CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY

Size: px
Start display at page:

Download "CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY"

Transcription

1 CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY A solution of potassium permanganate is pink. [1] Color changes can often be used to monitor chemical reactions. DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS

2 OXIDATION-REDUCTION CHEMISTRY Introduction Oxidation-reduction occurs when electrons are transferred between reactants. Redox processes are ubiquitous in the environment and are crucial in all living systems. (See the Appendix for just a few examples.) There are four types of redox reactions: Redox Reaction Example combination 2 Fe + 3 Br 2 à 2 FeBr 3 decomposition 2 HgO à 2 Hg + O 2 displacement Zn + CuSO 4 à Cu + ZnSO 4 disproportionation 2 Hg + à Hg + Hg 2+ Probably the most familiar example of a redox reaction you use every day is the one occurring in the internal combustion engine of your car. Hydrocarbon fuels, such as the octane in gasoline, combine with oxygen to produce carbon dioxide (CO 2) and water (H 2O). 2 C 8H O 2 à 16 CO H 2O In all oxidation-reduction reactions, the transfer of electrons is reflected by changes in the oxidation numbers associated with the substances taking part in the reaction. To review or learn about oxidation numbers, see Section 4.9 of your textbook. In a previous lab period, you performed a vinegar titration to determine the concentration of acetic acid. Phenolphthalein was used as an acid-base indicator to visualize the endpoint. The color of your solution was dependent on the form of the indicator species present. In the case of phenolphthalein, the acid form is colorless and the basic form is pink. The titration was complete at the point when approximately half a drop of additional NaOH caused the solution to remain slightly pink. At this point, the moles of OH- ions from the NaOH were equal to (or in very slight excess of) the moles of protons from the acetic acid. This 1:1 stoichiometry is shown below. NaOH + HC 2H 3O 2 à NaC 2H 3O 2 + H 2O In this experiment, you will be investigating an oxidation-reduction reaction by performing a set of titrations and using your results to measure an unknown concentration of ferrous chloride. It would be convenient if there were some indicator to help you find this equivalence point. Fortunately, the color of a solution is frequently due to the oxidation state of a species in solution. Some commonly used redox reagents that are themselves redox indicators are potassium permanganate (KMnO4) and potassium dichromate (K2Cr2O7). These are internal indicators because of large differences in the colors of their oxidized (MnO 4- /purple, Cr2O7 2- /orange-yellow) and reduced forms (Mn 2+ /light pink, Cr 3+ /green). 2

3 Pre-lab Safety: Goggles must be worn at all times. POTASSIUM PERMANGANATE: KMnO 4 This solution contains an oxidizing agent which is corrosive. Direct contact with skin and eyes should definitely be avoided. Skin Contact: Dilute aqueous solutions may be mildly irritating. FIRST AID: Remove contaminated clothing and shoes immediately. Wash with soap or mild detergent and large amounts of water until no evidence of chemical remains (at least minutes). Eye Contact: Dilute aqueous solutions may be only mildly irritating. FIRST AID: Wash eyes immediately with large amounts of water, occasionally lifting upper and lower lids, until no evidence of chemical remains (at least minutes). Get medical attention immediately. IRON(II) CHLORIDE TETRAHYDRATE: FeCl 2 4 H 2O Eye Contact: may cause severe irritation, and possible eye burns. FIRST AID: Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower lids. Get medical aid immediately. Skin Contact: Exposure may cause irritation and possible burns. FIRST AID: Immediately flush skin with plenty of soap and water for at least 15 minutes while removing contaminated clothing and shoes. Get medical aid if irritation develops or persists. PHOSPHORIC ACID: H3PO4 Although phosphoric acid is classified as a weak acid, the concentration being used is 6 M. It is corrosive and contact with skin and eyes should be avoided. FIRST AID: Immediately flush eyes with plenty of water for at least 15 minutes. If spilled on clothing, the clothing should be removed immediately and rinsed. If irritation persists, seek medical help. Test solutions should be neutralized before disposal in the sink. Ask you TA for instructions regarding the disposal of unused stock solutions. Pre-lab Assignment: Please write out the following in your lab notebook. This assignment must be completed before the beginning of lab. You will not be allowed to start the experiment until this assignment has been completed and accepted by your TA. 1) List all of the chemicals you will use for this week's experiment. For each chemical, list specific safety precaution(s) that must be followed. In order to find specific safety information, please obtain a Materials Safety Data Sheet (MSDS) on the chemical of interest. MSDSs can be found through an internet search (e.g., Google) or from the following website: Read the MSDS and find specific safety concerns for each chemical. 2) For each of the four types of redox reactions below, provide an example chemical reaction that is not already mentioned in this lab document. a. combination b. decomposition c. displacement d. disproportionation 3

