Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy

Size: px
Start display at page:

Download "Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy"

Transcription

1 Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy A. Evaluation of Analytical Parameters in Atomic Absorption Spectroscopy Objective The single feature that contributes most to making atomic absorption unique among energy absorption techniques is the use of a flame to produce the necessary neutral, ground-state atoms. This experiment involves a study of various instrumental and chemical parameters that are important to atomic absorption spectroscopy because they are important to the processes that occur in the flame. Specifically, the parameters to be investigated are: (1) dependence of signal on position in flame; (2) effect of fuel-to-oxidant ratio; (3) effect of the state of the metal; and (4) effect of concentration. Theory Since atomic absorption obviously implies absorption by atoms, the processes by which we can produce atoms are of principal importance. The necessity of a steady signal (uniform production of atoms) and of a system easily suited for use with solutions has limited the methods of atom production almost exclusively to flames. A primary objective is to produce a large number of free atoms in the flame, but the conditions necessary to accomplish this are often different for different systems. Furthermore, the physical environment within a flame varies drastically, causing the atom composition of the flame to vary according to the geometric region. Degradation of solvated molecules to neutral atoms in a flame is a complicated and often poorly understood process. The efficient production of free atoms depends on the fuel-oxidant composition, the temperature, the sample feed rate, the type of burner, and the chemical system itself, including solvent and diverse substances. It is not always possible to sort out the individual effect of each of these parameters, but it is possible to determine empirically optimum analytical conditions. In fact, a study of the effects of these parameters often leads to valuable conclusions about the chemical nature of the system. The mechanism of atom production is complex and apparently is not the same for all solvents and flames. For this reason, the effects of certain parameters are not always the same for all systems. One of the more important factors that must be considered is the possible formation of oxides. Many metal oxides are among the most stable of all known compounds, and consequently, once formed, are very difficult to reduce, even in a high-temperature, fuel-rich flame. For this reason, the reducing nature of the flame (amount of fuel to oxidant) is of principal importance. Furthermore, certain regions in the flame are likely to be more reducing and thus contain a greater predominance of neutral atoms. The free-atom composition of the flame is determined by examining the signal as a function of the position of the optical path in the flame. A plot of such data is referred to as a flame-atom profile.

2 Experiment #1A: Introduction of PE AAnalyst Prepare chromium standards with the following chromium concentrations: 1, 2, 3, 4, and 5 ppm Cr. 2. Prepare an unknown chromium solution that has an approximate concentration between 1 and 5 ppm Cr. 3. Dilute all solutions with distilled water. 4. Using distilled water as the blank, read the absorbance for all solutions using manual and autosampling procedure. Experiment #2A: Dependence of Signal on Position in Flame 1. Using distilled water as the blank, read the absorbance for 10 ppm Cr solution. 2. Lower burner ½ turn and read absorbance for 10 ppm Cr again. 3. Continue to lower burner ½ turn and read absorbance until absorbance equals Set burner height to maximum absorbance position. Experiment #3A: Dependence of Signal on Fuel-to-Oxidant Ratio 1. Set acetylene flow rate to 2.5 L/min and read absorbance of 10 ppm Cr solution. 2. Raise flow rate of acetylene by increments of 0.1 L/min and read absorbance until flow rate equals 3.5 L/min. 3. Set flow rate of acetylene to rate showing maximum absorbance. Experiment #4A: Dependence of Signal on State of Metal With the burner height at the position of maximum absorbance and the flow rate set at the rate that gives the maximum absorbance, record the absorbance for the following 10 ppm Cr solutions: chromium nitrate, sodium chromate, sodium dichromate, chromium acetate, and chromium chloride. Calculations 1. Prepare a flame-atom profile by plotting the burner position (in arbitrary units) vs. signal intensity of (Cr-water). Locate the burner position giving the maximum signal on the graph. 2. Plot the signal vs. fuel/oxidant ratio. 3. Discuss the effect of the state of the metal on results. -2-

3 B. Trace Analysis of Metals by Flame Emission Objective This part of the experiment is designed to acquaint the student with the techniques of atomic emission for the analysis of metals. The use of a multipurpose emission-absorption instrument is illustrated for the determination of Na+ by emission. Theory The energy available in a flame can be used to excite the elemental components of an unknown sample, and the emission of radiation can be used to both qualitatively and quantitatively identify the unknown sample. The irreproducible nature of a flame makes quantitative determination virtually 100% empirical, but if conditions are accurately controlled, the emission intensity can be a quantitative indication of the amount of material present. The amount of material can be measured in reference to a working curve established with standard solutions. Some of the difficulties involved in the variation of flame conditions can be circumvented by the inclusion of a known concentration of a similarly emitting element and relating concentration of the unknown to the ratios of the emission intensities of the unknown and the standard. The techniques of atomic emission and absorption are complementary rather than competitive. Many metals, notably the alkali and alkaline earths, are easily excited in flames and consequently can be determined at much lower concentrations by flame emission. Other metals, such as the transition metals, are easily atomized in flames but not so readily excited and thus have much lower detection limits in absorption. For some elements (Mg) the two techniques may have identical detection limits. This is illustrated below: Detection Limits in Flame Emission and Absorption Spectroscopy Element Emission (ppm) Absorption (ppm) Al As Ba Cd Cr Cu Fe Mg K Na Zn The instrument used in this experiment is designed for both flame emission and absorption studies. It utilizes an integrated aspirator burner with electric ignition, the burner being fed with air and -3-

