [N O 4 ] at equilibrium. At equilibrium, x K C = 17 dm 3 /mol and K = 6.9 bar 1 NO (g) N O 4 (g) 300K (1-x)/ moles of each Assuming gases are ideal, then NO n NO and N O 4 n N O 4 I will use K C to find [N O 4 ], but I could just as well have used K 1 x mol 3 3 Simplifying, dm 344x 1 x or dm x x 1 0 mol mol x 3 dm Using my quadratic equation solver, I find x = and x = Two solutions!! Are both right? Are both wrong? Did I make a mistake? Answer: an additional constraint: 0< x < 1 x= x NO = mol/dm 3 NO x N O 4 = (1-x)/ = mol/dm 3 N O 4

5 Effects of Changes on Equilibria The Le Chatlier rinciple results from consideration of the effects of temperature, pressure or quantity changes on an equilibrium constant. E.g., NO (g) N O 4 (g) The reaction shifts to the left when the # moles of N O 4 is increased. The reaction shifts to the right when the total pressure is increased. We now consider in a bit more detail pressure and temperature effects on equilibria. (Reasons that we might do this include having tests for equilibrium, and to have ways to measure H or S.)

6 Effects of ressure on Equilibria We know G = RT ln K ΔG is defined at = = 1 bar, and so it is independent of pressure. (ideal gases assumed) For the gas-phase reaction aa + bb yy + zz K Obviously, K must also be pressure independent. y z o Y Z a b A There are three ways that one could imagine changing the pressure: a) Add an inert gas to the reaction mixture b) Change the volume of the reaction mixture c) Change the quantity of one of the components (eg, A,B, Y or Z in above) Take a brief look at each of them. B

7 Effect of adding an ideal inert gas, M Add gas M aa + bb yy + zz K y A B M y z Y a Z A z o Y Z a b mm+ aa + bb yy + zz+ mm A B If there is no change in volume, then the partial pressures of each of the ideal gas components remains unchanged by the addition of M. No change y z m in any partial o Y Z M K pressures. a b m K is unchanged! If the reaction were taking place in an isolated system, M would almost surely also affect the final temperature G = RT ln K B b However, M might well affect the rate at which the process occurs.

8 Change the volume Changing the volume can have an effect if the number of moles of gas on the left and right sides of the equation are different. N O 4 NO Let be the fraction of the dimer that has dissociated. N(1-) N N in moles Total number of moles of gas = N(1 - ) + N = N(1 + ) We now write the mole fractions of each component: NO N NO N N 1 1 N

9 Change the volume () We use the mole fractions to obtain the partial pressures of each component: 1 NO 4 NO 1 1 Use these to write the pressure equilibrium constant Solve for : K NO 4 NO 1 4 K K 4 The degree of dissociation decreases when the pressure increases. Another manifestation of the Le Chatlier rinciple

10 Change quantity of one component NO (g) N O 4 (g) K NO NO The system will shift in a direction away from the component that was increased. This is a method that is often used to determine whether or not equilibrium has actually been attained. (Rather than simply having an equilibration time >> observation time) 4

General Chemistry revisited

General Chemistry revisited General Chemistry revisited A(g) + B(g) C(g) + D(g) We said that G = H TS where, eg, H = f H(C) + f H(D) - f H(A) - f H(B) G < 0 implied spontaneous to right G > 0 implied spontaneous to left In a very

More information

Effect of adding an ideal inert gas, M

Effect of adding an ideal inert gas, M Effect of adding an ideal inert gas, M Add gas M If there is no change in volume, then the partial pressures of each of the ideal gas components remains unchanged by the addition of M. If the reaction

More information

15.1 The Concept of Equilibrium

15.1 The Concept of Equilibrium Lecture Presentation Chapter 15 Chemical Yonsei University 15.1 The Concept of N 2 O 4 (g) 2NO 2 (g) 2 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The

More information

OCR A Chemistry A-Level Module 5 - Physical Chemistry & Transition Elements

OCR A Chemistry A-Level Module 5 - Physical Chemistry & Transition Elements OCR A Chemistry A-Level Module 5 - Physical Chemistry & Transition Elements Equilibria Notes and Example Calculations Answers given at the end of the booklet The Equilibrium Constant, Kc Le Chatelier Principle

