ACTIVATION ENERGY EFFECT ON FLAME PROPAGATION IN LARGE-SCALE VORTICAL FLOWS

Size: px
Start display at page:

Download "ACTIVATION ENERGY EFFECT ON FLAME PROPAGATION IN LARGE-SCALE VORTICAL FLOWS"

Transcription

1 ACTIVATION ENERGY EFFECT ON FLAME PROPAGATION IN LARGE-SCALE VORTICAL FLOWS L. Kagan (a), P.D. Ronney (b) and G. Sivashinsky (a), Abstract (a) School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel (b) Department of Aerospace and Mechanical Engineering, University of Southern California Los Angeles, CA , USA The propagation of a premixed flame through a large-scale vortical flow is studied numerically employing a conventional reaction-diffusion-advection model. It is shown that the response of the flame speed to the flow intensity is strongly influenced by the form of the reaction rate expression that describes the chemical kinetics, in particular the activation energy. For high-activation-energy kinetics typical of gaseous flames this response is characterized by a peculiar non-monotonicity, thereby reflecting the flow induced changes within the flame front structure and, hence, deviation from the classical Huygens propagation. At low activation energies, however, the non-monotonicity vanishes, which also helps to explain its absence in the isothermal autocatalytic reaction waves spreading through strongly stirred liquid solutions where the amplification factor of propagation speed may reach extremely high values compared to gaseous flames. Additionally it is shown that the transition from Huygens to non-huygens propagation occurs at nearly the same Karlovitz number for all activation energies, thereby showing the utility of this parameter for characterizing flame propagating in nonuniform flows when appropriately defined. 1

2 1 Introduction A comprehensive rational understanding of the flame-turbulence interaction remains one of the major challenges of premixed combustion [1]. To gain a better insight into the basic mechanisms involved, a numerical study of the reaction-diffusion-advection model for an equidiffusional premixed flame spreading through a space-periodic array of a large-scale vortices has been recently undertaken [2]. Rather unexpectedly, the turbulent flame speed (V ) was found to be a non-monotonic function of the flow intensity (A). For moderately strong vortices their intensification results in the flame speed enhancement accompanied by shedding of islands of unburned gas. Yet, there is a certain level of stirring at which the flame speed reaches a maximum. A further increase in the flow intensity leads to a drop in the flame speed, followed, for non-adiabatic systems, by the flame extinction. This sequence of behavior is qualitatively consistent with experimental results on turbulent premixed flames as the turbulence intensity is increased, e.g., [9]. This view, however, does not exhaust all the phenomenology contained in the model, as moving to still higher levels of stirring the adiabatic flame was found to speed up again [2]. Although this latter (third) propagation regime is likely out of reach for practical gaseous flames because of quenching considerations, its numerical identification is important for two reasons. First, and this is the main motivation for the current study, the third regime is likely to be of relevance for isothermal autocatalytic reaction waves spreading through strongly stirred liquid solutions which are characterized by a marked persistence of the V (A) monotonicity [4-6]. Secondly, such a study would provide a corroboration of recent analytical work yielding the prediction V A 1/4 at large A [3]. We will show that the basic reason for the marked distinction between the two systems is strong sensitivity of the reaction rate to variations in temperature (i.e., high activation energy) in gaseous flames and its relatively mild response to changes in the concentration of autocatalytic products in liquid flames (analogous to temperature in 2

3 gaseous flames). 2 Model and its Numerical Simulation To demonstrate the influence of chemical kinetics on the flame-flow interaction we consider a conventional constant-density, equidiffusional adiabatic flame-flow system described by a single reaction-diffusion-advection equation, Θ t + u Θ = µ 2 Θ + νω(θ) (1) where in the case of gaseous flames Θ corresponds to the appropriately scaled temperature, and in the case of liquid flames to the concentration of autocatalytic products. u = (2A sin kx cos ky, 2A cos kx sin ky) (2) is the prescribed flow-field, where A = 1 2 < uu > is its intensity, and k is the flow wave-number. The length is scaled with the flame thickness l th to be defined later, velocity with the laminar burning velocity S L, time with l th /S L and temperature with Θ = (T T 0 )/(T b T 0 ), where T is the dimensional temperature and the subscripts b and 0 refer to burned products and fresh reactants, respectively. Equation (1) is considered in the strip 0 < x < π/k, < y < and subjected to insulating and chemically inert boundary conditions, Θ x = 0 at x = 0, π/k (3) The flame is assumed to propagate in the direction of increasing y. Hence the boundary condition at y = ± are, Θ = 0 at y = +, and (4) Θ y = 0 at y = For finite activation energy flames the reaction rate Ω is specified as, 3

4 Ω = 1 2 β2 (1 Θ) [ exp ( ) ( β(θ 1) exp β )] σ + (1 σ)θ σ (5) Here β = E(T b T 0 )/RTb 2 - Zeldovich number and σ = T 0 /T b. Other notations are conventional. The term exp ( β/σ) is introduced to avoid the so-called cold boundary difficulty, i.e. to suppress reaction ahead of the advancing flame. For autocatalytic reaction Ω is specified as Ω = 2Θ 2 (1 Θ), (6) which pertains to the so-called KPP-type kinetics [7]. Such kinetics are relevant to some autocatalytic fronts [8] 1. The factor 2 is introduced for convenience of onedimensional calculations (see below). µ and ν are the normalizing factors to keep the burning velocity of the planar flame as well as its diffusive width at unity, and hence defined by the following eigen-value problem, Θ η + µθ ηη + νω(θ) = 0, (7) Θ(+ ) = 0, Θ( ) = 1, (8) subjected to the additional requirements to maintain S L and l th at unity, l 2 th = (η η) 2 Θ η dη = 1, η = ηθ η dη (9) The flame width is defined as a length of the interval covering the bulk of the temperature change. The adopted formal definition (9) is borrowed from the probability theory and is analogous to the dispersion, provided Θ is interpreted as the distribution function. To evaluate µ and ν it is helpful to make the following transformations, µ = 1/λΛ, ν = λ/λ, η = ξ/λ, (10) 1 Actually, in Ref. [8] the reaction rate is specified as Ω Θ(κ + Θ)(1 Θ) with κ = In the current study κ is set at zero, which is fully validated by a comparative numerical study conducted for A=0, 18, 90. 4