4 acetylene, and the sample being directly aspirated into the flame. For emission studies, the grating monochromator is employed between the flame and the detector. The wavelength of radiation allowed to pass onto the detector is chosen by selecting the element to be studied which automatically adjusts the monochromator system. Five adjustments must be made to set the monochromator at peak emission. Signal strength adjustment is accomplished by adjusting the flame position vertically with respect to the AA optical path, by controlling the fuel and oxidizer flow rates to the burner, and by electronic adjustments on the control panel. For absorption studies, the hollow cathode is selected for the element under analysis, and is operated at about 50% of its current rating. Monochromation of radiation is effected in a manner similar to the emission procedure, except that here the monochromator is simply used to filter out the transition radiation between electronic states other than the principal one desired, since the emission lines from the hollow cathode are essentially monochromatic. Calibration curves are prepared in flame emission and atomic absorption from solutions of the sample in known concentrations. In the assay of sodium, for example, one could make a calibration curve using several solutions of sodium, from say, ppm. The concentrations of these solutions could vary over the complete range of ppm. The sample would be atomized and the emission (or absorption) measured. The upper limit is reached when an increase in sodium concentration causes only a slight increase in emission (or absorbance); the lower limit is determined by the signal to noise ratio for the particular element analyzed. In quantitative analysis, the unknown sample is atomized and the absorbance or emission measured under exactly the same conditions as those used for preparation of the calibration plot. This is particularly important since many diverse ions interfere with the emission or absorbance of the element assay by effecting an increase or decrease in the emission of absorption. In this experiment the emission mode is used for assay of sodium ion. Experiment #1B: Atomic Emission 1. Transfer 0.5, 1, 3, 5, 7, and 10 ml of 100 ppm Na solution into 25 ml volumetric flasks. 2. Dilute to mark with distilled water. 3. Transfer 10 ml of tap water and 10 ml of distilled water (dip fingers in distilled water for 30 s) to 2 separate 25 ml volumetric flasks. 4. Dilute to mark with distilled water. 5. Record Na emission of all solutions. Calculations 1. Plot the emission intensity vs. concentration of sodium ion from the direct-intensity data. -4-

5 2. Perform a regression analysis over the linear portion of the graph. 3. Calculate the sodium-ion concentration in the unknown solutions in parts per million by the direct-intensity method. Questions 1. Propose a detailed sample preparation method for testing total sodium concentration in whole blood by Atomic emission. 2. A premix burner does not introduce all the material into the flame, and the larger droplets are drained to waste. How is air prevented from backing up into the burner and possibly causing an explosion? What other safety features are incorporated into the burner assembly. 3. In atomic absorption spectroscopy, why is the monochromator located after the sample compartment (the flame) rather than before as in the case of a UV-visible absorption spectrophotometer? 4. What is beam modulation and why is it used in atomic absorption? 5. Why are atomic absorption lines so sharp compared to the absorption spectrum of a molecule dissolved in solution? Procedure for Operation of PE AAnalyst 200 Amanda Wroble 10/21/03 1. Turn the AA hood fan on and make sure that the door to the fume hood on the far wall of the lab is lowered to the yellow mark. The power switch for the hood fan is located on the back of the bench supporting the AA. 2. Open the compartment on the right side of the front of the PE AAnalyst 200 and turn the power switch on. 3. Open the main valve to the acetylene tank and the small acetylene valve. Turn on the air pressure. It is located directly above the PE AAnalyst After the PE AAnalyst 200 computer has completed the setup procedures, select Flame AA. Manual Sampling Procedure 5. Click on Tools and then Select Method. Choose the method named Chromium demo. 6. Once Chromium demo has been selected, the Lamp tab should be opened. The wavelength, slit width, and identity of the lamp used in the method are shown. Click on Setup Instrument to turn the lamp on. It will take about 1 minute for the lamp to turn on. 7. Using a small white piece of paper, verify that the burner head is not blocking the optical beam. (The burner should be unlit at this time!) If the burner head blocks the beam, adjust the burner head height. Ask your TA how to make the adjustment. 8. Click on the Flame tab and ignite the flame by selecting the on/off switch. It is important that the sampling tube is placed in a solution whenever the flame is on. 9. While distilled water is being aspirated, click on Autozero. The absorbance of distilled water should now read Place the sampling tube into a chromium solution. 11. Optimize the absorbance of the chromium solution by adjusting the burner height and the flow of the solution into the nebulizer. Ask your TA to assist you as you optimize the -5-