More information

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) equilibrium

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) equilibrium Copyright 001 by Harcourt, Inc. All rights reserved.! Ch 16. Chemical Equilibria N O 4 (g) NO (g) The concept of equilibrium and K Writing equilibrium constant expressions Relationship between kinetics

More information

GASEOUS EQUILIBRIUM CH. 12 EQUILIBRIUM

GASEOUS EQUILIBRIUM CH. 12 EQUILIBRIUM EQUILIBRIUM I. EQUILIBRIUM IS REACHED WHEN BOTH THE FORWARD AND REVERSE REACTIONS ARE OCCURRING AT THE SAME RATE. A. DYNAMIC EQUILIBRIUM: BOTH REACTIONS ARE STILL OCCURRING BUT THE CONCENTRATION OF REACTANTS

More information

Equilibrium. Reversible Reactions. Chemical Equilibrium

Equilibrium. Reversible Reactions. Chemical Equilibrium Equilibrium Reversible Reactions Chemical Equilibrium Equilibrium Constant Reaction Quotient Le Chatelier s Principle Reversible Reactions In most chemical reactions, the chemical reaction can be reversed,

More information

a) Write the expression for the equilibrium constant, K eq

a) Write the expression for the equilibrium constant, K eq Chemistry 12 K eq Calculations Worksheet Name: Date: Block: 1. Given the equilibrium equation below: A 2(g) + B 2(g) 2AB (g) If, at equilibrium, the concentrations are as follows: [A 2] = 3.45 M, [B 2]

More information

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g)

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) Copyright 001 by Harcourt, Inc. All rights reserved.! Ch 16. Chemical Equilibria N O 4 (g) NO (g) The concept of equilibrium and K Writing equilibrium constant expressions Relationship between kinetics

More information

Chemical Equilibrium. Chapter

Chemical Equilibrium. Chapter Chemical Equilibrium Chapter 14 14.1-14.5 Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: 1.) the rates of the forward

More information

aa + bb ---> cc + dd

aa + bb ---> cc + dd 17 Chemical Equilibria Consider the following reaction: aa + bb ---> cc + dd As written is suggests that reactants A + B will be used up in forming products C + D. However, what we learned in the section

More information

Chemical Equilibrium. Chemical Equilibrium. Chemical Equilibrium. Chemical Equilibrium. Equilibrium Constant. Equilibrium Constant

Chemical Equilibrium. Chemical Equilibrium. Chemical Equilibrium. Chemical Equilibrium. Equilibrium Constant. Equilibrium Constant Chemical Equilibrium When some types of chemical reactions occur in the gas or solution phases, these reaction attain chemical equilibrium, i.e., the reaction does not go to completion, but the reaction

More information

Chemical Equilibrium Basics

Chemical Equilibrium Basics Chemical Equilibrium Basics Reading: Chapter 16 of Petrucci, Harwood and Herring (8th edition) Problem Set: Chapter 16 questions 25, 27, 31, 33, 35, 43, 71 York University CHEM 1001 3.0 Chemical Equilibrium

More information

Chemistry 2000 Lecture 11: Chemical equilibrium

Chemistry 2000 Lecture 11: Chemical equilibrium Chemistry 2000 Lecture 11: Chemical equilibrium Marc R. Roussel February 4, 2019 Marc R. Roussel Chemical equilibrium February 4, 2019 1 / 27 Equilibrium and free energy Thermodynamic criterion for equilibrium

More information

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium Chemical Equilibrium by Professor Bice Martincigh Equilibrium involves reversible reactions Some reactions appear to go only in one direction are said to go to completion. indicated by All reactions are

More information

Calculations Involving the Equilibrium Constant K eq )

Calculations Involving the Equilibrium Constant K eq ) Calculations Involving the Equilibrium Constant K eq ) 1. Given the equilibrium equation below: A 2(g) + B 2(g) 2AB (g) If, at equilibrium, the concentrations are as follows: [A 2 ] = 3.45 M, [B 2 ] =

More information

Review Unit #11. Review Unit # H 2 O (g) + CO (g) H 2(g) + CO 2(g) H>1

Review Unit #11. Review Unit # H 2 O (g) + CO (g) H 2(g) + CO 2(g) H>1 Review Unit #11 1. H 2 O (g) + CO (g) H 2(g) + CO 2(g) H>1 K c = 1.6 What effect would these changes have on the equilibrium position? a. Cool the mixture b. Increase the volume of the flask c. Add H 2(g)

More information

1B Equilibrium. 3) Equilibrium is a dynamic state At equilibrium the rate in both directions must be the same.