5 bringing the problem (7)-(9) to a more tractable form, ΛΘ ξ + Θ ξξ + Ω(Θ) = 0, (11) Θ( ) = 0, Θ( ) = 1, (12) (ξ ξ) 2 Θ ξ dξ = λ 2, ξ = ξθ ξ dξ (13) Here one first calculates Θ(ξ) and Λ, and thereupon λ. Some representative values of λ, Λ µ and ν for σ = 0.2 and 0.4 β 16 are given in Table 1. Table 1 β λ Λ ν µ KPP An important point is that for a certain small Zeldovich number (β=1.6) the Ω vs. Θ plot defined by the Arrhenius kinetics (5) becomes rather close to the KPP rate (6) (Fig.1). In this sense the KPP kinetics may well be perceived as a special case of the Arrhenius kinetics normally associated with gaseous flames. By comparison, high activation energy Arrhenius kinetics yields a much thinner reaction zone that is heavily biased toward the high temperature side of the front (Fig. 1). The problem (1)-(4) was solved numerically for a wide range of Zeldovich numbers (β) and flow intensities (A) using the parameters ν and µ from Table 1. The computational method employed is described in Ref. [2]. The results obtained show (Fig.2) that non-monotonicity of the V (A) dependency reported previously [2] is indeed a result of the high activation energy (β), and vanishes as β decreases, thereby also explaining its 5

6 absence in liquid flames. For the range of flow intensities covered by Fig. 2 the double change of monotonicity is observable only for β = 1.6 and β = 4. For higher β the second upswing occurs beyond the figure s frame. The non-monotonicity of the V (A) - curve occurring at large Zeldovich numbers may be interpreted in terms of the classical theory of counter-flow flames, as discussed in Ref. [2]. The flow-field (2) near the stagnation points x = nπ/k, n = 0, ±1, ±2,... and y = mπ/k, m = 0, ±1, ±2,... coincides with the counter-flow with the strain 2Ak. The steady counter-flow flame is realized only provided the strain falls below a certain threshold value. Above this value flame-holding becomes unfeasible and one ends up with the flame spreading through the vortical flow-field at a reduced speed. The threshold value increases significantly with β. Moreover, for small β (KPP) kinetics the counter-flow flame exists at all strains. This explains the absence of the V (A) non-monotonicity for the KPP kinetics. For sufficiently small A, V is nearly independent of β. This is likely because at low A, the characteristic strain rate, given in dimensional terms as the vortex intensity (AS L ) divided by the vortex length scale d = (π/k)l th is significantly smaller than the characteristic chemical rate S L /l th (or equivalently that the Karlovitz number Ka defined as Ak/π is sufficiently small), then the Huygens propagation mode of combustion applies in which the front can be treated as an interface propagating normal to itself with constant velocity S L relative to the flow-field [1] [5] [9]. In this case the internal front structure is not affected by the front and thus V is the same for KPP and/or Arrhenius kinetics at any β. For the current computations Fig. 2 shows that Huygens propagation occurs for A < 15, and since k = for these calculations, the corresponding non-dimensional criterion is Ka < 0.6, which is similar to that found for gaseous flames in turbulent flows [1] [9]. At Ka higher than that corresponding to Huygens propagation, for a given A, V (A) is higher for lower β. This is probably a 6

7 consequence of the wider reaction zone for lower β as discussed below. Also note that, as one might expect judging from Fig. (1), the V (A) dependency evaluated for the KPP kinetics is nearly identical to that based on Arrhenius kinetics with β = 1.6 for all values of A examined. Figure 3 shows the effect of Ka on the burning rate V for one fixed value of the flow intensity A. Note that again for high Ka, V is higher for KPP than Arrhenius kinetics at β = 16, but for lower Ka, V is virtually independent of Ka. The threshold Ka is close to that inferred from Fig. 2. At sufficiently low Ka, where Huygens propagation applies, the results are independent of the chemistry model. At sufficiently high Ka, KPP provides higher propagation rates, which is consistent with Figure 2. Figure 3 also shows the effect of activation energy on the threshold for transition from Huygens to non-huygens propagation. This transition can be seen to occur at slightly lower Ka for KPP than Arrhenius kinetics. The results obtained are qualitatively in line with the experimental data on liquid flames [4]. In order to achieve a better quantitative agreement one presumably has to employ a more sophisticated model involving a set of coupled reaction-diffusion equations with different diffusivities (see footnote in Ref [8] p.3843) rather than trying to capture all of the physics with a single equation. This issue will be addressed in future studies. Figure 4 plots F = A 1/4 V (A) against A. The behavior seen in Fig. 4 is consistent with analytical findings [3] that predict saturation of F (A) at large A. Figures 5 and 6 show typical distributions of the reaction rate (Ω) and the associated temperature/concentration fields (Θ) for fronts with high-β Arrhenius kinetics and KPP kinetics spreading through an array of high-intensity eddies. With KPP kinetics the front has a relatively wide reaction zone that is spread across more of the diffusive width of the front (see Fig. 1) compared to Arrhenius kinetics. The broader reaction zone maintains its structure more robustly against the flow induced deformations and 7

8 strains. Moreover, the front speed is less affected for low activation energy since in this case the integrated reaction rate is less sensitive to temperature, and thus less sensitive to temperature fluctuations caused by the stirring. Consequently, depending on the stirring intensity, the low activation energy flame is capable of building up a virtually unlimited amplification of its propagation speed. 3 Acknowledgments The authors gratefully acknowledge the support of the US-Israel Binational Science Foundation under Grant No , the Israel Science Foundation under Grants Nos , 67-01, and , The Gordon Foundation of Tel-Aviv University, the European Community Program TMR-ERBF MRX CT180201, and the NASA-Glenn Research Center under Grant NAG The numerical simulation were performed at the Israel Inter-University Computer Center. References [1] Ronney, P.D. in Modelling in Combustion Science (J. Buckmaster and T. Takeno, Eds). Lecture Notes in Physics, Springer-Verlag, Berlin, 449:3-22 (1995) [2] Kagan, L., and Sivashinsky, G., Combust. Flame, 120: , (2000) [3] Audoly, B., Berestycki, H. and Pomeau, Y. C.R. Acad. Sci. Paris, Ser IIB, 328: (2000) [4] Shy S.S., Ronney P.D., Buckley S.G., and Yakhot V. Proc. Comb. Inst.,24:543 (1992). [5] Ronney, P.D., Haslam, B.D., and Rhys, N.O. Phys. Rev. Lett., 74:3804 (1995) [6] Shy, S.S., Jang, R.H., and Ronney, P.D. Combust. Sci. Techn., 113:329 (1996) 8