6 burner height. The nebulizer uptake can be adjusted by turning the red ring into which the sampling tube flows. a. Turn the ring counterclockwise until the sampling tube is blowing bubbles in the solution. b. Turn the ring clockwise until there are no bubbles. c. Turn the ring ¼ of a turn clockwise. 12. Select the Analyze tab. 13. With distilled water aspirating, select Analyze Blank. Once an absorbance reading has been taken, the PE AAnalyst 200 will automatically autozero. 14. Place the sampling tube into the 1 ppm Cr solution and click Analyze Standards. Once the reading has been taken for the 1 ppm Cr solution, place the tube into the 2 ppm Cr solution and click Analyze Standards. Continue for all standards. In between readings, sampling tube should be placed in distilled water briefly. 15. Click on Calibration to display calibration curve. The calibration curve can be printed by clicking on Print. 16. Place tube in unknown Cr solution and click Analyze Sample. The PE AAnalyst 200 automatically calculates the concentration of the unknown based on the calibration curve. 17. The method is set up to print once there is a full page of data. If nothing has printed after step 16, click Printer on/off, and your data should print. Autosampling Procedure 5. Click on Tools and then Select Method. Choose the method named Chromium demo Once Chromium demo 2 has been selected, the Lamp tab should be opened. The wavelength, slit width, and identity of the lamp used in the method are shown. Click on Setup Instrument to turn the lamp on. It will take about 1 minute for the lamp to turn on. 7. Using a small white piece of paper, verify that the burner head is not blocking the optical beam. (The burner should be unlit at this time!) If the burner head blocks the beam, adjust the burner head height. Ask your TA how to make the adjustment. 8. Click on the Flame tab and ignite the flame by selecting the on/off switch. It is important that the sampling tube is placed in a solution whenever the flame is on. The sampling tube on the autosampling apparatus should be in the distilled water wash station. 9. While distilled water is being aspirated, click on Autozero. The absorbance of distilled water should now read Place the autosampling tube into a chromium solution. 11. Optimize the absorbance of the chromium solution by adjusting the burner height and the flow of the solution into the nebulizer. Ask your TA to assist you as you optimize the burner height. The nebulizer uptake can be adjusted by turning the red ring into which the sampling tube flows. a. Turn the ring counterclockwise until the sampling tube is blowing bubbles in the solution. b. Turn the ring clockwise until there are no bubbles. c. Turn the ring ¼ of a turn clockwise. 12. Select the Analyze tab. 13. Place blank solution in position 1 of the tray, standards in positions 2-9, and unknown samples in positions

7 14. Select Analyze Blank. The autosampling device will go to position 1 in the tray, which should be a blank. Once an absorbance reading has been taken, the PE AAnalyst 200 will automatically autozero. 15. Select Analyze Standards. The autosampler will place the sampling tube in 1 ppm Cr solution in position 2 and take an absorbance reading. Once the reading has been taken for the 1 ppm Cr solution, click Analyze Standards again. Continue for all standards. Click on Calibration to display calibration curve. The calibration curve can be printed by clicking on Calibration Curve and Print. 16. Click Analyze Sample. The autosampler will place the sampling tube in position 10. The PE AAnalyst 200 automatically calculates the concentration of the unknown based on the calibration curve. 17. The method is set up to print once there is a full page of data. If nothing has printed after step 16, click Printer on/off, and your data should print. -7-

FLAME PHOTOMETRY AIM INTRODUCTION

FLAME PHOTOMETRY AIM INTRODUCTION FLAME PHOTOMETRY AIM INTRODUCTION Atomic spectroscopy is based on the absorption, emission or fluorescence process of light by atoms or elementary ions. Information for atomic scale is obtained in two

More information

MASTERING THE VCE 2014 UNIT 3 CHEMISTRY STUDENT SOLUTIONS

MASTERING THE VCE 2014 UNIT 3 CHEMISTRY STUDENT SOLUTIONS MASTERING THE VCE 2014 UNIT 3 CHEMISTRY STUDENT SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/VCE-UPDATES QUESTION 45 QUESTION 46 Answer is A QUESTION 47 The number of protons in the element.

More information

Atomic Absorption Spectrophotometry. Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon

Atomic Absorption Spectrophotometry. Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon Atomic Absorption Spectrophotometry Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon Defination In analytical chemistry, Atomic absorption spectroscopy is a

More information

ANALYSIS OF ZINC IN HAIR USING FLAME ATOMIC ABSORPTION SPECTROSCOPY

ANALYSIS OF ZINC IN HAIR USING FLAME ATOMIC ABSORPTION SPECTROSCOPY ANALYSIS OF ZINC IN HAIR USING FLAME ATOMIC ABSORPTION SPECTROSCOPY Introduction The purpose of this experiment is to determine the concentration of zinc in a sample of hair. You will use both the calibration

More information

Atomization. In Flame Emission

Atomization. In Flame Emission FLAME SPECTROSCOPY The concentration of an element in a solution is determined by measuring the absorption, emission or fluorescence of electromagnetic by its monatomic particles in gaseous state in the

More information

Zinc Metal Determination Perkin Elmer Atomic Absorption Spectrometer AAnalyst Procedures

Zinc Metal Determination Perkin Elmer Atomic Absorption Spectrometer AAnalyst Procedures Villanova University Date: Oct 2011 Page 1 of 9 Villanova University Villanova Urban Stormwater Partnership Watersheds Laboratory Standard Operating Procedure VUSP F Zinc Metal Determination Perkin Elmer

More information

Brooklyn College Department of Chemistry

Brooklyn College Department of Chemistry Brooklyn College Department of Chemistry Instrumental Analysis (Chem 42/790) Atomic Absorption Spectroscopy An atomic absorption spectrometer is used in this experiment to analyze a copper-base alloy for

More information

Atomic Absorption Spectroscopy (AAS)

Atomic Absorption Spectroscopy (AAS) Atomic Absorption Spectroscopy (AAS) Alex Miller ABC s of Electrochemistry 3/8/2012 Contents What is Atomic Absorption Spectroscopy? Basic Anatomy of an AAS system Theory of Operation Practical Operation

More information

2101 Atomic Spectroscopy

2101 Atomic Spectroscopy 2101 Atomic Spectroscopy Atomic identification Atomic spectroscopy refers to the absorption and emission of ultraviolet to visible light by atoms and monoatomic ions. It is best used to analyze metals.