4 3) To review how titration calculations work, here s a problem related to acid-base titrations. A L sample of H2SO4 was titrated with M NaOH. It took 23.3 ml of NaOH from the buret--that's L--to reach the titration endpoint. a. Balance the chemical equation for this titration by placing coefficients in the spaces below. H 2 SO 4(aq) + NaOH (aq) à H 2 O (l) + Na 2 SO 4(aq) b. Based on the coefficients of the equation that you just balanced, how many moles of NaOH would be consumed by one mole of H 2 SO 4? c. How many moles of NaOH are contained in the L volume of M NaOH that is delivered from the buret? d. How many moles of H 2 SO 4 must be present to react completely with the NaOH delivered from the buret? e. What is the molarity (M) of the H 2 SO 4 solution titrated? Hint: Molarity refers to the number of moles of H 2SO 4 per liter, i.e., mol divided by L. Use the number of moles (question #3d. above) along with the actual volume of H2SO4 titrated, L.) In addition to these pre-lab requirements, a short quiz may be given at the beginning of lab based on the material in this lab write-up. Procedure Part 1 Balancing the Redox Equation Reagents: M KMnO 4, 0.20 M FeCl 2, and 6 M H 3PO 4 Each group will examine one of the solution mixtures below. In the laboratory, you will find prepared solutions of KMnO 4, FeCl 2, and H 3 PO 4. (In this reaction, phosphoric acid is necessary to prevent interference from chloride ions in the solution and to make the solution acidic.) Using the chart below, each group will place appropriate amounts of each reagent in a small beaker. Use volumetric pipets for the iron solution, and auto-pipetters for the acid and the permanganate solution. Report your observations on the board. Line up the labeled beakers on the bench top so that they may be compared by all the groups. Determine how many moles of each reagent are present in your team s solution and report those amounts. Be sure to record the class data in your laboratory notebook. Solution Conc. (M) Group 1 Group 2 Group 3 Group 4 Group 5 KMnO M 5 ml 10 ml 15 ml 20 ml 25 ml FeCl M 10 ml 10 ml 10 ml 10 ml 10 ml H 3 PO 4 6 M 10 ml 10 ml 10 ml 10 ml 10 ml As a class, discuss the results of this preliminary investigation. Using the collective data, balance the oxidation-reduction reaction that occurs between MnO4 and Fe 2+. Fe 2+ (aq) + MnO 4 - (aq) + H + (aq) à Fe 3+ (aq) + Mn 2+ (aq) + H 2 O (l) 4

5 Part 2 Determining the Unknown FeCl2 Concentration Reagents: M KMnO 4, 6 M H 3 PO 4, and FeCl 2 solution (unknown concentration) 1. Using the information you obtained in Part 1, plan an investigation that will allow you to determine the concentration of a FeCl 2 solution of unknown concentration that your TA provides. (Hint: If you need to review an example titration, you may wish to consult the write-up, procedure, and/or data from your Determination of Acetic Acid in Vinegar experiment.) 2. Complete your investigation and determine the concentration of the FeCl 2 solution. Show balanced equations and calculations in your notebook, and be certain that all your numerical data is expressed with the proper units and significant figures. Lab Clean-up: Acidic solutions should be neutralized before disposal in the sink. Stock solutions of acids should be put in a separate waste receptacle. If you have questions, ask your TA. Glassware, including test tubes, should be thoroughly cleaned using deionized water and then returned to your lab drawer. Post-Lab Questions After completing the lab, answer the following questions in your laboratory notebook. 1) The redox reaction in this experiment is Fe 2+ (aq) + MnO 4 - (aq) + H + (aq) à Fe 3+ (aq) + Mn 2+ (aq) + H 2 O (l) For each element (Fe, Mn, O, H) in the chemical equation, determine if it is oxidized, reduced or unchanged during the reaction using oxidation numbers. (See Section 4.9 of your textbook.) 2) The goal of this experiment was to determine the concentration of FeCl 2, ferrous chloride, a compound that is important in wastewater treatment. Ferrous chloride helps control levels of hydrogen sulfide in the water. a) What is the chemical formula of hydrogen sulfide? b) Why would you want to remove hydrogen sulfide from the water supply? c) Treated wastewater usually becomes drinking water downstream. Do you think you could use this titration method to determine the concentration of excess ferrous chloride in drinking water? Why or why not? Base your answer on concentration, and cite any external information you use. 5

6 Report Introduction Experimental Procedures Results Discussion Conclusion A short (2 page) report is due at the beginning of next week s lab period. It is a partial, rather than full, report and should be prepared and submitted individually, rather than in groups. It will consist only of the Experimental Procedures and Conclusions sections of a full report. You have practiced writing these sections of a lab report already. This is your opportunity to improve based on the feedback you received from your TA. To review: The Experimental Procedures ideally should be clear enough that someone who hasn t done your experiment could reproduce your results. As an alternative to written text, your Experimental Procedures may also be presented in the form of a detailed flow chart. The Experimental Procedures section should also include any equations you used and example calculations. A person reading this section should also be able to use their raw data and calculate results that are the same as (or similar to) your results. The Conclusions section should (1) summarize the objective of the experiment, (2) state your overall results, (3) and briefly outline the interpretation of your results. (4) Describe what you learned or concluded from doing the experiment. Often, scientists make mention of (5) what they might try to do differently next time. Reference(s) [1] accessed Feb. 26,