1B Equilibrium. 3) Equilibrium is a dynamic state At equilibrium the rate in both directions must be the same. 1B Equilibrium The equilibrium constant, K c Characteristics of the equilibrium state 1) Equilibrium can only be established in a closed system. Matter cannot be exchanged with the surroundings (this will

More information

Chemistry 123: Physical and Organic Chemistry Topic 4: Gaseous Equilibrium

Chemistry 123: Physical and Organic Chemistry Topic 4: Gaseous Equilibrium Topic 4: Introduction, Topic 4: Gaseous Equilibrium Text: Chapter 6 & 15 4.0 Brief review of Kinetic theory of gasses (Chapter 6) 4.1 Concept of dynamic equilibrium 4.2 General form & properties of equilbrium

More information

1.0 L container NO 2 = 0.12 mole. time

1.0 L container NO 2 = 0.12 mole. time CHEM 1105 GAS EQUILIBRIA 1. Equilibrium Reactions - a Dynamic Equilibrium Initial amounts: = mole = 0 mole 1.0 L container = 0.12 mole moles = 0.04 mole 0 time (a) 2 In a 1.0 L container was placed 4.00

More information

The partial pressure of sulphur dioxide in the equilibrium mixture was 24 kpa and the total pressure in the flask was 104 kpa.

The partial pressure of sulphur dioxide in the equilibrium mixture was 24 kpa and the total pressure in the flask was 104 kpa. Q1. Sulphur dioxide and oxygen were mixed in a 2:1 mol ratio and sealed in a flask with a catalyst. The following equilibrium was established at temperature T 1 2SO 2(g) + O 2(g) 2SO 3(g) ΔH = 196 kj mol

More information

Ph.D. Qualifying Examination In Thermodynamics

Ph.D. Qualifying Examination In Thermodynamics Ph.D. Qualifying Examination In Thermodynamics May 2014 University of Texas at Austin Department of Chemical Engineering The exam is a closed book examination. There are five equally weighed problems on

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Chemistry 192 Problem Set 2 Spring, 2018 Solutions

Chemistry 192 Problem Set 2 Spring, 2018 Solutions Chemistry 192 Problem Set 2 Spring, 2018 Solutions 1. The gas phase species NO 2 and N 2 O 4 equilibrate according to the reaction N 2 O 4(g) 2NO 2(g), and it is found that at 298K in a reaction vessel

More information

EQUILIBRIA. e Q = a D B

EQUILIBRIA. e Q = a D B I. Basis of Equilibrium. A. Q and equilibrium. EQUILIBRIA 1. Consider the general reaction bb + cc dd + ee a. Αs time elapses, [B] and [C] decrease causing the rate of the forward reaction to decrease.

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Equilibrium To be in equilibrium is to be in a state of balance: Chapter 15 Chemical Equilibrium - Static Equilibrium (nothing happens; e.g. a tug of war). - Dynamic Equilibrium (lots of things happen,

More information

rate of reaction forward conc. reverse time P time Chemical Equilibrium Introduction Dynamic Equilibrium Dynamic Equilibrium + RT ln f p

rate of reaction forward conc. reverse time P time Chemical Equilibrium Introduction Dynamic Equilibrium Dynamic Equilibrium + RT ln f p Chemical Equilibrium Chapter 9 of Atkins: Sections 9.1-9.2 Spontaneous Chemical Reactions The Gibbs Energy Minimum The reaction Gibbs energy Exergonic and endergonic reactions The Description of Equilibrium

More information

CHEMICAL EQUILIBRIUM CALCULATIONS 20 MAY 2014

CHEMICAL EQUILIBRIUM CALCULATIONS 20 MAY 2014 CHEMICAL EQUILIBRIUM CALCULATIONS 20 MAY 2014 In this lesson we: Lesson Description Discuss dynamic equilibrium Discuss equilibrium constant and do calculations. Summary Dynamic Chemical Equilibrium In

More information

Chemistry SEAS Q, K eq, and Equilibrium. K ; where G o = -RTlnK eq eq.