9 [7] Zeldovich, Y.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G.M. Mathematical Theory of Combustion and Explosion, Plenum, New York (1985) [8] Hanna, A., Saul, A. and Showalter, K. J. Am. Chem. Soc., 104:3838 (1982) [9] Bradley, D., Proc. Combust. Inst., 24:247 (1992) 9

10 Figure captions Figure 1 Reaction rate (νω) versus Θ. Bold line corresponds to the Arrhenius kinetics at β = 1.6, σ = 0.2; thin line corresponds to the Arrhenius kinetics at β = 16, σ = 0.2; dashed line corresponds to the KPP kinetics. Figure 2 Flame speed (V ) versus flow-intensity (A) evaluated for σ = 0.2, k = and 0.4 β 16. Dashed line corresponds to the KPP kinetics. Figure 3 Flame speed (V ) versus Karlovitz number (Ka = Ak/π) evaluated for the KPP (dashed line) and the Arrhenius kinetics (bold line) at β = 16, σ = 0.2 and A = 50. Figure 4 Scaled flame speed (F = A 1/4 V ) versus flow-intensity (A) evaluated for σ = 0.2, k = and 0.4 β 16. Dashed line corresponds to the KPP kinetics. Figure 5 Reaction rate (Ω) and temperature (Θ) distributions for the Arrhenius kinetics at β = 16, σ = 0.2, A = 100, k = The vertical arrow indicates direction of propagation. Darker shading corresponds to higher levels of Ω and Θ. Figure 6 Reaction rate (Ω) and concentration (Θ) distributions for the KPP kinetics at A = 100, k = Darker shading corresponds to higher levels of Ω and Θ. The arrow indicates direction of propagation. Note an increase in the number of trailing islands compared to the case of high-β Arrhenius kinetics (Fig. 5) 10

11 Figure 2.

12

13

Flame Propagation in Poiseuille Flow under Adiabatic Conditions

Flame Propagation in Poiseuille Flow under Adiabatic Conditions Flame Propagation in Poiseuille Flow under Adiabatic Conditions J. DAOU and M. MATALON* Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208-3125, USA

More information

The Effect of Mixture Fraction on Edge Flame Propagation Speed

The Effect of Mixture Fraction on Edge Flame Propagation Speed 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 213 The Effect of Mixture Fraction on Edge Flame

More information

Quenching and propagation of combustion fronts in porous media

Quenching and propagation of combustion fronts in porous media Quenching and propagation of combustion fronts in porous media Peter Gordon Department of Mathematical Sciences New Jersey Institute of Technology Newark, NJ 72, USA CAMS Report 56-6, Spring 26 Center

More information

Ignition and Extinction Fronts in Counterflowing Premixed Reactive Gases

Ignition and Extinction Fronts in Counterflowing Premixed Reactive Gases Ignition and Extinction Fronts in Counterflowing Premixed Reactive Gases J. DAOU* and A. LIÑÁN Dpto. Motopropulsion y Termofluidodinamica, Universidad Politécnica de Madrid, E.T.S.I. Aeronáuticos, Plaza

More information

Flamelet Analysis of Turbulent Combustion

Flamelet Analysis of Turbulent Combustion Flamelet Analysis of Turbulent Combustion R.J.M. Bastiaans,2, S.M. Martin, H. Pitsch,J.A.vanOijen 2, and L.P.H. de Goey 2 Center for Turbulence Research, Stanford University, CA 9435, USA 2 Eindhoven University

More information

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives Center for Turbulence Research Annual Research Briefs 2005 325 The dynamics of premixed flames propagating in non-uniform velocity fields: Assessment of the significance of intrinsic instabilities in turbulent

More information

Effect of volumetric heat-loss on triple flame propagation

Effect of volumetric heat-loss on triple flame propagation Effect of volumetric heat-loss on triple flame propagation R. Daou, J. Daou, J. Dold Department of Mathematics, UMIST, Manchester M60 1QD, UK < John.Dold@umist.ac.uk > Abstract We present a numerical study

More information

Mathematical modeling of critical conditions in the thermal explosion problem

Mathematical modeling of critical conditions in the thermal explosion problem Mathematical modeling of critical conditions in the thermal explosion problem G. N. Gorelov and V. A. Sobolev Samara State University, Russia Abstract The paper is devoted to the thermal explosion problem

More information

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory 8.-1 Systems, where fuel and oxidizer enter separately into the combustion chamber. Mixing takes place by convection and diffusion. Only where

More information

Large-eddy simulations of turbulent reacting stagnation point flows

Large-eddy simulations of turbulent reacting stagnation point flows Copyright 1997, American Institute of Aeronautics and Astronautics, Inc. AIAA Meeting Papers on Disc, January 1997 A9715437, AIAA Paper 97-0372 Large-eddy simulations of turbulent reacting stagnation point

More information

A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved

A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved Center for Turbulence Research Annual Research Briefs 2009 185 A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved By E. Knudsen AND

More information

Laminar Premixed Flames: Flame Structure

Laminar Premixed Flames: Flame Structure Laminar Premixed Flames: Flame Structure Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Course Overview Part I: Fundamentals and Laminar Flames Introduction Fundamentals and mass balances of

More information

Lecture 15. The Turbulent Burning Velocity

Lecture 15. The Turbulent Burning Velocity Lecture 15 The Turbulent Burning Velocity 1 The turbulent burning velocity is defined as the average rate of propagation of the flame through the turbulent premixed gas mixture. In the laminar case, solutions

More information

Effects of turbulence and flame instability on flame front evolution

Effects of turbulence and flame instability on flame front evolution PHYSICS OF FLUIDS 18, 104105 2006 Effects of turbulence and flame instability on flame front evolution Jiao Yuan, Yiguang Ju, and Chung K. Law a Department of Mechanical and Aerospace Engineering, Princeton