7 Glossary Indicator a substance that provides a visual cue that a threshold level of some chemical change has occurred; indicators often change color upon reaching some concentration (for example, phenolphthalein turns pink when a solution has an excess of hydroxide present and becomes basic) Oxidation the loss of electrons; an increase in oxidation number Reducing agent a substance that facilitates the reduction of another substance; a substance that becomes oxidized. Titration (volumetric analysis) a laboratory procedure in which a solution of unknown concentration is reacted with a solution of known concentration, in order to determine the concentration of the unknown. Oxidation number (oxidation state) the hypothetical charge an atom would have if the atom or compound containing it were composed only of ions Oxidizing agent a substance that facilitates the oxidation of another substance; a substance that becomes reduced Oxidation-reduction reaction (redox reaction) a type of chemical reaction that involves the transfer of one or more electrons between reactants; a chemical reaction involving a change in oxidation number for atoms participating in the reaction Reduction the gain of electrons; a decrease in oxidation number 7

8 Appendix 1: Oxidation-reduction Reactions Environmental Redox Cycle Site Oxidation-reduction reactions are extremely important to the environment. While they are always at work around you, they may go unnoticed. Important examples include the carbon, nitrogen, and sulfur cycles. The transformation of carbon dioxide into organic compounds, which in turn produces oxygen needed by plants as well as animals to metabolize carbon compounds, is particularly integral to all life on the planet. Learn more about the chemical reactions involved in these processes at the following web site. Life-Cycle Redox Processes Without oxidation-reduction reactions, living organisms would be dead! To learn more about these very important processes, visit the web site below. Active Metal Series How can scientists predict if an oxidation-reduction reaction will occur? Check the web for the answer.

CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY

CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY A solution of potassium permanganate is pink. [1] Color changes can often be used to monitor chemical reactions. DEPARTMENT OF CHEMISTRY

More information

CHEMISTRY 130 General Chemistry I. Thermochemistry

CHEMISTRY 130 General Chemistry I. Thermochemistry CHEMISTRY 130 General Chemistry I Thermochemistry The burning of a match, shown above [1], is a chemical reaction between oxygen and sulfur. [2] Intuitively, we know that this reaction releases heat enough

More information

CHEMISTRY 130 General Chemistry I. Acetic Acid in Vinegar

CHEMISTRY 130 General Chemistry I. Acetic Acid in Vinegar CHEMISTRY 130 General Chemistry I Acetic Acid in Vinegar Burets, glassware most commonly used in a technique called titration, are filled with solutions of various colors. DEPARTMENT OF CHEMISTRY UNIVERSITY

More information

PURPOSE: 1. To illustrate an oxidation-reduction titration with potassium permanganate 2. To determine the percent mass of iron in an unknown.

PURPOSE: 1. To illustrate an oxidation-reduction titration with potassium permanganate 2. To determine the percent mass of iron in an unknown. PURPOSE: 1. To illustrate an oxidation-reduction titration with potassium permanganate 2. To determine the percent mass of iron in an unknown. PRINCIPLES: Oxidation and reduction reactions, commonly called

More information

So, What Does it Indicate?

So, What Does it Indicate? So, What Does it Indicate? Introduction Phenolphthalein is a common indicator you may have used in a previous science course, such as Chemistry 130 or Chemistry 170. In solutions with a ph of less then

More information

Acid / Base Titrations

Acid / Base Titrations Acid / Base Titrations v051413_7pm Objectives: Determine the concentration of a base solution using an acid standard. Optional: Precipitate an ionic salt for percent yield determination using the standardized

More information

Molarity of Acetic Acid in Vinegar A Titration Experiment

Molarity of Acetic Acid in Vinegar A Titration Experiment Molarity of Acetic Acid in Vinegar A Titration Experiment Introduction Vinegar is prepared commercially in two steps, both requiring microorganisms. The first step is the production of ethyl alcohol, C

More information

Acid Base Titration Experiment ACID - BASE TITRATION LAB

Acid Base Titration Experiment ACID - BASE TITRATION LAB ACID - BASE TITRATION LAB MATERIALS and CHEMICALS Burette 50 ml Burette clamp Ring stand Stirring rod Plastic funnel Beakers (50 ml, 100 ml, 400 ml) Graduated cylinder (25 ml, 50 ml) 0.10 M NaOH 0.10 M

More information

Name Period Date. Lab 9: Analysis of Commercial Bleach

Name Period Date. Lab 9: Analysis of Commercial Bleach Name Period Date Lab 9: Analysis of Commercial Bleach Introduction Many common products are effective because they contain oxidizing agents. Some products, which contain oxidizing agents, are bleaches,

More information

CHM111 Lab Titration of Vinegar Grading Rubric

CHM111 Lab Titration of Vinegar Grading Rubric Name Team Name CHM111 Lab Titration of Vinegar Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste disposal

More information

Learn to do quantitative titration reactions. Observe the mole ratios of several simple chemical reactions.