Chemistry SEAS Q, K eq, and Equilibrium. K ; where G o = -RTlnK eq eq. Chemistry 102 - SEAS Q, K eq, and Equilibrium At a given temperature and set of conditions (pressures or concentrations), we can tell if a reaction is already at equilibrium, or which way it will approach

More information

Exam 4, Ch 14 and 15 December 7, Points

Exam 4, Ch 14 and 15 December 7, Points Chem 130 Name Exam 4, Ch 14 and 15 December 7, 2016 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

Solving Equations and Optimizing Functions

Solving Equations and Optimizing Functions Solving Equations and Optimizing Functions At the end of this lecture, you will be able to: solve for the roots of a polynomial using polyroots. obtain approximate solutions to single equations from tracing

More information

CHEMICAL EQUILIBRIUM Chapter 13

CHEMICAL EQUILIBRIUM Chapter 13 1 CHEMICAL EQUILIBRIUM Chapter 13 Pb 2+ (aq) + 2 Cl (aq) PbCl 2 (s) 1 Objectives Briefly review what we know of equilibrium Define the Equilibrium Constant (K eq ) and Reaction Quotient (Q) Determining

More information

Chapter 14: Chemical Equilibrium. Mrs. Brayfield

Chapter 14: Chemical Equilibrium. Mrs. Brayfield Chapter 14: Chemical Equilibrium Mrs. Brayfield 14.2: Dynamic Equilibrium Remember from chapter 13 that reaction rates generally increase with increasing concentration of the reactions and decreases with

More information

Chemical Equilibrium. Chemical Equilibrium

Chemical Equilibrium. Chemical Equilibrium Chemical Equilibrium When some types of chemical reactions occur in the gas or solution phases, these reaction attain chemical equilibrium, i.e., the reaction does not go to completion, but the reaction

More information

Practice Questions Placement Exam for Exemption from Chemistry 120

Practice Questions Placement Exam for Exemption from Chemistry 120 Practice Questions Placement Exam for Exemption from Chemistry 120 Potentially Useful Information Avogadro's number = 6.0221420 10 23 h = 6.6260688 10 34 J s c = 2.9979246 10 8 m/s 1amu = 1.6605387 10

More information

Ch#13 Outlined Notes Chemical Equilibrium

Ch#13 Outlined Notes Chemical Equilibrium Ch#13 Outlined Notes Chemical Equilibrium Introduction A. Chemical Equilibrium 1. The state where the concentrations of all reactants and products remain constant with time 2. All reactions carried out

More information

H = DATA THAT YOU MAY USE. Units Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1.

H = DATA THAT YOU MAY USE. Units Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1. DATA THAT YOU MAY USE Units Conventional S.I. Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1.013 10 5 Pa torr = 133.3 Pa Temperature C 0 C = 73.15 K PV L-atm = 1.013

More information

Mixtures. Partial Molar Quantities

Mixtures. Partial Molar Quantities CHEM 331 Physical Chemistry Fall 2017 Mixtures Our current discussion takes up some general results for systems that are mixtures and/or open. The former involve systems that contain multiple components;

More information

Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria

Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria CHEM 102! T. Hughbanks! Example of Equilibrium N 2 (g) + 3H 2 (g) 2 NH 3 (g) Reactions can occur, in principle, in

More information

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction Models of Solution Chemistry- I State of Equilibrium A covered cup of coffee will not be colder than or warmer than the room temperature Heat is defined as a form of energy that flows from a high temperature

More information

This is important to know that the P total is different from the initial pressure (1bar) because of the production of extra molecules!!! = 0.

This is important to know that the P total is different from the initial pressure (1bar) because of the production of extra molecules!!! = 0. Question 1: N O 4 (g) NO (g) Amounts of material at the initial state: n 0 0 Amounts of material at equilibrium: (1 α)n 0 αn 0 Where α equals 0.0488 at 300 K and α equals 0.141 at 400K. Step 1: Calculate

More information

CHEMISTRY 202 Hour Exam I (Multiple Choice Section) Dr. D. DeCoste T.A.

CHEMISTRY 202 Hour Exam I (Multiple Choice Section) Dr. D. DeCoste T.A. CHEMISTRY 0 Hour Exam I (Multiple Choice Section) September 8, 017 Dr. D. DeCoste Name Signature T.A. This exam contains 0 questions on 4 numbered pages. Check now to make sure you have a complete exam.