More information

Asymptotic Structure of Rich Methane-Air Flames

Asymptotic Structure of Rich Methane-Air Flames Asymptotic Structure of Rich Methane-Air Flames K. SESHADRI* Center for Energy and Combustion Research, Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla,

More information

Evaluation of Numerical Turbulent Combustion Models Using Flame Speed Measurements from a Recently Developed Fan- Stirred Explosion Vessel

Evaluation of Numerical Turbulent Combustion Models Using Flame Speed Measurements from a Recently Developed Fan- Stirred Explosion Vessel Paper # 070LT-0096 Topic: Turbulent Flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013

More information

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames 6.-1 Previous lecture: Asymptotic description of premixed flames based on an assumed one-step reaction. basic understanding

More information

Exercises in Combustion Technology

Exercises in Combustion Technology Exercises in Combustion Technology Exercise 4: Turbulent Premixed Flames Turbulent Flow: Task 1: Estimation of Turbulence Quantities Borghi-Peters diagram for premixed combustion Task 2: Derivation of

More information

Flame Propagation in the Channel and Flammability Limits

Flame Propagation in the Channel and Flammability Limits Flame Propagation in the Channel and Flammability Limits G. M. MAKHVILADZE, V. I. MELIKHOV and V. A. RABINKOV Institute for Problems in Mechanics of the USSR Academy of Sciences Prosp. Vernadskogo 101,

More information

A Jet-Stirred Apparatus for Turbulent Combustion Experiments

A Jet-Stirred Apparatus for Turbulent Combustion Experiments 25 th ICDERS August 2 7, 2015 Leeds, UK A Jet-Stirred Apparatus for Turbulent Combustion Experiments Abbasali A. Davani; Paul D. Ronney University of Southern California Los Angeles, California, United

More information

Lecture 7 Flame Extinction and Flamability Limits

Lecture 7 Flame Extinction and Flamability Limits Lecture 7 Flame Extinction and Flamability Limits 7.-1 Lean and rich flammability limits are a function of temperature and pressure of the original mixture. Flammability limits of methane and hydrogen

More information

TOWARDS AN EXTENSION OF TFC MODEL OF PREMIXED TURBULENT COMBUSTION

TOWARDS AN EXTENSION OF TFC MODEL OF PREMIXED TURBULENT COMBUSTION MCS 7 China Laguna, Cagliari, Sardinia, Italy, September 11-15, 2011 TOWARDS AN EXTENSION OF TFC MODEL OF PREMIXED TURBULENT COMBUSTION V. Sabel nikov and A. Lipatnikov e-mail: Vladimir.Sabelnikov@onera.fr

More information

Mild Ignition Phenomena in Rapid Compression Machines

Mild Ignition Phenomena in Rapid Compression Machines 25 th ICDERS August 2 7, 2015 Leeds, UK Kevin P. Grogan a, S. Scott Goldsborough b, Matthias Ihme a a Stanford University, Stanford, CA 94305 b Argonne National Laboratory, Argonne, IL 60439 1 Introduction

More information

Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS

Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS 1. Define the term fuels. 2. What are fossil fuels? Give examples. 3. Define primary fuels. Give examples. 4.

More information

Flame Enhancement and Quenching in Fluid Flows

Flame Enhancement and Quenching in Fluid Flows Flame Enhancement and Quenching in Fluid Flows Natalia Vladimirova, Peter Constantin, Alexander Kiselev, Oleg Ruchayskiy and Leonid Ryzhik ASCI/Flash Center, The University of Chicago, Chicago, IL 6637

More information

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing.

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. Lecture 14 Turbulent Combustion 1 We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. In a fluid flow, turbulence is characterized by fluctuations of

More information

REDIM reduced modeling of quenching at a cold inert wall with detailed transport and different mechanisms

REDIM reduced modeling of quenching at a cold inert wall with detailed transport and different mechanisms 26 th ICDERS July 3 th August 4 th, 217 Boston, MA, USA REDIM reduced modeling of quenching at a cold inert wall with detailed transport and different mechanisms Christina Strassacker, Viatcheslav Bykov,

More information

Poiseuille Advection of Chemical Reaction Fronts

Poiseuille Advection of Chemical Reaction Fronts Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 8- Poiseuille Advection of Chemical Reaction Fronts Boyd F. Edwards Utah State University Follow this and additional works

More information

The role of unequal diffusivities in ignition and extinction fronts in strained mixing layers

The role of unequal diffusivities in ignition and extinction fronts in strained mixing layers Combust. Theory Modelling 2 (1998) 449 477. Printed in the UK PII: S1364-7830(98)94094-3 The role of unequal diffusivities in ignition and extinction fronts in strained mixing layers J Daou andaliñán Dpto

More information

Turbulent Flame Speeds of G-equation Models in Unsteady Cellular Flows

Turbulent Flame Speeds of G-equation Models in Unsteady Cellular Flows Math. Model. Nat. Phenom. Vol. 8, No. 3, 2013, pp. 198 205 DOI: 10.1051/mmnp/20138312 Turbulent Flame Speeds of G-equation Models in Unsteady Cellular Flows Y-Y Liu 1, J. Xin 2, Y. Yu 2 1 Department of

More information

Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames

Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames Chao Han a, David O. Lignell b, Evatt R. Hawkes c, Jacqueline H. Chen d, Haifeng Wang a, a School of

More information

Faculty of Engineering. Contents. Introduction

Faculty of Engineering. Contents. Introduction Faculty of Engineering Contents Lean Premixed Turbulent Flames vs. Hydrogen Explosion: A Short Survey on Experimental, Theoretical and Analytical Studies Dr.-Ing. Siva P R Muppala Lecturer Prof. Jennifer

More information

Mixing and reaction fronts in laminar flows

Mixing and reaction fronts in laminar flows JOURNAL OF CHEMICAL PHYSICS VOLUME 10, NUMBER 16 APRIL 004 Mixing and reaction fronts in laminar flows M. Leconte, J. Martin, N. Rakotomalala, and D. Salin Laboratoire Fluides Automatique et Systèmes Thermiques,

More information

A G-equation formulation for large-eddy simulation of premixed turbulent combustion

A G-equation formulation for large-eddy simulation of premixed turbulent combustion Center for Turbulence Research Annual Research Briefs 2002 3 A G-equation formulation for large-eddy simulation of premixed turbulent combustion By H. Pitsch 1. Motivation and objectives Premixed turbulent

More information

Lecture 9 Laminar Diffusion Flame Configurations

Lecture 9 Laminar Diffusion Flame Configurations Lecture 9 Laminar Diffusion Flame Configurations 9.-1 Different Flame Geometries and Single Droplet Burning Solutions for the velocities and the mixture fraction fields for some typical laminar flame configurations.