Learn to do quantitative titration reactions. Observe the mole ratios of several simple chemical reactions. CHAPTER 6 Stoichiometry of Reactions in Solution Objectives The objectives of this laboratory are to: Learn to do quantitative titration reactions. Observe the mole ratios of several simple chemical reactions.

More information

EXPERIMENT #8 Acid-Base I: Titration Techniques

EXPERIMENT #8 Acid-Base I: Titration Techniques EXPERIMENT #8 Acid-Base I: Titration Techniques OBJECTIVES: Dispense a precise volume of a solution with a buret Titrate a known volume of acid solution with a standard solution of base Reach a proper

More information

Experiment #7. Titration of Vinegar

Experiment #7. Titration of Vinegar Experiment #7. Titration of Vinegar Goals 1. To determine the mass percent of acetic acid in a solution via titration. 2. To master the technique of titration. Introduction Vinegar is a common household

More information

Acidity of Beverages Lab

Acidity of Beverages Lab Acidity of Beverages Lab Name: Introduction: Common beverages may be either acidic or basic. Fruit juices, for example, get their sweet taste from sugars and their sour or tart taste from weak acids such

More information

CHEMISTRY 130 General Chemistry I. Five White Powders & Chemical Reactivity

CHEMISTRY 130 General Chemistry I. Five White Powders & Chemical Reactivity CHEMISTRY 130 General Chemistry I Five White Powders & Chemical Reactivity Many substances can be described as a white, powdery solid. Often, their chemical properties can be used to distinguish them.

More information

Ch 4-5 Practice Problems - KEY

Ch 4-5 Practice Problems - KEY Ch 4-5 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS EXPERIMENT 11 (2 Weeks) Chemistry 110 Laboratory TYPES OF CHEMICAL REACTIONS PURPOSE: The purpose of this experiment is perform, balance and classify chemical reactions based on observations. Students

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Introduction This experiment illustrates how titration, the process of slowly adding one solution to another until the reaction between the two is complete,

More information

Reaction Stoichiometry

Reaction Stoichiometry Reaction Stoichiometry PURPOSE To determine the stoichiometry of acid-base reactions by measuring temperature changes which accompany them. GOALS To learn to use the MicroLab Interface. To practice generating

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Part A. Preparation of Vitamin C Tablet Solutions 1. Obtain two vitamin C tablets. Place a plastic weighing boat on the balance, and press zero to tare the

More information

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry Chapter 6 Types of Chemical Reactions and Solution Stoichiometry Chapter 6 Table of Contents (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (6.7) (6.8) Water, the common solvent The nature of aqueous solutions: Strong

More information

Thermochemistry. Introduction. Pre-lab. Safety

Thermochemistry. Introduction. Pre-lab. Safety Introduction Thermochemistry All chemical reactions and phase changes involve energy. One form of energy is heat: when a change in the energy of a system results in a temperature difference, we say that

More information

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations Why? In addition to metathetical reactions, electron transfer reactions often occur in solutions.

More information

Upon completion of this lab, the student will be able to:

Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT 30A7: VINEGAR TITRATION Upon completion of this lab, the student will be able to: 1) Measure the amount of acetic acid in a solution of vinegar Introduction The molar concentration

More information

GETTING THE END POINT TO APPROXIMATE. Two hours

GETTING THE END POINT TO APPROXIMATE. Two hours Chem 1312 Handout Experiment ONE Laboratory Time Required Special Equipment and Supplies Objective Safety First Aid GETTING THE END POINT TO APPROXIMATE THE EQUIVALENCE POINT Two hours Balance Potassium

More information

So, What Does it Indicate?

So, What Does it Indicate? So, What Does it Indicate? Introduction Phenolphthalein is a common indicator you may have used in a previous science course, such as Chemistry 184. In solutions with a ph of less then 8.3, this compound

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

PART II: ANALYSIS OF IRON COORDINATION COMPOUND

PART II: ANALYSIS OF IRON COORDINATION COMPOUND PART II: ANALYSIS OF IRON COORDINATION COMPOUND In this experiment students will perform two independent analyses of the iron coordination compound synthesized in Part I. A redox titration with potassium

More information

AP Chemistry Unit 2 Test (Chapters 3 and 4)

AP Chemistry Unit 2 Test (Chapters 3 and 4) AP Chemistry Unit 2 Test (Chapters 3 and 4) NAME: 1. A student is assigned the task of determining the mass percent of silver in an alloy of copper and silver by dissolving a sample of the alloy in excess