More information

1.6 Chemical equilibria and Le Chatelier s principle

1.6 Chemical equilibria and Le Chatelier s principle 1.6 Chemical equilibria and Le Chatelier s principle Reversible reactions: Consider the reaction: Mg(s) + H2SO4(aq) MgSO4(aq) + H2(g) The reaction stops when all of the limiting reagent has been used up.

More information

Dynamic Equilibrium Illustrated

Dynamic Equilibrium Illustrated שו וי מ שק ל Equilibrium Reactants Products In an equilibrium, the forward and reverse processes continue to occur but at equal rates! The reactant and product concentrations remain constant We are usually

More information

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit)

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit) Ideal Gas Law PV = nrt where R = universal gas constant R = PV/nT R = 0.0821 atm L mol 1 K 1 R = 0.0821 atm dm 3 mol 1 K 1 R = 8.314 J mol 1 K 1 (SI unit) Standard molar volume = 22.4 L mol 1 at 0 C and

More information

Chapter 13. Chemical Equilibrium

Chapter 13. Chemical Equilibrium Chapter 13 Chemical Equilibrium Section 13.1 The Equilibrium Condition Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular

More information

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201) Chapter 5. Simple Mixtures 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The thermodynamic description of mixtures 5.1 Partial molar quantities 5.2 The thermodynamic of Mixing 5.3 The chemical

More information

N H 2 2 NH 3 and 2 NH 3 N H 2

N H 2 2 NH 3 and 2 NH 3 N H 2 Chemical Equilibrium Notes (Chapter 18) So far, we ve talked about all chemical reactions as if they go only in one direction. However, as with many things in life, chemical reactions can go both in the

More information

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS 15/04/018 EQUILIBRIUM- GENERAL CONCEPTS When a system is at equilibrium, the forward and reverse reactions are proceeding at the same rate. The concentrations of all species remain constant over time,

More information

EQUILIBRIUM GENERAL CONCEPTS

EQUILIBRIUM GENERAL CONCEPTS 017-11-09 WHEN THE REACTION IS IN EQUILIBRIUM EQUILIBRIUM GENERAL CONCEPTS The concentrations of all species remain constant over time, but both the forward and reverse reaction never cease When a system

More information

Lecture 7: Chemical Equilbria--a bit more detail and some additional kinds of problems.

Lecture 7: Chemical Equilbria--a bit more detail and some additional kinds of problems. Lecture 7: Chemical Equilbria--a bit more detail and some additional kinds of problems. Lecture Overview: We get even more involved in the details by equilibria by relating G to K relating K c to K p comparing

More information

2.0 Equilibrium Constant

2.0 Equilibrium Constant 2.0 Equilibrium Constant When reactions are reversible and chemical equilibrium is reached, it is important to recognize that not all of the reactants will be converted into products. There is a mathematical

More information

Equilibrium Simulation

Equilibrium Simulation Equilibrium Simulation Imagine the two large beakers (2000 ml) are actually the same space...we have just separated them to help us keep track of reactants and products. Imagine the size of the transfer

More information

Chapter 16 - Principles of Chemical Equilibrium

Chapter 16 - Principles of Chemical Equilibrium Chapter 16 - Principles of Chemical Equilibrium -allreactions are "reversible" - principle of micro-reversibility - the "committed step" - much theory - not always obvious - for some the reverse reaction

More information

Chemical Equilibrium. Equilibrium Constant

Chemical Equilibrium. Equilibrium Constant Chemical Equilibrium When some types of chemical reactions occur in the gas or solution phases, these reaction attain chemical equilibrium, i.e., the reaction does not go to completion, but the reaction

More information

Lecture 20. Chemical Potential

Lecture 20. Chemical Potential Lecture 20 Chemical Potential Reading: Lecture 20, today: Chapter 10, sections A and B Lecture 21, Wednesday: Chapter 10: 10 17 end 3/21/16 1 Pop Question 7 Boltzmann Distribution Two systems with lowest

More information

CHEMISTRY 202 Hour Exam I. Dr. D. DeCoste T.A.