More information

Premixed Edge-Flames under Transverse Enthalpy Gradients

Premixed Edge-Flames under Transverse Enthalpy Gradients Premixed Edge-Flames under Transverse Enthalpy Gradients J. DAOU and M. MATALON* McCormick School of Engineering and Applied Science, Engineering Sciences and Applied Mathematics, Northwestern University,

More information

LEWIS NUMBER EFFECTS ON THE STRUCTURE AND EXTINCTION OF DIFFUSION FLAMES DUE TO STRAIN. A. Liñan

LEWIS NUMBER EFFECTS ON THE STRUCTURE AND EXTINCTION OF DIFFUSION FLAMES DUE TO STRAIN. A. Liñan LEWIS NUMBER EFFECTS ON THE STRUCTURE AND EXTINCTION OF DIFFUSION FLAMES DUE TO STRAIN A. Liñan Escuela Técnica Superior de Ingenieros Aeronáuticos Universidad Politécnica de Madrid SPAIN In turbulent

More information

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 A comparison between two different Flamelet

More information

7. Turbulent Premixed Flames

7. Turbulent Premixed Flames 7. Turbulent Premixed Flames Background: - Structure of turbulent premixed flames; 7. Turbulent Premixed Flames 1 AER 1304 ÖLG - Instantaneous flame fronts (left) and turbulent flame brush envelope (right).

More information

Opposed Flow Impact on Flame Spread Above Liquid Fuel Pools

Opposed Flow Impact on Flame Spread Above Liquid Fuel Pools Opposed Flow Impact on Flame Spread Above Liquid s Jinsheng Cai, Feng Liu, and William A. Sirignano Department of Mechanical and Aerospace Engineering University of California, Irvine, CA 92697-3975 Abstract

More information

Well Stirred Reactor Stabilization of flames

Well Stirred Reactor Stabilization of flames Well Stirred Reactor Stabilization of flames Well Stirred Reactor (see books on Combustion ) Stabilization of flames in high speed flows (see books on Combustion ) Stabilization of flames Although the

More information

Generalized flame balls

Generalized flame balls Combustion Theory and Modelling Vol. 13, No., 9, 69 94 Generalized flame balls Joel Daou 1,, Faisal Al-Malki 1 and Paul Ronney 1 School of Mathematics, University of Manchester, Manchester M13 9PL, UK;

More information

Reaction Rate Closure for Turbulent Detonation Propagation through CLEM-LES

Reaction Rate Closure for Turbulent Detonation Propagation through CLEM-LES 5 th ICDERS August 7, 05 Leeds, UK through CLEM-LES Brian Maxwell, Matei Radulescu Department of Mechanical Engineering, University of Ottawa 6 Louis Pasteur, Ottawa, KN 6N5, Canada Sam Falle School of

More information

A Priori Model for the Effective Lewis Numbers in Premixed Turbulent Flames

A Priori Model for the Effective Lewis Numbers in Premixed Turbulent Flames Paper # 070LT-0267 Topic: Turbulent Flames 8 th US National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013.

More information

Heat-recirculating combustors. Paul D. Ronney

Heat-recirculating combustors. Paul D. Ronney Heat-recirculating combustors Paul D. Ronney Department of Aerospace and Mechanical Engineering, 3650 McClintock Ave., OHE 430J University of Southern California, Los Angeles, CA, USA 90089-1453 1-213-740-0490

More information

D. VEYNANTE. Introduction à la Combustion Turbulente. Dimanche 30 Mai 2010, 09h00 10h30

D. VEYNANTE. Introduction à la Combustion Turbulente. Dimanche 30 Mai 2010, 09h00 10h30 D. VEYNANTE Introduction à la Combustion Turbulente Dimanche 30 Mai 2010, 09h00 10h30 Introduction to turbulent combustion D. Veynante Laboratoire E.M2.C. CNRS - Ecole Centrale Paris Châtenay-Malabry France

More information

Asymptotic Analysis of the Structure of Moderately Rich Methane-Air Flames

Asymptotic Analysis of the Structure of Moderately Rich Methane-Air Flames Asymptotic Analysis of the Structure of Moderately Rich Methane-Air Flames K. SESHADRI,* X. S. BAI,** H. PITSCH, and N. PETERS Institut für Technische Mechanik, RWTH Aachen, D-52056 Aachen, Federal Republic

More information

Scalar gradient and small-scale structure in turbulent premixed combustion

Scalar gradient and small-scale structure in turbulent premixed combustion Center for Turbulence Research Annual Research Briefs 6 49 Scalar gradient and small-scale structure in turbulent premixed combustion By S. H. Kim AND H. Pitsch. Motivation and objectives The scalar gradient

More information

Numerical Simulation of Premixed V-Flame

Numerical Simulation of Premixed V-Flame Proceedings of the World Congress on Engineering 7 Vol II WCE 7, July -, 7, London, U.K. Numerical Simulation of Premixed V-Flame C.K. Chan, B. Stewart, and C.W. Leung Abstract A Lagrangian front-tracking

More information

Effects of Variation of the Flame Area and Natural Damping on Primary Acoustic Instability of Downward Propagating Flames in a Tube

Effects of Variation of the Flame Area and Natural Damping on Primary Acoustic Instability of Downward Propagating Flames in a Tube 5 th ICDERS August 7, 015 Leeds, UK Effects of Variation of the Flame Area and Natural Damping on Primary Acoustic Instability of Downward Propagating Flames in a Tube Sung Hwan Yoon and Osamu Fujita Division