More information

AN INTRODUCTION TO ATOMIC SPECTROSCOPY

AN INTRODUCTION TO ATOMIC SPECTROSCOPY AN INTRODUCTION TO ATOMIC SPECTROSCOPY Atomic spectroscopy deals with the absorption, emission, or fluorescence by atom or elementary ions. Two regions of the spectrum yield atomic information- the UV-visible

More information

A Spectrophotometric Analysis of Calcium in Cereal

A Spectrophotometric Analysis of Calcium in Cereal CHEM 311L Quantitative Analysis Laboratory Revision 1.2 A Spectrophotometric Analysis of Calcium in Cereal In this laboratory exercise, we will determine the amount of Calium in a serving of cereal. We

More information

UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2004/2005. March KAA 502 Atomic Spectroscopy.

UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2004/2005. March KAA 502 Atomic Spectroscopy. UNIVERSITI SAINS MALAYSIA Second Semester Examination Academic Session 2004/2005 March 2005 KAA 502 Atomic Spectroscopy Time: 3 hours Please make sure this paper consists of FIVE typed pages before answering

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Pre-Lab Demonstrations: Gas Discharge Demo Your instructor will show samples of gas collected in thin glass tubes known as gas discharge tubes. The ends of the

More information

Experiment 7: Adsorption Spectroscopy I, Determination of Iron with 1,10 Phenanthroline

Experiment 7: Adsorption Spectroscopy I, Determination of Iron with 1,10 Phenanthroline Procedure Experiment 7: Adsorption Spectroscopy I, Determination of Iron with 1,10 Phenanthroline John Smith CHE226.001 4/10/95 In this experiment, we aim to determine the Na concentration of an unknown

More information

ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light

ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light by these elements in order to measure their concentration.

More information

Determinations by Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Atomic Emission

Determinations by Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Atomic Emission 0 chapter Sodium and Potassium Determinations by Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Atomic Emission Spectroscopy 67 S. S. Nielsen (ed.), Food Analysis Laboratory Manual Springer

More information

ICP-OES DETERMINATION OF IRON. Introduction:

ICP-OES DETERMINATION OF IRON. Introduction: ICP-OES DETERMINATION OF IRON. Introduction: Silver impregnated cloth has bene used in bandages and dressings to help kill bacteria associated with a wound. Cloth samples are to anaysed for silver and

More information

high temp ( K) Chapter 20: Atomic Spectroscopy

high temp ( K) Chapter 20: Atomic Spectroscopy high temp (2000-6000K) Chapter 20: Atomic Spectroscopy 20-1. An Overview Most compounds Atoms in gas phase high temp (2000-6000K) (AES) (AAS) (AFS) sample Mass-to-charge (ICP-MS) Atomic Absorption experiment

More information

Optical Atomic Spectroscopy

Optical Atomic Spectroscopy Optical Atomic Spectroscopy Methods to measure conentrations of primarily metallic elements at < ppm levels with high selectivity! Two main optical methodologies- -Atomic Absorption--need ground state

More information

EXPERIMENT 7. Determination of Sodium by Flame Atomic-Emission Spectroscopy

EXPERIMENT 7. Determination of Sodium by Flame Atomic-Emission Spectroscopy EXPERIMENT 7 Determination of Sodium by Flame Atomic-Emission Spectroscopy USE ONLY DEIONIZED WATER (NOT DISTILLED WATER!) THROUGHOUT THE ENTIRE EXPERIMENT Distilled water actually has too much sodium

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

ATOMIC SPECROSCOPY (AS)

ATOMIC SPECROSCOPY (AS) ATOMIC ABSORPTION ANALYTICAL CHEMISTRY ATOMIC SPECROSCOPY (AS) Atomic Absorption Spectroscopy 1- Flame Atomic Absorption Spectreoscopy (FAAS) 2- Electrothermal ( Flame-less ) Atomic Absorption Spectroscopy

More information

Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample

Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample Objective In this experiment you will use spectrophotometric measurements to determine the copper concentration of a

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

Investigating Transition Metal Complexes

Investigating Transition Metal Complexes Exercise 4 Investigating Transition Metal Complexes 4 Introduction Colour is a well known property of the transition metals. The colour produced as parts of the visible spectrum are due to electron transitions

More information

Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry

Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry 9.1 9A. Atomization Most fundamental for both techniques. Typical types 1. flame - burner type 2. Electrothermal graphite furnace 3. Specialized

More information

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chemistry Instrumental Analysis Lecture 18. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 18 Instrumentation Radiation sources Hollow cathode lamp Most common source Consist of W anode and a cathode sealed in a glass tube filled with Ne or Ar. Hollow

More information

Soil Cation Analysis Using High-Performance Capillary Zone Electrophoresis Last Modified: October 20, 2006

Soil Cation Analysis Using High-Performance Capillary Zone Electrophoresis Last Modified: October 20, 2006 Soil Cation Analysis Using High-Performance Capillary Zone Electrophoresis Last Modified: October 20, 2006 Introduction: Capillary electrophoresis (CE) is a relatively new, but rapidly growing separation

More information

Sodium Chloride - Analytical Standard

Sodium Chloride - Analytical Standard Sodium Chloride - Analytical Standard Determination of Total Mercury Former numbering: ECSS/CN 312-1982 & ESPA/CN-E-106-1994 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes

More information

Determination of an Equilibrium Constant

Determination of an Equilibrium Constant 7 Determination of an Equilibrium Constant Introduction When chemical substances react, the reaction typically does not go to completion. Rather, the system goes to some intermediate state in which the

More information

CHM 317H1S Winter 2018 Section E - Flame Atomic Spectrophotometry

CHM 317H1S Winter 2018 Section E - Flame Atomic Spectrophotometry CHM 317H1S Winter 2018 Section E - Flame Atomic Spectrophotometry Section E Page 1 1. List of Experiments 1. Sodium in Drinks by Atomic Emission 2. Calcium Magnesium Water Hardness 2. Locker Inventory