CHEMISTRY 202 Hour Exam I. Dr. D. DeCoste T.A. CHEMISTRY 202 Hour Exam I September 28, 2017 Dr. D. DeCoste Name Signature T.A. This exam contains 23 questions on 10 numbered pages. Check now to make sure you have a complete exam. You have two hours

More information

Chemical Equilibria. OCR Chemistry A H432

Chemical Equilibria. OCR Chemistry A H432 Chemical Equilibria Chemical equilibrium is a dynamic equilibrium. Features of a dynamic equilibrium, which can only be established in a closed system (nothing added or removed): - rates of forward and

More information

Revision Notes on Chemical and Ionic Equilibrium

Revision Notes on Chemical and Ionic Equilibrium Revision Notes on Chemical and Ionic Equilibrium Equilibrium Equilibrium is the state of a process in which the properties like temperature, pressure, and concentration etc of the system do not show any

More information

Chapter-5 CHEMICAL EQUILIBRIUM

Chapter-5 CHEMICAL EQUILIBRIUM hapter-5 HEMIAL EQUILIBRIUM On the basis of etent of reactions, chemical reactions can be classified in two categories reversible and irreversible reactions. Irreversible reactions goes for completion

More information

Equilibrium Unit. Terminology. Terminology 11/04/2018. Chemistry 30 Ms. Hayduk

Equilibrium Unit. Terminology. Terminology 11/04/2018. Chemistry 30 Ms. Hayduk Equilibrium Unit Chemistry 30 Ms. Hayduk Terminology System: the part of the universe being studied can be tiny (one atom) or big (the Earth) Surroundings: the part of the universe outside of the system

More information

Chemical Reaction Engineering. Lecture 2

Chemical Reaction Engineering. Lecture 2 hemical Reaction Engineering Lecture 2 General algorithm of hemical Reaction Engineering Mole balance Rate laws Stoichiometry Energy balance ombine and Solve lassification of reactions Phases involved:

More information

Class XI Chapter 5 States of Matter Chemistry

Class XI Chapter 5 States of Matter Chemistry Question 5.1: What will be the minimum pressure required to compress 500 dm 3 of air at 1 bar to 200 dm 3 at 30 C? Initial pressure, p 1 = 1 bar Initial volume, V 1 = 500 dm 3 Final volume, V 2 = 200 dm

More information

AP* Chapter 13. Chemical Equilibrium

AP* Chapter 13. Chemical Equilibrium AP* Chapter 13 Chemical Equilibrium Section 13.1 The Equilibrium Condition Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular

More information

Practice Questions Placement Exam for Entry into Chemistry 120

Practice Questions Placement Exam for Entry into Chemistry 120 Practice Questions Placement Exam for Entry into Chemistry 120 Potentially Useful Information Avogadro's number = 6.0221420 10 23 h = 6.6260688 10 34 J s c = 2.9979246 10 8 m/s 1amu = 1.6605387 10 27 kg

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

Chemical Equilibria. Chapter Extent of Reaction

Chemical Equilibria. Chapter Extent of Reaction Chapter 6 Chemical Equilibria At this point, we have all the thermodynamics needed to study systems in ulibrium. The first type of uilibria we will examine are those involving chemical reactions. We will

More information

Equilibrium Reaction Systems

Equilibrium Reaction Systems Equilibrium Reaction Systems Equilibrium defines a perfectly reversible process. We have found in an earlier chapter, that we have a function that, when negative, will give us a criteria for determining

More information

Chemical Equilibrium: Ch Dynamic Equilibrium. Dynamic Equilibrium. Three Approaches to Equilibrium The Equilibrium Constant Expression

Chemical Equilibrium: Ch Dynamic Equilibrium. Dynamic Equilibrium. Three Approaches to Equilibrium The Equilibrium Constant Expression Chemical Equilibrium: Ch. 15 15-1 Dynamic Equilibrium 15- The Equilibrium Constant Expression 15- Relationships Involving Equilibrium Constants 15-4 The Magnitude of an Equilibrium Constant 15-5 The Reaction

More information

I never let my schooling get in the way of my education.