More information

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY Water, the common solvent Solution is a homogeneous mixture Solvent is the substance that does the dissolving Solute is the substance that

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Table of Contents 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Introduction This experiment illustrates how titration, the process of slowly adding one solution to another until the reaction between the two is complete,

More information

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets Chem 2115 Experiment #7 Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets OBJECTIVE: The goals of this experiment are to learn titration

More information

Unit 3 Chemistry - Volumetric Analysis

Unit 3 Chemistry - Volumetric Analysis Unit 3 Chemistry Volumetric Analysis Volumetric analysis is a quantitative chemical analysis used to determine the unknown concentration of one reactant [the analyte] by measuring the volume of another

More information

Chapter Four. Chapter Four. Chemical Reactions in Aqueous Solutions. Electrostatic Forces. Conduction Illustrated

Chapter Four. Chapter Four. Chemical Reactions in Aqueous Solutions. Electrostatic Forces. Conduction Illustrated 1 Electrostatic Forces 2 Chemical Reactions in Aqueous Solutions Unlike charges (+ and ) attract one another. Like charges (+ and +, or and ) repel one another. Conduction Illustrated 3 Arrhenius s Theory

More information

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. 1 Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. You should be able to: Vocabulary of water solubility Differentiate between

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Introduction This experiment illustrates how titration, the process of slowly adding one solution to another until the reaction between the two is complete,

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

TITRATION OF AN ACID WITH A BASE

TITRATION OF AN ACID WITH A BASE TITRATION OF AN ACID WITH A BASE 1 NOTE: You are required to view the podcast entitled Use of Burets for Titrations before coming to lab this week. To view the podcast, consisting of eight episodes, go

More information

EXPERIMENT 23 Lab Report Guidelines

EXPERIMENT 23 Lab Report Guidelines EXPERIMENT 23 Listed below are some guidelines for completing the lab report for Experiment 23: For each part, follow the procedure outlined in the lab manual. Observe all safety rules, including wearing

More information

Chem 130 Name Exam 2 October 11, Points Part I: Complete all of problems 1-9

Chem 130 Name Exam 2 October 11, Points Part I: Complete all of problems 1-9 Chem 130 Name Exam October 11, 017 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant

More information

Analysing Acids and Bases

Analysing Acids and Bases Week 4 Analysing Acids and Bases Acid A substance that donates a hydrogen ion (proton) A proton is donated in the acidbase reaction: HCl (aq) + H H O (aq) + Cl (aq) Strong acids completely ionise in water

More information

Stresses Applied to Chemical Equilibrium

Stresses Applied to Chemical Equilibrium Stresses Applied to Chemical Equilibrium Objective Many chemical reactions do not go to completion. Rather, they come to a point of chemical equilibrium before the reactants are fully converted to products.

More information

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds Aqueous Solubility of Compounds Not all compounds dissolve in water. Solubility varies from compound to compound. Chapter 5: Chemical Reactions Soluble ionic compounds dissociate. Ions are solvated Most

More information

Acid-Base Titration Acetic Acid Content of Vinegar

Acid-Base Titration Acetic Acid Content of Vinegar Acid-Base Titration Acetic Acid Content of Vinegar Prelab Assignment Read the entire lab. Write an objective and any hazards associated with this lab in your laboratory notebook. On a separate sheet of

More information

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Water, the Common Solvent One of the most important substances on Earth. Can dissolve many different substances. A polar molecule because

More information

Percentage of Acetic Acid in Vinegar

Percentage of Acetic Acid in Vinegar Microscale Percentage of Acetic Acid in Vinegar When sweet apple cider is fermented in the absence of oxygen, the product is an acid, vinegar. Most commercial vinegars are made by fermentation, but some,

More information

Experiment 5: Determining the Stoichiometry and Products of a Redox Reaction

Experiment 5: Determining the Stoichiometry and Products of a Redox Reaction Experiment 5: Determining the Stoichiometry and Products of a Redox Reaction Reading: Chapter sections 4.4-4.6 and 20.1-20.2 in your course text and this lab handout Ongoing Learning Goals: To use a scientific

More information

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction Given an amount of a substance involved in a chemical reaction, we can figure out the amount

More information

Unit VI Stoichiometry. Applying Mole Town to Reactions

Unit VI Stoichiometry. Applying Mole Town to Reactions Unit VI Stoichiometry Applying Mole Town to Reactions Learning Goals I can apply mole town to reactions to determine the amount of product based on the amount of a reactant. I can apply mole town to reaction

More information

Lab #5 - Limiting Reagent

Lab #5 - Limiting Reagent Objective Chesapeake Campus Chemistry 111 Laboratory Lab #5 - Limiting Reagent Use stoichiometry to determine the limiting reactant. Calculate the theoretical yield. Calculate the percent yield of a reaction.