More information

PRINCIPLE OF ICP- AES

PRINCIPLE OF ICP- AES INTRODUCTION Non- flame atomic emission techniques, which use electrothermal means to atomize and excite the analyte, include inductively coupled plasma and arc spark. It has been 30 years since Inductively

More information

EXPERIMENT #3 A Beer's Law Study

EXPERIMENT #3 A Beer's Law Study OBJECTVES: EXPERMENT #3 A Beer's Law Study To operate a Spectronic 20 To convert from percent transmission to absorbance units To plot absorbance versus wavelength and find max To plot absorbance versus

More information

CH. 21 Atomic Spectroscopy

CH. 21 Atomic Spectroscopy CH. 21 Atomic Spectroscopy 21.1 Anthropology Puzzle? What did ancient people eat for a living? Laser Ablation-plasma ionization-mass spectrometry CH. 21 Atomic Spectroscopy 21.2 plasma In Atomic Spectroscopy

More information

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document By the Authority Vested By Part 5 of the United States Code 552(a) and Part 1 of the Code of Regulations 51 the attached document has

More information

Beer's Law and Data Analysis *

Beer's Law and Data Analysis * OpenStax-CNX module: m15131 1 Beer's Law and Data Analysis * Mary McHale This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 1 Beer's Law and Data Analysis

More information

Atomic Absorption Spectrometer ZEEnit P series

Atomic Absorption Spectrometer ZEEnit P series Atomic Absorption Spectrometer ZEEnit P series Technical Data ZEEnit series Update 07/2014 OBue 1/ 5 ZEEnit P series Variable high-end AA Spectrometer with Deuterium and Zeeman Background Correction with

More information

II. Spectrophotometry (Chapters 17, 19, 20)

II. Spectrophotometry (Chapters 17, 19, 20) II. Spectrophotometry (Chapters 17, 19, 20) FUNDAMENTALS (Chapter 17) Spectrophotometry: any technique that uses light to measure concentrations (here: U and visible - ~190 800 nm) c = 2.99792 x 10 8 m/s

More information

Investigation of Nutrient Elements in Cucurbita pepo Using Atomic Absorption Spectrometry

Investigation of Nutrient Elements in Cucurbita pepo Using Atomic Absorption Spectrometry Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 2 (2013) 11-17 ISSN 2299-3843 Investigation of Nutrient Elements in Cucurbita pepo Using Atomic Absorption Spectrometry

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Saddleback College Dr. White 1 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To

More information

Spectrophotometric Determination of Iron

Spectrophotometric Determination of Iron Spectrophotometric Determination of Iron INTRODUCTION Many investigations of chemical species involve the interaction between light and matter. One class of these investigations, called absorbance spectrophotometry,

More information

1. Preliminary qualitative analysis of unknown substances (liquid or solid).

1. Preliminary qualitative analysis of unknown substances (liquid or solid). Name of Procedure: Ultraviolet Spectroscopy Suggested Uses: 1. Preliminary qualitative analysis of unknown substances (liquid or solid). 2. Quantitative analysis of known compounds. Apparatus Used to Perform

More information

Atomic Emission Spectroscopy

Atomic Emission Spectroscopy Atomic Emission Spectroscopy Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia Building:

More information

Volumetric Analysis. Quantitative analysis answers the second question

Volumetric Analysis. Quantitative analysis answers the second question Volumetric Analysis Volumetric analysis is a form of quantitative analysis involving the measuring of volumes of reacting solutions, it involves the use of titrations. When buying food we often have two

More information

Fluorescence Spectrophotometry

Fluorescence Spectrophotometry Chemistry 422L Manual Page 27 I. Introduction Fluorescence Spectrophotometry Ru(bpy) 3 2+, where bpy = 2, 2' bipyridine, has been one of the most widely studied metal complexes in recent years. Interest

More information

The ROXI Colorimeter & Fluorimeter. Laboratory Application I. Colorimetric measurements via Beer s Law.

The ROXI Colorimeter & Fluorimeter. Laboratory Application I. Colorimetric measurements via Beer s Law. The ROXI Colorimeter & Fluorimeter. Laboratory Application I. Colorimetric measurements via Beer s Law. Required Supplies & Costs: RGB LED; $1.95 Light Sensors; $3.95 ea 3-way switch; $6.54 3 ohm resistor;

More information

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Many substances absorb light. When light is absorbed, electrons in the ground state are excited to higher energy levels. Colored

More information

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013 Absorbance Experiment 13 Dilutions and Data Handling in a Spreadsheet rev 1/2013 GOAL: This lab experiment will provide practice in making dilutions using pipets and introduce basic spreadsheet skills

More information

Emission spectrum of H

Emission spectrum of H Atomic Spectroscopy Atomic spectroscopy measures the spectra of elements in their atomic/ionized states. Atomic spectrometry, exploits quantized electronic transitions characteristic of each individual

More information

MOLEBIO LAB #4: Using a Spectrophotometer

MOLEBIO LAB #4: Using a Spectrophotometer Introduction: Spectrophotometry MOLEBIO LAB #4: Using a Spectrophotometer Many kinds of molecules interact with or absorb specific types of radiant energy in a predictable fashion. For example, when while

More information

GTEK Laboratory Atomic Absorption Spectrometer AAS6000 Brochure

GTEK Laboratory Atomic Absorption Spectrometer AAS6000 Brochure GTEK Laboratory Atomic Absorption Spectrometer AAS6000 Brochure Description AAS6000 Series are Single Beam Atomic Absorption Spectrometers controlled and data processed by external computer and internal

More information

Concepts, Techniques. Concepts, Techniques 9/11/2012. & Beer s Law. For a simple, transparent, COLORED material, e.g. ROYGBV

Concepts, Techniques. Concepts, Techniques 9/11/2012. & Beer s Law. For a simple, transparent, COLORED material, e.g. ROYGBV 9//22 OBJECTIVES Spectrophotometry of Food Dyes & Beer s Law Last Update: 9//22 9:54 AM What is the quantitative basis for the color of substances? How is the absorption/transmission of light measured?