I never let my schooling get in the way of my education. Chemistry NT I never let my schooling get in the way of my education. Mark Twain Chem NT Chemical Equilibrium Module Describing Chemical Equilibrium The Equilibrium Constant Equilibrium Constant for Sums

More information

CHEM N-2 November 2014

CHEM N-2 November 2014 CHEM1612 2014-N-2 November 2014 Explain the following terms or concepts. Le Châtelier s principle 1 Used to predict the effect of a change in the conditions on a reaction at equilibrium, this principle

More information

EQUILIBRIUM. Opposing reactions proceed at equal rates Concs. of reactants & products do not change over time

EQUILIBRIUM. Opposing reactions proceed at equal rates Concs. of reactants & products do not change over time EQUILIBRIUM Opposing reactions proceed at equal rates Concs. of reactants & products do not change over time Examples: vapor pressure above liquid saturated solution Now: equilibrium of chemical reactions

More information

CHEMICAL EQUILIBRIA. Dynamic Equilibrium Equilibrium involves reversible reactions which do not go to completion.

CHEMICAL EQUILIBRIA. Dynamic Equilibrium Equilibrium involves reversible reactions which do not go to completion. CHEMICAL EQUILIBRIA Dynamic Equilibrium Equilibrium involves reversible reactions which do not go to completion. If we consider a reaction between A and B to form C and D which is reversible. When A and

More information

12. Heat of melting and evaporation of water

12. Heat of melting and evaporation of water VS 12. Heat of melting and evaporation of water 12.1 Introduction The change of the physical state of a substance in general requires the absorption or release of heat. In this case, one speaks of a first

More information

Chapter 14 Chemical Equilibrium

Chapter 14 Chemical Equilibrium Chapter 14 Chemical Equilibrium Fu-Yin Hsu Chemical reaction The speed of a chemical reaction is determined by kinetics. The extent of a chemical reaction is determined by thermodynamics. 14.1 Fetal Hemoglobin

More information

January 03, Ch 13 SB equilibrium.notebook

January 03, Ch 13 SB equilibrium.notebook Ch 13: Chemical Equilibrium exists when 2 opposing reactions occur simultaneously at the same rate (dynamic rather than static) Forward rate = reverse rate https://www.youtube.com/watch?v=wld_imyqagq The

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Chemical Equilibrium When compounds react, they eventually form a mixture of products and unreacted reactants, in a dynamic equilibrium. A dynamic equilibrium consists of a forward

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry S H 2 = S H 2 R ln P H2 P NH

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry  S H 2 = S H 2 R ln P H2 P NH N (g) + 3 H (g) NH 3 (g) S N = S H = S NH 3 = S N R ln P N S H R ln P H S NH 3 R ln P NH3 ΔS rxn = (S Rln P NH 3 NH3 ) (S N Rln P N ) 3 (S H Rln P H ) ΔS rxn = S S NH 3 N 3S H + Rln P P 3 N H ΔS rxn =

More information

Unit 7: Chemical Kinetics and Equilibrium UNIT 7: CHEMICAL KINETICS AND EQUILIBRIUM

Unit 7: Chemical Kinetics and Equilibrium UNIT 7: CHEMICAL KINETICS AND EQUILIBRIUM UNIT 7: CHEMICAL KINETICS AND EQUILIBRIUM Chapter 19: Reaction Rates and Equilibrium 19.1: Rates of Reaction Reaction Rates: - the speed of which the concentration of a reactant or product changes over

More information

( g mol 1 )( J mol 1 K 1

( g mol 1 )( J mol 1 K 1 Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Number 11 Solutions 1. McQuarrie and Simon, 11-27. Paraphrase: If a solution

More information

Chapter 13. The Concept of Equilibrium. A System at Equilibrium. The Concept of Equilibrium. Chemical Equilibrium. N 2 O 4 (g) 2 NO 2 (g)

Chapter 13. The Concept of Equilibrium. A System at Equilibrium. The Concept of Equilibrium. Chemical Equilibrium. N 2 O 4 (g) 2 NO 2 (g) PowerPoint to accompany The Concept of Equilibrium Chapter 13 Chemical Equilibrium Figure 13.1 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The Concept

More information

CHAPTER 8 CHEMICAL EQUILIBRIUM TEXT BOOK EXERCISE Q1. Multiple Choice questions (i) For which system does the equilibrium constant, K c has units of (concentration) -1 (a) N 2 + 3H 2 2NH 3 (b) H 2 + I

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 3 Chemical Equilibrium Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 30 minutes to finish this portion of the test. No calculator