More information

To measure ph s in a variety of solutions and mixtures and to account for the results obtained.

To measure ph s in a variety of solutions and mixtures and to account for the results obtained. Acid-Base Studies PURPOSE To measure ph s in a variety of solutions and mixtures and to account for the results obtained. GOALS 1 To learn to use ph paper and a ph meter to measure the ph of a given solution.

More information

NEUTRALIZATION TITRATION-2 TITRATION OF AN ANTACID (Exp. 4)

NEUTRALIZATION TITRATION-2 TITRATION OF AN ANTACID (Exp. 4) Objective NEUTRALIZATION TITRATION-2 TITRATION OF AN ANTACID (Exp. 4) The aim of this experiment is to carry out titration of antacid tablets and to determine acetic acid content of vinegar. a) Titration

More information

Acid-Base Titration. M M V a

Acid-Base Titration. M M V a Acid-Base Titration Pre-Lab Discussion In the chemistry laboratory, it is sometimes necessary to experimentally determine the concentration of an acid solution or a base solution. A procedure for making

More information

Kinetics of Crystal Violet Fading AP Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab (adapted by Flinn Scientific, Inc.

Kinetics of Crystal Violet Fading AP Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab (adapted by Flinn Scientific, Inc. Introduction Kinetics of Crystal Violet Fading AP Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab (adapted by Flinn Scientific, Inc.) Crystal violet is a common, beautiful purple dye. In

More information

9/24/12. Chemistry Second Edition Julia Burdge. Reactions in Aqueous Solutions

9/24/12. Chemistry Second Edition Julia Burdge. Reactions in Aqueous Solutions Chemistry Second Edition Julia Burdge 4 Reactions in Aqueous Solutions Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 4 Reactions in Aqueous Solutions

More information

CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION Upon completion of this lab, the student will be able to: 1) Prepare a solution of primary standard 2) Determine the molar concentration

More information

Chem II - Wed, 9/14/16

Chem II - Wed, 9/14/16 Chem II - Wed, 9/14/16 Do Now Drop off any study guides you want color coded Pull out stoich HW Homework See board Agenda Stoich Ch 4 Labish thing Chapter 4 Chemical Reactions & Solution Stoich Water Possesses

More information

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Chemistry 11 Notes on Chemical Reactions Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Evidence to indicate that a chemical reaction has occurred:

More information

CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar

CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar INTRODUCTION One of the most important techniques for chemical analysis is titration to an equivalence point. To illustrate this procedure,

More information

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution In this experiment, you will determine the molarity and percent

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

Measuring Enthalpy Changes

Measuring Enthalpy Changes Measuring Enthalpy Changes PURPOSE To observe changes in enthalpy in chemical processes. GOALS To identify exothermic and endothermic processes. To relate enthalpy changes and entropy changes to changes

More information

Safety Note: Safety glasses and laboratory coats are required when performing this experiment

Safety Note: Safety glasses and laboratory coats are required when performing this experiment The Determination of Hypochlorite in Bleach Reading assignment: Burdge, Chemistry 4 th edition, section 4.6. We will study an example of a redox titration in order to determine the concentration of sodium

More information

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry:

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: Water as a solvent Strong and Weak Electrolytes Solution Concentrations How to Make up a solution Types of Reactions Introduction

More information

CHM101 Lab Chemical Reactions Grading Rubric

CHM101 Lab Chemical Reactions Grading Rubric Name Team Name CHM101 Lab Chemical Reactions Grading Rubric To participate in this lab you must have splash- proof goggles, proper shoes and attire. Criteria Points possible Points earned Lab Performance

More information

Chapter 4: Reactions in Aqueous Solutions

Chapter 4: Reactions in Aqueous Solutions Chapter 4: Reactions in Aqueous Solutions Water 60 % of our bodies heat modulator solvent for reactions covers 70% of Earth Chapter 4 3 types of reactions that occur in H 2 O 1. precipitation 2. acid-base

More information

Chemistry Calibration of a Pipet and Acid Titration

Chemistry Calibration of a Pipet and Acid Titration Chemistry 3200 Today you are given a chance to brush up on some of the techniques that you will be using during the remainder of the semester. Lab grades will be based on obtaining the correct answer in

More information

7/16/2012. Chapter Four: Like Dissolve Like. The Water Molecule. Ionic Compounds in Water. General Properties of Aqueous Solutions

7/16/2012. Chapter Four: Like Dissolve Like. The Water Molecule. Ionic Compounds in Water. General Properties of Aqueous Solutions General Properties of Aqueous Solutions Chapter Four: TYPES OF CHEMICAL REACTIONS AND SOLUTION STOICHIOMETRY A solution is a homogeneous mixture of two or more substances. A solution is made when one substance