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Dr. White 11 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To prepare a Beer s

More information

COMPARISON OF ATOMIZERS

COMPARISON OF ATOMIZERS COMPARISON OF ATOMIZERS FOR ATOMIC ABSORPTION SPECTROSCOPY Introduction Atomic spectroscopic methods are all based on the interaction of light and analyte atoms in the gas phase. Thus, a common component

More information

METHOD 7060A ARSENIC (ATOMIC ABSORPTION, FURNACE TECHNIQUE)

METHOD 7060A ARSENIC (ATOMIC ABSORPTION, FURNACE TECHNIQUE) METHOD 7060A ARSENIC (ATOMIC ABSORPTION, FURNACE TECHNIQUE) 1.0 SCOPE AND APPLICATION 1.1 Method 7060 is an atomic absorption procedure approved for determining the concentration of arsenic in wastes,

More information

Chem 321 Name Answer Key D. Miller

Chem 321 Name Answer Key D. Miller 1. For a reversed-phase chromatography experiment, it is noted that the retention time of an analyte decreases as the percent of acetonitrile (CH 3 CN) increases in a CH 3 CN/H 2 O mobile phase. Explain

More information

Experiment. Quantification of Ascorbic acid by Fluorescence Spectroscopy1

Experiment. Quantification of Ascorbic acid by Fluorescence Spectroscopy1 Experiment. Quantification of Ascorbic acid by Fluorescence Spectroscopy Modified 10/2017 Experiment. Quantification of Ascorbic acid by Fluorescence Spectroscopy1 Objective: The goal of this experiment

More information

very high temperature for excitation not necessary generally no plasma/arc/spark AAS

very high temperature for excitation not necessary generally no plasma/arc/spark AAS Atomic Absorption Spectrometry (Chapter 9) AAS intrinsically more sensitive than AES similar atomization techniques to AES addition of radiation source high temperature for atomization necessary flame

More information

CHEMISTRY LABORATORY - I

CHEMISTRY LABORATORY - I The Great Chemist ALFRED NOBEL CHEMISTRY LABORATORY - I -1- WORK SHEET Titration 1 : Standardization of AgNO 3 Standard Sodium chloride Vs AgNO 3 Sl.No Vol.of Sodium chloride V 1 (ml) Burette reading (ml)

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Using a Buret and Volumetric Flask: 2.06 ml of solution 2.47 ml of solution 50.00 ml delivered delivered Volumetric Flask Reading a buret: Burets are

More information

Lab #12: Determination of a Chemical Equilibrium Constant

Lab #12: Determination of a Chemical Equilibrium Constant Lab #12: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

Determination the elemental composition of soil samples

Determination the elemental composition of soil samples 4. Experiment Determination the elemental composition of soil samples Objectives On this practice you will determine the elemental composition of soil samples by Inductively Coupled Plasma Optical Emission

More information

EXPERIMENT 23. Determination of the Formula of a Complex Ion INTRODUCTION

EXPERIMENT 23. Determination of the Formula of a Complex Ion INTRODUCTION EXPERIMENT 23 Determination of the Formula of a Complex Ion INTRODUCTION Metal ions, especially transition metal ions, possess the ability to form complexes (as shown below) with ions, organic and inorganic

More information

Emission of Light: Discharge Lamps & Flame Tests 1

Emission of Light: Discharge Lamps & Flame Tests 1 Emission of Light: Discharge Lamps & Flame Tests 1 Objectives At the end of this activity you should be able to: o Describe how discharge lamps emit photons following electrical excitation of gaseous atoms.

More information

Atomic Spectra: Energy, Light, and the Electron

Atomic Spectra: Energy, Light, and the Electron Atomic Spectra: Energy, Light, and the Electron Introduction: An atom consists of a nucleus, containing protons and neutrons, and tiny electrons, which move around the nucleus. Picture a beehive where

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Using a Buret and Volumetric Flask: 2.06 ml of solution delivered 2.47 ml of solution delivered 50.00 ml Volumetric Flask Reading a buret: Burets are

More information

Water Hardness and Softening (Bring a water sample from home) Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.2.

Water Hardness and Softening (Bring a water sample from home) Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.2. Water Hardness and Softening (Bring a water sample from home) Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.2.16 I. Introduction Hard Water and Water Softening Water that

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January ISSN

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January ISSN International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 131 Flame Photometric Estimation of Sodium and Potassium Ion Present In Water Sample of Darna and Godavari River.