More information

Flame / wall interaction and maximum wall heat fluxes in diffusion burners

Flame / wall interaction and maximum wall heat fluxes in diffusion burners Flame / wall interaction and maximum wall heat fluxes in diffusion burners de Lataillade A. 1, Dabireau F. 1, Cuenot B. 1 and Poinsot T. 1 2 June 5, 2002 1 CERFACS 42 Avenue Coriolis 31057 TOULOUSE CEDEX

More information

The Role of Turbulence in Darrieus-Landau Instability

The Role of Turbulence in Darrieus-Landau Instability The Role of Turbulence in Darrieus-Landau Instability G. Troiani 1, F. Creta 2, P. E. Lapenna 2, R. Lamioni 2 1 ENEA C.R. Casaccia, Rome, Italy 2 Dept. of Mechanical and Aerospace Eng., University of Rome

More information

Structures of Turbulent Bunsen Flames in the Corrugated-Flamelet Regime

Structures of Turbulent Bunsen Flames in the Corrugated-Flamelet Regime 25 th ICDERS August 2 7, 2015 Leeds, UK Structures of Turbulent Bunsen Flames in the Corrugated-Flamelet Regime Junichi Furukawa and Yasuko Yoshida Department of Mechanical Engineering Tokyo Metropolitan

More information

A new jet-stirred reactor for chemical kinetics investigations Abbasali A. Davani 1*, Paul D. Ronney 1 1 University of Southern California

A new jet-stirred reactor for chemical kinetics investigations Abbasali A. Davani 1*, Paul D. Ronney 1 1 University of Southern California 0 th U. S. National Combustion Meeting Organized by the Eastern States Section of the Combustion Institute pril 23-26, 207 College Park, Maryland new jet-stirred reactor for chemical kinetics investigations

More information

Rouen LBV 2012 ACCURACY OF TWO METHODS TO MEASURE LAMINAR FLAME SPEEDS: (1) STEADY BUNSEN BURNER FLAMES AND (2) SPHERICAL FLAMES IN BOMBS.

Rouen LBV 2012 ACCURACY OF TWO METHODS TO MEASURE LAMINAR FLAME SPEEDS: (1) STEADY BUNSEN BURNER FLAMES AND (2) SPHERICAL FLAMES IN BOMBS. Rouen LBV 2012 ACCURACY OF TWO METHODS TO MEASURE LAMINAR FLAME SPEEDS: (1) STEADY BUNSEN BURNER FLAMES AND (2) SPHERICAL FLAMES IN BOMBS. A. Bonhomme, T. Boushaki*, L. Selle, B. Ferret and T. Poinsot

More information

Extinction Limits of Premixed Combustion Assisted by Catalytic Reaction in a Stagnation-Point Flow

Extinction Limits of Premixed Combustion Assisted by Catalytic Reaction in a Stagnation-Point Flow 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 2006, Reno, Nevada AIAA 2006-164 Extinction Limits of Premixed Combustion Assisted by Catalytic Reaction in a Stagnation-Point Flow Jingjing

More information

c 2003 Society for Industrial and Applied Mathematics

c 2003 Society for Industrial and Applied Mathematics MULTISCALE MODEL. SIMUL. Vol. 1, No. 4, pp. 554 57 c 23 Society for Industrial and Applied Mathematics REACTION-DIFFUSION FRONT SPEEDS IN SPATIALLY-TEMPORALLY PERIODIC SHEAR FLOWS JIM NOLEN AND JACK XIN

More information

Analysis of lift-off height and structure of n-heptane tribrachial flames in laminar jet configuration

Analysis of lift-off height and structure of n-heptane tribrachial flames in laminar jet configuration Analysis of lift-off height and structure of n-heptane tribrachial flames in laminar jet configuration Stefano Luca*, Fabrizio Bisetti Clean Combustion Research Center, King Abdullah University of Science

More information

Transported PDF modeling of turbulent premixed combustion

Transported PDF modeling of turbulent premixed combustion Center for Turbulence Research Annual Research Briefs 2002 77 Transported PDF modeling of turbulent premixed combustion By Chong M. Cha. Motivation and objectives Computational implementation of transported

More information

Calculation of critical conditions for the filtration combustion model

Calculation of critical conditions for the filtration combustion model Calculation of critical conditions for the filtration combustion model O. Vidilina 1, E. Shchepakina 1 1 Samara National Research University, 34 Moskovskoe Shosse, 443086, Samara, Russia Abstract The paper

More information

Propagation and quenching in a reactive Burgers-Boussinesq system.

Propagation and quenching in a reactive Burgers-Boussinesq system. Propagation and quenching in a reactive system., University of New Meico, Los Alamos National Laboratory, University of Chicago October 28 Between Math and Astrophysics Motivation The model Reaction Compression

More information

DNS and LES of Turbulent Combustion

DNS and LES of Turbulent Combustion Computational Fluid Dynamics In Chemical Reaction Engineering IV June 19-24, 2005 Barga, Italy DNS and LES of Turbulent Combustion Luc Vervisch INSA de Rouen, IUF, CORIA-CNRS Pascale Domingo, Julien Réveillon

More information

Effects of heat and momentum losses on the stability of premixed flames in a narrow channel

Effects of heat and momentum losses on the stability of premixed flames in a narrow channel Combustion Theory and Modelling Vol. 10, No. 4, August 2006, 659 681 Effects of heat and momentum losses on the stability of premixed flames in a narrow channel S. H. KANG,S.W.BAEK and H. G. IM Aeropropulsion

More information

A THEORETICAL ANALYSIS OF PREMIXED FLAME PROPAGATION WITH AM ISOTHERMAL CHAIN REACTION

A THEORETICAL ANALYSIS OF PREMIXED FLAME PROPAGATION WITH AM ISOTHERMAL CHAIN REACTION A THEORETICAL ANALYSIS OF PREMIXED FLAME PROPAGATION WITH AM ISOTHERMAL CHAIN REACTION Amable Liñán Instituto Nacional de Técnica Aeroespacial, Madrid A B S T R A C T An asymptotic analysis, for large

More information

FINAL REPORT. Office of Naval Research. entitled. Anatol Roshko Theodore Von Karman Professor of Aeronautics