More information

The Titration of Acetic Acid in Vinegar

The Titration of Acetic Acid in Vinegar Experiment 22 Revision 1.0 The Titration of Acetic Acid in Vinegar To learn about Volumetric Analysis and Titration. To learn about Aceticc Acid and Vinegar. To learn about Weak Acids. To learn about Equilibria

More information

Chemistry 143 Experiment #11 Acid Base Titration Dr. Caddell. Titrating Acid

Chemistry 143 Experiment #11 Acid Base Titration Dr. Caddell. Titrating Acid Titrating Acid In this lab you will first determine the concentration of sodium hydroxide in a stock solution that you prepare. You will then use that stock sodium hydroxide solution to titrate a solution

More information

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM Chemical Reactions Chapter 4 Notes Oct 21 8:44 AM Oct 22 10:14 AM 1 There are several things to keep in mind writing reactions and predicting products: 1. States of matter of elements/compounds 2. Diatomics

More information

Chapter 4. Reactions in Aqueous Solution

Chapter 4. Reactions in Aqueous Solution Chapter 4 Reactions in Aqueous Solution Topics General properties of aqueous solutions Precipitation reactions Acid base reactions Oxidation reduction reactions Concentration of solutions Aqueous reactions

More information

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS FV 1-21-16 MATERIALS: Eight 50 ml beakers, distilled water bottle, two 250 ml beakers, conductivity meter, ph paper (A/B/N), stirring

More information

Chemistry 143 Acid Base Titration Dr. Caddell. Titrating Acid

Chemistry 143 Acid Base Titration Dr. Caddell. Titrating Acid Titrating Acid In this lab you will first determine the concentration of sodium hydroxide in a stock solution that you prepare. You will then use that stock sodium hydroxide solution to titrate a solution

More information

EXPERIMENT A7: VINEGAR TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT A7: VINEGAR TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT A7: VINEGAR TITRATION Upon completion of this lab, the student will be able to: 1) Prepare a solution of primary standard 2) Determine the molar concentration of a solution

More information

Toxins 4/27/2010. Acids and Bases Lab. IV-17 to IV-22

Toxins 4/27/2010. Acids and Bases Lab. IV-17 to IV-22 Toxins IV-17 to IV-22 Countless products are advertised on TV with the promise of reducing acid indigestion. a.what is acid indigestion? b.what does acid have to do with your stomach? c.how do you think

More information

Experiment #7. Chemical Reactions.

Experiment #7. Chemical Reactions. Experiment #7. Chemical Reactions. Goals To observe chemical reactions and balance chemical equations. Background Chemical and Physical Changes Changes in matter are often classified as either physical

More information

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant CHEMISTRY 135 General Chemistry II Determination of an Equilibrium Constant Show above is a laboratory sample from chemistry, not phlebotomy. [1] Is the bloody-looking product the main component of this

More information

Chapter 9 Practice Worksheet: Reactions in Aqueous Solutions

Chapter 9 Practice Worksheet: Reactions in Aqueous Solutions Chapter 9 Practice Worksheet: Reactions in Aqueous Solutions 1. The compound H 2 S is classified as a weak electrolyte. Describe/draw how it reacts when placed in water. Completely dissociates in water.

More information

2H 2 (g) + O 2 (g) 2H 2 O (g)

2H 2 (g) + O 2 (g) 2H 2 O (g) Mass A AP Chemistry Stoichiometry Review Pages Mass to Mass Stoichiometry Problem (Review) Moles A Moles B Mass B Mass of given Amount of given Amount of unknown Mass of unknown in grams in Moles in moles

More information

Chem 115 POGIL Worksheet - Week #6 - Answers Oxidation Numbers, Redox Reactions, Solution Concentration, Titrations, First Law, and Enthalpy

Chem 115 POGIL Worksheet - Week #6 - Answers Oxidation Numbers, Redox Reactions, Solution Concentration, Titrations, First Law, and Enthalpy Chem 115 POGIL Worksheet - Week #6 - Answers Oxidation Numbers, Redox Reactions, Solution Concentration, Titrations, First Law, and Enthalpy Key Questions, Exercises, and Problems 1. Assign the oxidation

More information

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill Chapter 4 Reactions in Aqueous Solutions Copyright McGraw-Hill 2009 1 4.1 General Properties of Aqueous Solutions Solution - a homogeneous mixture Solute: the component that is dissolved Solvent: the component

More information

Titration with an Acid and a Base

Titration with an Acid and a Base Skills Practice Titration with an Acid and a Base Titration is a process in which you determine the concentration of a solution by measuring what volume of that solution is needed to react completely with

More information

EXPERIMENT 15. USING CONDUCTIVITY TO LOOK AT SOLUTIONS: DO WE HAVE CHARGED IONS OR NEUTRAL MOLECULES? rev 7/09

EXPERIMENT 15. USING CONDUCTIVITY TO LOOK AT SOLUTIONS: DO WE HAVE CHARGED IONS OR NEUTRAL MOLECULES? rev 7/09 EXPERIMENT 15 USING CONDUCTIVITY TO LOOK AT SOLUTIONS: DO WE AVE CARGED IONS OR NEUTRAL MOLECULES? rev 7/09 GOAL After you complete this experiment, you should have a better understanding of aqueous solutions