More information

Spectroscopy. Page 1 of 8 L.Pillay (2012)

Spectroscopy. Page 1 of 8 L.Pillay (2012) Spectroscopy Electromagnetic radiation is widely used in analytical chemistry. The identification and quantification of samples using electromagnetic radiation (light) is called spectroscopy. Light has

More information

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II) : Absorption Spectroscopy of Cobalt(II) OBJECTIVES In successfully completing this lab you will: prepare a stock solution using a volumetric flask; use a UV/Visible spectrometer to measure an absorption

More information

Determination of major, minor and trace elements in rice fl our using the 4200 Microwave Plasma- Atomic Emission Spectrometer (MP-AES) Authors

Determination of major, minor and trace elements in rice fl our using the 4200 Microwave Plasma- Atomic Emission Spectrometer (MP-AES) Authors Determination of major, minor and trace elements in rice flour using the 4200 Microwave Plasma- Atomic Emission Spectrometer (MP-AES) Application note Food testing Authors John Cauduro Agilent Technologies,

More information

METHOD 7196A CHROMIUM, HEXAVALENT (COLORIMETRIC)

METHOD 7196A CHROMIUM, HEXAVALENT (COLORIMETRIC) METHOD 7196A CHROMIUM, HEXAVALENT (COLORIMETRIC) 1.0 SCOPE AND APPLICATION 1.1 Method 7196 is used to determine the concentration of dissolved hexavalent chromium [Cr(VI)] in EP/TCLP characteristic extracts

More information

Spectroscopy of Atoms and Molecules

Spectroscopy of Atoms and Molecules CHEM 121L General Chemistry Laboratory Revision 2.1 Spectroscopy of Atoms and Molecules Learn about the Interaction of Photons with Atoms and Molecules. Learn about the Electronic Structure of Atoms. Learn

More information

2014 NJIT RET Program. MODULE TOPIC: Two Methods of Determining the Concentration of Soluble Compounds or Analytes..

2014 NJIT RET Program. MODULE TOPIC: Two Methods of Determining the Concentration of Soluble Compounds or Analytes.. NJIT RET Summer program 2014 Lesson Module 2014 NJIT RET Program MODULE TOPIC: Two Methods of Determining the Concentration of Soluble Compounds or Analytes.. LESSON ONE TOPIC: Colorimetric Analysis of

More information

novaa 800 D Atomic Absorption Spectrometer

novaa 800 D Atomic Absorption Spectrometer Technical Data Atomic Absorption Spectrometer Cpt : +27 (0) 21 905 0476 Jhb : +27 (0) 11 794 Dbn : +27 (0) 31 266 2454 1/7 General The is a compact atomic absorption spectrometer with deuterium background

More information

Investigation of Nutrient Elements in Cucurbita pepo Using Atomic Absorption Spectrometry

Investigation of Nutrient Elements in Cucurbita pepo Using Atomic Absorption Spectrometry International Letters of Chemistry, Physics and Astronomy Online: 2013-09-21 ISSN: 2299-3843, Vol. 7, pp 11-17 doi:10.18052/www.scipress.com/ilcpa.7.11 2013 SciPress Ltd., Switzerland Investigation of

More information

Section I: Synthesis reactions Synthesis reactions occur when two or more substances come together to form a single new substance.

Section I: Synthesis reactions Synthesis reactions occur when two or more substances come together to form a single new substance. TYPES OF CHEMICAL REACTIONS A Laboratory Investigation Purpose: Observe the five major types of reactions. Record observations for these reactions. Complete balanced equations for these reactions. Introduction:

More information

Experiment 1 (Part A): Plotting the Absorption Spectrum of Iron (II) Complex with 1,10- Phenanthroline

Experiment 1 (Part A): Plotting the Absorption Spectrum of Iron (II) Complex with 1,10- Phenanthroline Experiment (Part A): Plotting the Absorption Spectrum of Iron (II) Complex with,0- Phenanthroline Background The first step of an analytical spectrophotometric procedure for quantitative determination

More information

USGS Troy WSC Laboratory Inductively Coupled Plasma- NH4Cl Soil Extracts SOP 425 Jordan Road Rev. No. 2.0 Troy, NY Date: 03/16/2012 Page 1 of 7

USGS Troy WSC Laboratory Inductively Coupled Plasma- NH4Cl Soil Extracts SOP 425 Jordan Road Rev. No. 2.0 Troy, NY Date: 03/16/2012 Page 1 of 7 Troy, NY 12180 Date: 03/16/2012 Page 1 of 7 USGS District Laboratory, Troy, NY Inductively Coupled Plasma Optical Emission Spectrometry Standard Operating Procedure 1. Scope and Application 1.1 Analytes

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Absorbance Introduction to Spectroscopy: Analysis of Copper Ore Introduction The goal of this lab is to determine the unknown concentration of two different copper solution samples, taken from fictitious

More information

Cork Institute of Technology. Summer 2005 Instrumental Analysis (Time: 3 Hours) Section A

Cork Institute of Technology. Summer 2005 Instrumental Analysis (Time: 3 Hours) Section A Cork Institute of Technology Higher Certificate in Science in Applied Biology Award (National Certificate in Science in Applied Biology Award) Answer FIVE questions; answer Section A, TWO questions from

More information

Basics of UV-Visible Spectroscopy *

Basics of UV-Visible Spectroscopy * OpenStax-CNX module: m34525 1 Basics of UV-Visible Spectroscopy * Brittany L. Oliva-Chatelain Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Recovery of Copper Renee Y. Becker Manatee Community College

Recovery of Copper Renee Y. Becker Manatee Community College Recovery of Copper Renee Y. Becker Manatee Community College Introduction In this lab we are going to start with a sample of copper wire. We will then use a sequence of reactions to chemically transform

More information

Spectrophotometry. Dr. Shareef SHAIK ASST. PROFESSOR Pharmacology

Spectrophotometry. Dr. Shareef SHAIK ASST. PROFESSOR Pharmacology Spectrophotometry Dr. Shareef SHAIK ASST. PROFESSOR Pharmacology Content Introduction Beer-Lambert law Instrument Applications Introduction 3 Body fluids such as blood, csf and urine contain organic and