FINAL REPORT. Office of Naval Research. entitled. Anatol Roshko Theodore Von Karman Professor of Aeronautics to F11 F rnpv FINAL REPORT 4to Office of Naval Research on Contract No. N00014-85-C-0646 Work Unit No. 4328-434 entitled STRUCTURE AND MIXING IN TURBULENT SHEAR FLOWS 1 July 1985-31 October 1988 Anatol

More information

Development of One-Step Chemistry Models for Flame and Ignition Simulation

Development of One-Step Chemistry Models for Flame and Ignition Simulation Development of One-Step Chemistry Models for Flame and Ignition Simulation S.P.M. Bane, J.L. Ziegler, and J.E. Shepherd Graduate Aerospace Laboratories California Institute of Technology Pasadena, CA 91125

More information

Flow and added small-scale topologies in a turbulent premixed flame

Flow and added small-scale topologies in a turbulent premixed flame Flow and added small-scale topologies in a turbulent premixed flame L. Cifuentes*, A. Kempf* and C. Dopazo** luis.cifuentes@uni-due.de *University of Duisburg-Essen, Chair of Fluid Dynamics, Duisburg -

More information

Use of the graphical analytic methods of studying the combustion processes in the internal combustion

Use of the graphical analytic methods of studying the combustion processes in the internal combustion Use of the graphical analytic methods of studying the combustion processes in the internal combustion engine combustion chamber on the basis of similarity criterion S. V. Krasheninnikov Samara State Aerospace

More information

Turbulent Premixed Combustion

Turbulent Premixed Combustion Turbulent Premixed Combustion Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Example: LES of a stationary gas turbine velocity field flame 2 Course Overview Part II: Turbulent Combustion Turbulence

More information

On the critical flame radius and minimum ignition energy for spherical flame initiation

On the critical flame radius and minimum ignition energy for spherical flame initiation Available online at www.sciencedirect.com Proceedings of the Combustion Institute 33 () 9 6 Proceedings of the Combustion Institute www.elsevier.com/locate/proci On the critical flame radius and minimum

More information

Topology and Brush Thickness of Turbulent Premixed V-shaped Flames

Topology and Brush Thickness of Turbulent Premixed V-shaped Flames Flow Turbulence Combust (2014) 93:439 459 DOI 10.1007/s10494-014-9563-3 Topology and Brush Thickness of Turbulent Premixed V-shaped Flames S. Kheirkhah Ö. L. Gülder Received: 19 December 2013 / Accepted:

More information

Extinction and reignition in a diffusion flame: a direct numerical simulation study

Extinction and reignition in a diffusion flame: a direct numerical simulation study J. Fluid Mech. (24), vol. 518, pp. 231 259. c 24 Cambridge University Press DOI: 1.117/S22112414 Printed in the United Kingdom 231 Extinction and reignition in a diffusion flame: a direct numerical simulation

More information

SCALAR FLUX AT THE LEADING EDGE OF PREMIXED TURBULENT FLAME BRUSH

SCALAR FLUX AT THE LEADING EDGE OF PREMIXED TURBULENT FLAME BRUSH MCS 8 Çeşme, Izmir, Turkey, September 8-13, 2013 SCALAR FLUX AT THE LEADING EDGE OF PREMIXED TURBULENT FLAME BRUSH A.N. Lipatnikov and V.A. Sabelnikov e-mail: lipatn@chalmers.se Department of Applied Mechanics,

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Stability Diagram for Lift-Off and Blowout of a Round Jet Laminar Diffusion Flame

Stability Diagram for Lift-Off and Blowout of a Round Jet Laminar Diffusion Flame Stability Diagram for Lift-Off and Blowout of a Round Jet Laminar Diffusion Flame SANDIP GHOSAL* and LUC VERVISCH *Northwestern University, Mechanical Engineering, Evanston, IL 60208-311 USA INSA de Rouen

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

a 16 It involves a change of laminar burning velocity, widening or narrowing combustion limits for

a 16 It involves a change of laminar burning velocity, widening or narrowing combustion limits for Peculiarities of filtration combustion of hydrogen-, propane- and methane-air mixtures in inert porous media. Kakutkina N.A., Korzhavin A.A., Mbarawa M. * Institute of chemical kinetics and combustion

More information

Thermal diffusive ignition and flame initiation by a local energy source

Thermal diffusive ignition and flame initiation by a local energy source INSTITUTE OF PHYSICS PUBLISHING Combust. Theory Modelling 6 () 97 315 COMBUSTION THEORY AND MODELLING PII: S1364-783()35-7 Thermal diffusive ignition and flame initiation by a local energy source Carlos

More information

The influence of axial orientation of spheroidal particles on the adsorption

The influence of axial orientation of spheroidal particles on the adsorption The influence of axial orientation of spheroidal particles on the adsorption rate in a granular porous medium F. A. Coutelieris National Center for Scientific Research Demokritos, 1510 Aghia Paraskevi

More information

EFFECTS OF INERT DUST CLOUDS ON THE EXTINCTION OF STRAINED, LAMINAR FLAMES AT NORMAL- AND MICRO-GRAVITY

EFFECTS OF INERT DUST CLOUDS ON THE EXTINCTION OF STRAINED, LAMINAR FLAMES AT NORMAL- AND MICRO-GRAVITY Proceedings of the Combustion Institute, Volume 28, 2000/pp. 2921 2929 EFFECTS OF INERT DUST CLOUDS ON THE EXTINCTION OF STRAINED, LAMINAR FLAMES AT NORMAL- AND MICRO-GRAVITY M. GURHAN ANDAC, FOKION N.