More information

Liquids and Solutions

Liquids and Solutions Liquids and Solutions Physical Chemistry Tutorials Mark Wallace, Wadham College mark.wallace@chem.ox.ac.uk CRL Floor 1 Office 1 Phone (2)75467 Taken from Thomas Group Website, Problems 1. The answers are

More information

Worksheet 18 - Equilibrium. Balance the following reaction, and use it to answer the following 8 questions:

Worksheet 18 - Equilibrium. Balance the following reaction, and use it to answer the following 8 questions: Worksheet 18 - Equilibrium Balance the following reaction, and use it to answer the following 8 questions: N 2 (g) + H 2 (g) NH 3 (g) 1. Starting with 0.500 M N 2 and 0.800 M H 2, the reaction is allowed

More information

Chapter 13: Chemical Equilibrium

Chapter 13: Chemical Equilibrium Chapter 13: Chemical Equilibrium 13.1 The Equilibrium Condition Equilibrium: a state in which no observable changes occur H 2 O (l) H 2 O (g) Physical equilibrium: no chemical change. N 2(g) + 3H 2(g)

More information

Transition Theory Abbreviated Derivation [ A - B - C] # E o. Reaction Coordinate. [ ] # æ Æ

Transition Theory Abbreviated Derivation [ A - B - C] # E o. Reaction Coordinate. [ ] # æ Æ Transition Theory Abbreviated Derivation A + BC æ Æ AB + C [ A - B - C] # E A BC D E o AB, C Reaction Coordinate A + BC æ æ Æ æ A - B - C [ ] # æ Æ æ A - B + C The rate of reaction is the frequency of

More information

Experiment #14 Virtual Chemistry Laboratory (Chemical Equilibrium) Le-Chatelier s principle

Experiment #14 Virtual Chemistry Laboratory (Chemical Equilibrium) Le-Chatelier s principle Experiment #14 Virtual Chemistry Laboratory (Chemical Equilibrium) Le-Chatelier s principle I. PURPOSE OF THE EXPERIMENT (i) To understand the basic concepts of chemical equilibrium (ii) To determine the

More information

Chem 75 Winter, 2017 Practice Exam 3

Chem 75 Winter, 2017 Practice Exam 3 1. The Handbook of Chemistry and Physics says that PbBr 2 is soluble in water to the tune of 8.441 g per kg of water at 25 C. The molar mass of PbBr 2 is 367 g mol 1. (a) What is the ionic strength of

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.

r/lt.i Ml s. ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died. $ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -

More information

LECTURE 6 NON ELECTROLYTE SOLUTION

LECTURE 6 NON ELECTROLYTE SOLUTION LECTURE 6 NON ELECTROLYTE SOLUTION Ch 45.5 pplied Phy Chem First Sem 2014-15 Ch 45.5 Exam II September 1/3 (Multiple Choice/Problem Solving) Coverage: Second/Third Laws of Thermodynamics Nonelectrolyte

More information

2SO 2(g) + O 2(g) Increasing the temperature. (Total 1 mark) Enthalpy data for the reacting species are given in the table below.

2SO 2(g) + O 2(g) Increasing the temperature. (Total 1 mark) Enthalpy data for the reacting species are given in the table below. Q1.Which change would alter the value of the equilibrium constant (K p) for this reaction? 2SO 2(g) + O 2(g) 2SO 3(g) A Increasing the total pressure of the system. Increasing the concentration of sulfur

More information

Lecture 2. Review of Basic Concepts

Lecture 2. Review of Basic Concepts Lecture 2 Review of Basic Concepts Thermochemistry Enthalpy H heat content H Changes with all physical and chemical changes H Standard enthalpy (25 C, 1 atm) (H=O for all elements in their standard forms

More information

Initial amounts: mol Amounts at equilibrium: mol (5) Initial amounts: x mol Amounts at equilibrium: x mol

Initial amounts: mol Amounts at equilibrium: mol (5) Initial amounts: x mol Amounts at equilibrium: x mol 4. CHEMICAL EQUILIBRIUM n Equilibrium Constants 4.1. A Y + Z Initial amounts: 4 0 0 mol Amounts at equilibrium: 1 1.5 3.0 mol Concentrations at equilibrium: 1 5 1.5 5 3.0 5 mol dm 3 K c (1.5/5) (3.0/5)

More information