More information

Chem!stry. Assignment on Redox

Chem!stry. Assignment on Redox Chem!stry Name: ( ) Class: Date: / / Assignment on Redox Question 1: Which one of the following elements is the most powerful reducing agent? A Aluminium B Copper C Lead D Potassium Question 2: Which of

More information

ph Measurement and its Applications

ph Measurement and its Applications ph Measurement and its Applications Objectives: To measure the ph of various solutions using indicators and ph meters. To perform a ph titration. To create and study buffer solutions. To determine the

More information

Electrochemical Cells

Electrochemical Cells Electrochemical Cells PURPOSE To see how changes in concentration and ph affect the potential in an electrochemical cell, and confirm the Nernst equation. GOALS To examine how standard reduction potentials

More information

Lab- Properties of Acids and Bases. Name. PSI Chemistry

Lab- Properties of Acids and Bases. Name. PSI Chemistry Lab- Properties of Acids and Bases PSI Chemistry Name Introduction Acids and bases are useful reagents in the chemistry laboratory and play an important role in biology and nature. What are acids and bases?

More information

Mixtures of Acids and Bases

Mixtures of Acids and Bases Mixtures of Acids and Bases PURPOSE To investigate the resulting ph s of different mixtures of acid and base solutions. GOALS To calculate the ph of pure acid and base solutions. To calculate the ph of

More information

CHEMISTRY HIGHER LEVEL

CHEMISTRY HIGHER LEVEL *P15* PRE-LEAVING CERTIFICATE EXAMINATION, 2008 CHEMISTRY HIGHER LEVEL TIME: 3 HOURS 400 MARKS Answer eight questions in all These must include at least two questions from Section A All questions carry

More information

Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary

Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary 4.1 Water, the Common Solvent A. Structure of water 1. Oxygen s electronegativity is high (3.5) and hydrogen s is low (2.1)

More information

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination.

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Unit 2: The Atom, The Mole & Stoichiometry Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Postulates of the atomic theory: 1. All matter

More information

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution and the analysis of antacid tablets

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution and the analysis of antacid tablets Chem 2115 Experiment #7 Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution and the analysis of antacid tablets OBJECTIVE: The goals of this experiment are to learn titration

More information

Chemistry 151 Last Updated Dec Lab 11: Oxidation-Reduction Reactions

Chemistry 151 Last Updated Dec Lab 11: Oxidation-Reduction Reactions Chemistry 151 Last Updated Dec. 2012 Lab 11: Oxidation-Reduction Reactions Introduction Oxidation-reduction ( redox ) reactions make up a large and diverse part of chemical systems. A few examples include

More information

Chemistry 141 Samuel A. Abrash Chemical Reactions Lab Lecture 9/5/2011

Chemistry 141 Samuel A. Abrash Chemical Reactions Lab Lecture 9/5/2011 Chemistry 141 Samuel A. Abrash Chemical Reactions Lab Lecture 9/5/2011 Q: Before we start discussing this week s lab, can we talk about our lab notebooks? Sure. Q: What makes a lab notebook a good notebook?

More information

EXPERIMENT #9 PRELAB EXERCISES. Redox Titration (Molarity Version) Name Section. 1. Balance the following redox reaction under acidic conditions.

EXPERIMENT #9 PRELAB EXERCISES. Redox Titration (Molarity Version) Name Section. 1. Balance the following redox reaction under acidic conditions. EXPERIMENT #9 PRELAB EXERCISES Redox Titration (Molarity Version) Name Section 1. Balance the following redox reaction under acidic conditions. C 2 O 2-4 (aq) + MnO - 4 (aq) CO 2 (g) + Mn 2+ (aq) 2. A

More information

Chapter 4; Reactions in Aqueous Solutions. Chapter 4; Reactions in Aqueous Solutions. V. Molarity VI. Acid-Base Titrations VII. Dilution of Solutions

Chapter 4; Reactions in Aqueous Solutions. Chapter 4; Reactions in Aqueous Solutions. V. Molarity VI. Acid-Base Titrations VII. Dilution of Solutions Chapter 4; Reactions in Aqueous Solutions I. Electrolytes vs. NonElectrolytes II. Precipitation Reaction a) Solubility Rules III. Reactions of Acids a) Neutralization b) Acid and Carbonate c) Acid and

More information

Chesapeake Campus Chemistry 111 Laboratory

Chesapeake Campus Chemistry 111 Laboratory Chesapeake Campus Chemistry 111 Laboratory Objectives Calculate the concentration of a secondary standard through titration with a primary standard. Titrate a sample of carbonated soda with a standard

More information