More information

arxiv: v1 [physics.flu-dyn] 1 Sep 2016

arxiv: v1 [physics.flu-dyn] 1 Sep 2016 arxiv:1609.00347v1 [physics.flu-dyn] 1 Sep 2016 Thermal Structure and Burning Velocity of Flames in Non-volatile Fuel Suspensions http://dx.doi.org/1016/j.proci.2016.06.043 Michael J. Soo*, Keishi Kumashiro,

More information

Calculations on a heated cylinder case

Calculations on a heated cylinder case Calculations on a heated cylinder case J. C. Uribe and D. Laurence 1 Introduction In order to evaluate the wall functions in version 1.3 of Code Saturne, a heated cylinder case has been chosen. The case

More information

Analysis of Turbulent Free Convection in a Rectangular Rayleigh-Bénard Cell

Analysis of Turbulent Free Convection in a Rectangular Rayleigh-Bénard Cell Proceedings of the 8 th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows Lyon, July 2007 Paper reference : ISAIF8-00130 Analysis of Turbulent Free Convection

More information

Initiation of stabilized detonations by projectiles

Initiation of stabilized detonations by projectiles Initiation of stabilized detonations by projectiles P. Hung and J. E. Shepherd, Graduate Aeronautical Laboratory, California Institute of Technology, Pasadena, CA 91125 USA Abstract. A high-speed projectile

More information

Thermoacoustic Instabilities Research

Thermoacoustic Instabilities Research Chapter 3 Thermoacoustic Instabilities Research In this chapter, relevant literature survey of thermoacoustic instabilities research is included. An introduction to the phenomena of thermoacoustic instability

More information

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah Multi-Scale Modeling of Turbulence and Microphysics in Clouds Steven K. Krueger University of Utah 10,000 km Scales of Atmospheric Motion 1000 km 100 km 10 km 1 km 100 m 10 m 1 m 100 mm 10 mm 1 mm Planetary

More information

Subgrid-scale mixing of mixture fraction, temperature, and species mass fractions in turbulent partially premixed flames

Subgrid-scale mixing of mixture fraction, temperature, and species mass fractions in turbulent partially premixed flames Available online at www.sciencedirect.com Proceedings of the Combustion Institute 34 (2013) 1231 1239 Proceedings of the Combustion Institute www.elsevier.com/locate/proci Subgrid-scale mixing of mixture

More information

arxiv:physics/ v1 16 Nov 2002

arxiv:physics/ v1 16 Nov 2002 Model Flames in the Boussinesq Limit: The Effects of Feedback N. Vladimirova Λ and R. Rosner y ASCI Flash Center, Enrico Fermi Institute, The University of Chicago, Chicago, IL 6637 (Dated: January 8,

More information

Lecture 12 The Level Set Approach for Turbulent Premixed Combus=on

Lecture 12 The Level Set Approach for Turbulent Premixed Combus=on Lecture 12 The Level Set Approach for Turbulent Premixed Combus=on 12.- 1 A model for premixed turbulent combus7on, based on the non- reac7ng scalar G rather than on progress variable, has been developed

More information

Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows

Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows Center for Turbulence Research Annual Research Briefs 009 199 Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows By M. Kostka, E.

More information

A priori Tabulation of Turbulent Flame Speeds via a Combination of a Stochastic Mixing Model and Flamelet Generated Manifolds 5

A priori Tabulation of Turbulent Flame Speeds via a Combination of a Stochastic Mixing Model and Flamelet Generated Manifolds 5 Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany HEIKO SCHMIDT 1 MICHAEL OEVERMANN 2 ROB J.M. BASTIAANS 3 ALAN R. KERSTEIN 4 A priori Tabulation of Turbulent

More information

Multi-dimensional transport: DNS analysis and incorporation into the Reaction-Diffusion Manifold (REDIM) method

Multi-dimensional transport: DNS analysis and incorporation into the Reaction-Diffusion Manifold (REDIM) method 25 th ICDERS August 2 7, 2015 Leeds, UK Multi-dimensional transport: DNS analysis and incorporation into the Reaction-Diffusion Manifold (REDIM) method R. Schießl, V. Bykov and U. Maas Institut für Technische

More information

Quantitative Study of Fingering Pattern Created by Smoldering Combustion

Quantitative Study of Fingering Pattern Created by Smoldering Combustion Quantitative Study of Fingering Pattern Created by Smoldering Combustion Tada Y. 1, Suzuki K. 1, Iizuka H. 1, Kuwana K. 1, *, Kushida G. 1 Yamagata University, Department of Chemistry and Chemical Engineering,

More information

LES of an auto-igniting C 2 H 4 flame DNS

LES of an auto-igniting C 2 H 4 flame DNS Center for Turbulence Research Annual Research Briefs 2011 237 LES of an auto-igniting C 2 H 4 flame DNS By E. Knudsen, E. S. Richardson, J. H. Chen AND H. Pitsch 1. Motivation and objectives Large eddy

More information

arxiv: v1 [math.ds] 8 Sep 2013

arxiv: v1 [math.ds] 8 Sep 2013 Numerical Simulations of Heat Explosion With Convection In Porous Media arxiv:39.837v [math.ds] 8 Sep 3 Karam Allali a, Fouad Bikany a, Ahmed Taik a and Vitaly Volpert b a Department of Mathematics, FSTM,

More information

Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere

Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere JOEL DAOU Dpto. Motopropulsion y Termofluidodinamica, Universidad Politecnica De Madrid, E.T.S.I Aeronauticos, 28040 Madrid, Spain.

More information

Higher-order conditional moment closure modelling of local extinction and reignition in turbulent combustion

Higher-order conditional moment closure modelling of local extinction and reignition in turbulent combustion INSTITUTE OF PHYSICS PUBLISHING Combust. Theory Modelling 6 (2002) 425 437 COMBUSTION THEORY AND MODELLING PII: S1364-7830(02)30001-9 Higher-order conditional moment closure modelling of local extinction

More information

Effect of the Darrieus-Landau instability on turbulent flame velocity. Abstract

Effect of the Darrieus-Landau instability on turbulent flame velocity. Abstract 1 Eect o the Darrieus-Landau instability on turbulent lame velocity Maxim Zaytsev 1, and Vitaliy Bychkov 1 1 Institute o Physics, Umeå University, S-901 87 Umeå, Sweden Moscow Institute o Physics and Technology,

More information

Hermite-Padé approximation approach to exothermic explosions with heat loss

Hermite-Padé approximation approach to exothermic explosions with heat loss Annals of the University of Craiova, Mathematics and Computer Science Series Volume 42(1), 2015, Pages 140 147 ISSN: 1223-6934 Hermite-Padé approximation approach to exothermic explosions with heat loss

More information

Online publication date: 03 February 2010

Online publication date: 03 February 2010 This article was downloaded by: [Chen, Zheng] On: 4 February 2010 Access details: Access Details: [subscription number 919069799] Publisher Taylor & Francis Informa Ltd Registered in England and Wales

More information