More information

Experiment 3: Atomic Absorption Determination of Lead in Soil Samples Inspired by Mielke, H. American Scientist 1999, 87,

Experiment 3: Atomic Absorption Determination of Lead in Soil Samples Inspired by Mielke, H. American Scientist 1999, 87, Experiment 3: Atomic Absorption Determination of Lead in Soil Samples Inspired by Mielke, H. American Scientist 1999, 87, 62-73. Introduction Experimental Work on March 2 and March 3-24 (in Olin-Rice 387)

More information

Cyanide, colorimetric, pyridine-pyrazolone

Cyanide, colorimetric, pyridine-pyrazolone Cyanide, colorimetric, pyridine-pyrazolone Parameters and Codes: Cyanide, dissolved, I-1300-85 mg/l as CN): 00723 Cyanide, total, I-3300-85 (mgll as CN): 00720 Cyanide, total-in-bottom-material, dry wt,

More information

5. SEPARATION OF MIXTURES, PURIFICATION OF SOLIDS Objectives

5. SEPARATION OF MIXTURES, PURIFICATION OF SOLIDS Objectives Name: Date:.. 5. SEPARATION OF MIXTURES, PURIFICATION OF SOLIDS Objectives Introduction to basic chemical laboratory operations: grinding, dissolving, decanting, centrifuging, filtration, crystallization.

More information

Experiment 12: SPECTROSCOPY: EMISSION & ABSORPTION

Experiment 12: SPECTROSCOPY: EMISSION & ABSORPTION Sample Experiment 12: SPECTROSCOPY: EMISSION & ABSORPTION Purpose: Emission and absorption spectroscopy is to be explored from different perspectives in a multipart experiment. Part I: Certain elements

More information

Plop Plop, Fizz Fizz, Oh What A Relief It Is (Which Pain Reliever Works Fastest)

Plop Plop, Fizz Fizz, Oh What A Relief It Is (Which Pain Reliever Works Fastest) Page 1 of 7 Plop Plop, Fizz Fizz, Oh What A Relief It Is (Which Pain Reliever Works Fastest) Learning Objectives: Study the dissolution rate (how quickly the compound dissolves) of common OTC (over the

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Introduction Light energy is also known as electromagnetic (EM) radiation. The light that we observe with our eyes, visible light, is just a small portion of

More information

Name That Salt. The six salts used in this experiment are:

Name That Salt. The six salts used in this experiment are: Name That Salt Learning Objectives: In this experiment there are six unidentified salts labelled Salt 1 through Salt 6. Each team will be given one of these salts and their job is to determine the identity

More information

EXPERIMENT 6 INTRODUCTION TO SPECTROSCOPY

EXPERIMENT 6 INTRODUCTION TO SPECTROSCOPY EXPERIMENT 6 INTRODUCTION TO SPECTROSCOPY INTRODUCTION Much of what we know about the structures of atoms and molecules has been learned through experiments in which photons (electromagnetic radiation

More information

1 WHAT IS SPECTROSCOPY?

1 WHAT IS SPECTROSCOPY? 1 WHAT IS SPECTROSCOPY? 1.1 The Nature Of Electromagnetic Radiation Anyone who has been sunburnt will know that light packs a punch: in scientific terms, it contains considerable amounts of energy. All

More information

OES - Optical Emission Spectrometer 2000

OES - Optical Emission Spectrometer 2000 OES - Optical Emission Spectrometer 2000 OES-2000 is used to detect the presence of trace metals in an analyte. The analyte sample is introduced into the OES-2000 as an aerosol that is carried into the

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Thousands of years ago, copper was abundant enough in quantity that it could be found on the Earth s surface. Prospecting for copper then was relatively

More information

BATTERY INDUSTRY STANDARD ANALYTICAL METHOD

BATTERY INDUSTRY STANDARD ANALYTICAL METHOD BATTERY INDUSTRY STANDARD ANALYTICAL METHOD For the Determination of Mercury, Cadmium and Lead in Alkaline Manganese Cells Using AAS, ICP-AES and "Cold Vapour" European Portable Battery Association (EPBA)

More information

The Fluorometric Determination of Acetylsalicylic Acid in an Aspirin Tablet

The Fluorometric Determination of Acetylsalicylic Acid in an Aspirin Tablet The Fluorometric Determination of Acetylsalicylic Acid in an Aspirin Tablet Introduction: Fluorescence is the emission of radiation from an atom or polyatomic species after the substance has been exposed

More information

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s PHYS 1040 - General Physics II Lab The Balmer Series for Hydrogen Source Purpose: The purpose of this experiment is to analyze the emission of light from a hydrogen source and measure and the wavelengths

More information

Spectrophotometry Materials

Spectrophotometry Materials Spectrophotometry Materials Item per Class per Bench Genesys 10UV Spectrophotometer 6 1 13 ml test tubes box 7 Test tube racks 6 1 1% Albumin solution 25 ml/one flask 2 ml 0.7% Albumin solution (unknown

More information

Plop Plop, Fizz Fizz, Oh What A Relief It Is (Which Pain Reliever Works Fastest)

Plop Plop, Fizz Fizz, Oh What A Relief It Is (Which Pain Reliever Works Fastest) Page 1 of 8 Plop Plop, Fizz Fizz, Oh What A Relief It Is (Which Pain Reliever Works Fastest) Learning Objectives: Study the dissolution rate (how quickly the compound dissolves) of common OTC (over the

More information